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 Introduction 
Flexibility, as one of the concerns in server deployment of internet business, is 
getting more attentions in today’s market with growing diversity. For example: high 
performance computing may prefer more CPU cores to scale up. Cloud service 
calls for huge amount of DRAM to hold VMs. AI business requires more PCI/CXL 
interfaces to plug compute cards. Each scenario has its own performance metrics 
and could receive a boost by customizing hardware or firmware, to better serve the 
business, and to squeeze out the potential of CPU. 
 
Although Intel has a tradition to provide several reference platform designs and 
associated UEFI firmware stacks, they cannot cover all the use cases by CSPs, so 
OEMs and IBVs are involved to make variants of the reference platform, and 
cooperate with CSPs and Intel to develop drivers and features for the final product. 
This routine has been paced for a fair long time. 
 
However, this tradition now appears to be inefficient and too slow to meet the fast-
changing demand of the market. From a perspective of firmware, UEFI calls for a 
unique skill set and hence takes a long time to breed developers, which has 
subsequently slowed down the development of firmware products. On the other 
hand, a smaller community also means a lower chance to uncover those sneaky 
defects, which result in longer bug shooting cycles. 
 
In comparison, Linux* uses popular tool chains, possesses enormous drivers as 
well as a giant community with participation of scientists, engineers, and hobbyists. 
It still flourishes after decades of evolution while UEFI firmware remains almost 
proprietary. In this situation, absorbing Linux* into firmware becomes an appealing 
topic since there is no reason to reject diversity in looking for flexibility. 
 
To embrace this possibility, Intel used to have developed ‘MinPlatform’, a simplified 
UEFI firmware, which does only the memory and silicon initialization job, and hand 
over control to a Linux* kernel thereafter. The kernel will then take care of onboard 
devices initializations. This solution invokes Linux* at late-DXE phase, which is 
right before when the production OS is loaded, but it works, as a first try of 
LinuxBoot* in cloud firmware. 
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Then the Firmware Support Package (FSP) was introduced. FSP packs tedious 
memory and silicon initialization routine into binaries and provides interfaces to 
let them be called from outside. This mechanism makes it possible to also 
leverage open-source firmware stacks at pre-mem phase like coreboot, which 
will be the main topic to be covered in this article. 

Reading Guide 
This document covers two major topics: “coreboot Basics” and “Application Guide”. 
In the basic section, we elaborate on tool chain, boot flow and call trace in each phase. 
While the latter one is specifically on how to set up coreboot firmware stack on 
Intel’s Eagle Stream platform with 4th Gen Intel® Xeon® Scalable processors. 

If you are looking for a quick setup and do not care about the design of coreboot 
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architecture, feel free to skip the first section and go directly to the application 
guide. If you are interested in the mechanism of coreboot or intended to contribute 
to this open-source firmware project, going through the first topic will help clearing 
the way for you. 

Glossary 
BIOS:  A legacy firm, now vaguely referred to as the complete set of software running 

between operating system and hardware. Equals to “firmware” in this document. 
Bootloader:  A modern concept in replace of “BIOS”, referred to as a framework, often 

provides bootstrap code bringing processors alive and interfaces for third parties 
to do platform-specific initialization. 

CAR: Cache-As-RAM, a special operation mode of cache that allows it to be used 
as RAM. 

CSP: Cloud Service Provider, third-party companies offering cloud-based solutions. 
EGS: Eagle Stream, the reference server platform for 4th Gen Intel® Xeon® Processor 

Scalable Family, Codename Sapphire Rapids. 
FSP: Firmware Support Package. A set of software packed in binaries, provided 

by Intel for silicon and platform initialization. Could be integrated by bootloaders. 
Contains three parts: FSP-T (Temp RAM), FSP-M (Memory), FSP-S (Silicon). 

IBV: Independent BIOS vendor. 
Payload:  A software to be executed when bootloader exits and OS yet to be loaded. 

Could be a Linux* kernel or UEFI shell. It usually takes care of device drivers 
and other initialization routines according to firmware design. 

SMM: System Management Mode. 
SPR: Sapphire-Rapids, the codename of the 4th Gen Intel® Xeon® Processor Scalable 

Family. 
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1 coreboot Basics 
This chapter is a recapitulation of coreboot documentation [1], 
with focus on what we think to be the most helpful to coreboot 
starters. Including how to configure, build, and not to get lost in 
the confusing source tree. 

1.1 Toolchain and Repository 
1.1.1 The Build System 
coreboot uses a GNU make build system, with custom 
language to support various configurations of projects. In 
many ways, this system is like the one of Linux*, for the 
author had obviously held such intention to resemble Linux* 
in development. Hence naturally, coreboot has become an 
out-of-the-box firmware with generic support for Linux*. 

In addition to the ‘Makefile’ file, coreboot toolchain also 
requires ‘Makefile.inc’ file in its custom language rule. 
Distinguished by file extensions, these ‘.inc’ files 
separate coreboot build into different classes. A typical 
snippet of ‘.inc’ file could be: 

‘bootblock’, ‘romstage’ and ‘ramstage’ are the most 
important classes to describe different parts of coreboot 
build. We will have detailed discussion on it later. 
Basically, they are different phases during boot process. 
We can add ‘-n’ or ‘-y’ suffixes following with source 
name to determine when and where our code should 
take place. 

Notably, there is only one Makefile at top level, but 
many .inc files (one per subdirectory), which means 
coreboot has a generic build process to which every 
platform-wised configuration must comply. And that is 
how we do it. 

1.1.2 Repository Hierarchy 

As an open-source firmware project, coreboot must support 
various mainboards that come from varied brands, different 
manufacturers, with different board designs or even chip 
architectures. 

To accommodate such diversity, coreboot use a straight-
forward method, that is to place source into directories 
conforming a Processor-Platform-Board hierarchy. 

For example, first comes the generic type of processor (x86, 
ARM, RISC and so on), then it is a specific processor model 
that must be applied on dedicated platform (4th Gen Intel® 
Xeon® Processor Scalable Family, Codename Sapphire 

Rapids on Eagle Stream in our case), and finally it is a more 
specific board model (the board of your project). 
 
Moreover, coreboot provides callbacks according to such 
hierarchy. For example, coreboot has many generic 
initializations, there may be say a coreboot_init() function at 
some point. But for extensibility, this method must have a 
nested soc_init() callback for specific processor models, 
developers should overwrite this callback function to port to 
their SoCs, and finally platform_init() or mainboard_init() 
callback shall also be nested. These callbacks have been 
defined as weak methods and would directly return if not 
overwritten. 

1.2 Config and Build 
1.2.1 Kconfig 

coreboot uses Kconfig, which has also been also adopted by 
Linux* as the main configuration mechanism (the source is 
integrated under util/ by coreboot). If you are familiar with the 
Linux* config system, then this one of coreboot may not be a 

thing, but in case you are confused, referring to Kconfig docs [2] 
may be a good choice. 

Essentially, Kconfig allows you to define variables and set 
default values for them to be used in source code. They can also 
be nested in each platform or mainboard directory. 

As shown in Figure 4 Sample Kconfig snippet of Archer City, we 
defined the path to our board intel/archercity_crb, it is used by 
coreboot build system to locate the source. Then a variable 
‘MAX_SOCKET’ with default value ‘2’. It can also be referred in 
source as ‘CONFIG_MAX_SOCKET’ and has int value ‘2’. 

Besides, a ‘menuconfig’ make target could also be used for 
graphical Kconfig setting in coreboot.

Figure 2. ‘.inc’ files control which class the source to be 
compiled into 

config MAINBOARD_DIR 
 string 
 default "intel/archercity_crb" 
config MAX_SOCKET 
 int 
 default 2 
config BOARD_SPECIFIC_OPTIONS 
 def_bool y 
 select BOARD_ROMSIZE_KB_65536 
 select IPMI_KCS 
 select VPD 
 select MAINBOARD_HAS_TPM2 
 select MAINBOARD_USES_FSP2_0 
 select SOC_INTEL_SAPPHIRERAPIDS_SP 
 select SUPERIO_ASPEED_AST2400 
 select HAVE_ACPI_TABLES 

Figure 3. The structure of the coreboot source tree 

Figure 2. Sample Kconfig snippet of Archer City 

bootblock-y += bootblock.c spi.c lpc.c pch.c 
romstage-y += romstage.c reset.c utilc spi.c pmutil.c 
ramstage-y += memmap.c pch.c lockdown.c finalize.c 
ramstage-$(CONFIG_HAVE_ACPI_TABLES) += 
uncore_acpi.c acpi.c 
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1.2.2 Build the Project 
Refer to ‘coreboot: Starting from scratch’ [3] webpage for 
guidance. 

1.3 Boot Flow 
coreboot has three main stages in its boot flow: bootblock, 
romstage, and ramstage (as shown in Figure 5). Each 
stage has its own entry code for environment setup. In this 
way, they are mutually independent. 

1.3.1 Bootblock 
The first stage after machine power-up. Upon entering this 
stage, CPU will fetch its first instruction which is called 
‘reset vector’ from a fixed address. The reset vector has 
been placed by coreboot at top sector of flash ROM, it 
contains a jump to the bootstrap code in flash image. The 
bootstrap code, written with assembly, differs per different 
processor type. But in our case (4th Gen Intel® Xeon® 
Processor Scalable Family, Codename Sapphire Rapids 
on Eagle Stream), it looks for the entry point of FSP-T in 
flash image and execute in-place. 

Now that FSP-T enters, does its magic, load microcode 
and setup Cache-As-RAM (CAR). Once CAR is available, 
coreboot sets up protected mode for CPU and let C-code 
into the play. After all these preparations, the bootblock 
main() function would now come up. 

Bootblock main() is like ‘SecMain()’ on UEFI side. It does 
early initializations such as console and GPIO inits. You 
could also override the bootblock_mainboard_early_init() 
callback here to do early setup for your project. But there 
is not much to do, bootblock is a transient stage and will 
soon pass its control to Romstage, to do the main memory 
setup. 

1.3.2 Romstage 
In the past, Romstage was pre-compiled with ROMCC, 
which turns C code into stack-less assembly code. But 
now situation has changed since CAR is available. 
Romstage simply calls into the hook fsp_memory_init() on 
entry, and standby until main memory is ready. 

During its lifetime, FSP-M will cover uncore initialization, 
main memory training, memory topology and clustering 
setup and so on. It takes up almost 80% of Romstage 
time, and returns with pointers to Hand-Off-Blocks (HOBs), 
which are 

 

 

data structures preserved in memory containing memory 
training result and crucial system information). 

When FSP-M exits, main memory is standing by, and the 
control is again returned to coreboot. Romstage would now 
preserve a region called ‘cbmem’ in main memory. This 
region prevails through all stages, from boot time to OS, 
thus can be used to hold global variables, HOBs, ACPI 
tables and so on. 

Finally at the end of Romstage, everything is migrating to 
main memory, so CAR will no longer be used and will be 
torn down. This is done by calling into FSP again via the 
hook late_car_teardown(). Sometimes this stage is called 
‘post-CAR’. After it returns, Romstage would also exit. 

1.3.3 Ramstage 
Like the other two stages, Ramstage also starts with calling 
FSP, but FSP-S (that is, Silicon) in its case. FSP-S takes 
care of proprietary CPU and platform features such as 
Intel® Software Guard Extensions (Intel® SGX) and Intel® 
Server Platform Services (Intel® SPS). It is also at this time 
that the firmware flash ROM is locked to prohibit any further 
modification. 

Notably, Ramstage is when coreboot does the init work 
during boot time. It is accomplished by many boot state 
machines called ‘Hardwaremain’ state machine. Marked as 
‘BS_{FUNCTION}’. By design they are generic, with hooks 
for chipset and mainboards customization. In the case of 
Eagle Stream, these state machines make up three major 
phases: 

PCI init: When FSP-S exits after a relatively short time, 
coreboot starts to scan PCI devices according to IIO stack 
info. In this process: 
BS_DEV_ENUMERATE scans PCI devices and update 
them to the device tree. 
BS_DEV_RESOURCE allocates memory resource like 
MMIO windows for devices. 
BS_DEV_ENABLE sends commands to let devices operate 
properly. 
BS_POST_DEVICE provides hooks for additional feature 
initializations like PCI Advanced Error Reporting (AER) 
mechanism. 

MP init: In this phase, coreboot sets each CPU thread into 
correct state and assign interrupt controller IDs, to bring 

Figure 3. coreboot in a nutshell [5], and a comparison with UEFI firmware. 
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inter-processor-interrupt service online. 

Besides, this phase also covers System-Management 
Mode init for each thread, including SMRAM allocation and 
SMBASE relocation. The flow is devised according to 
Software Developer’s Manual [4] 

So far, MP init involves BS_DEV_INIT_CHIPS and 
BS_DEV_INIT. 

ACPI fill-out: This phase comes after the other two above, 
with only one state machine BS_WRITE_TABLES. ACPI 
and SMBIOS tables can be filled here. These tables are 
allocated in cbmem, and their locations will be reported 
through system memory map to operating system. 

A simplified version of Figure 5 coreboot in a nutshell [5], 
plus a comparison with UEFI firmware. indicating the boot 
flow is shown next. 

 
Figure 6. Runtime in each stage, the wider the longer 

1.3.4 Payload 
In a way, Payload is all that coreboot is meant for. Back in 
the time when DRAM was not as complicated as today’s, 
‘coreboot’ only consisted of very few steps, the last of 
which was copying a Linux* kernel from ROM into main 
memory, so that the abundant device drivers and utilities 
from Linux* community could be used for platform init. The 
Linux* kernel at that time was the first instance of Payload, 
since then, all the evolution of coreboot serves for only one 
goal: “Getting chipset and memory ready for Payload to do 
the rest”. 

The category of Payload has expanded now and not only 
includes Linux* kernel, but also Tianocore, GRUB and U-
Boot and so on. Notably, a Payload image must reside in 
ROM and hence is still within the scope of firmware. 

Payload is like a counterpart of post-DXE phase of UEFI 
firmware, it provides an environment for firmware 
applications such as PXE-boot* and busybox*. The 
difference is that coreboot does not define the feature of 
Payload or come with one, which means Payloads must 
be integrated as third-party components. 

And it is the duty of Payload to boot the machine into the 
final operating system. 

2. Application Guide 
This section is particularly useful for engineers who are 
looking for quick practices with coreboot. In the scope of 
this document, we demonstrate a best-known method of 
porting coreboot to the Eagle Stream platform. 

Before everything, make sure that all dependencies are 
met (1.2.2 Build the project) and xgcc toolchain has been 
built: 

$make crossgcc 

 

 

2.1 Create Project Folder 
Mainboard instances take up a unique level of coreboot 
source tree. You can find them under src/mainboard/. The 
instance of Eagle Stream Customer Reference Board 
(CRB) is located under: 

src/mainboard/intel/archercity_crb 

This will be the basis of our practice. To work on it, we need 

to first create a directory that represents your organization 
or company (for example, src/mainboard/myorg), then copy 
the Kconfig and Kconfig.name file from src/mainboard/Intel/ 
into your org folder and change their values accordingly. 

2.1.1 Kconfig of Organization 
Now we created a new vendor named “My org name” (see 
Figure 7). with src/mainboard/myorg as directory. Do not 
forget to also change the corresponding values in Kconfig, 
shown as next: 

2.1.2 Kconfig of Mainboard 
For the next step, copy the entire Archer City CRB folder to 
your org directory, and rename it to: 

src/mainboard/myorg/my_mainboard 

Here we have a duplicated instance with all configurations 
including GPIO settings identical to Archer City CRB. Note 
that there are also Kconfig and Kconfig.name files in the 
board instance folder, they also need to be modified 
according to our mainboard. Starting from Kconfig.name 
(see Figure 9), then all relative fields in Kconfig and 
board_info.txt. 

Make sure the key config MAINBOARD_DIR in Kconfig has 
been set to ‘myorg/my_mainboard’. 

After all steps being done correctly, you will see a visible 
entry in the ‘mainboard’ list prompted by command line: 

$make menuconfig 

 

 

 

 

 
  

config BOARD_MYORG_MYBOARD 
 bool “My mainboard” 

config VENDOR_MYORG 
 bool “My org name” 

Figure 7. Sample Kconfig.name of ‘myorg’ 

Figure 4 Sample Kconfig.name of ‘my_mainboard’ 

If VENDOR_MYORG 
choice  

prompt “Mainboard model” 
source “src/mainboard/myorg/*/Kconfig.name 
endchoice 
…… 
endif 

Figure 8. Sample Kconfig file of 'myorg' 
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Figure 5 The mainboard we just created 

2.1.3 Use defconfig 
The ‘menuconfig’ (Figure 10) provides a convenient GUI 
that allows us to change basically every configuration 
declared in Kconfig files. However, there is a much more 
efficient one-click solution for this: using defconfig files. 

defconfig files are generated by command line: 

$make savedefconfig 

They are extracted records of different mainboard configs, 
and can be re-used anytime by command line: 

$make defconfig KBUILD_DEFCONFIG=“defconfig_path” 

This is equivalent to setting configurations via menuconfig, 
but with only one click. The defconfig for Archer City CRB 
is src/configs/builder/config.intel.crb.ac. Again, we can 
copy this Kconfig and rename it to: 

src/configs/builder/config.myorg.myboard 

Now we have a defconfig file which spots out all pivot 
configs of Intel Archer City board. By reading this file, it is 
easy to have knowledge of what is changed in the build. In 
our practice, we merely created a new vendor “my org” 
and a new board “my board”. So, for the first hand, we will 
change VENDOR_INTEL to VENDOR_MYORG, and 
ARCHERCITY_CRB to MYORG_MYBOARD. 

As shown in the example above, the default defconfig of 
Archer City CRB uses LinuxBoot* as payload, in which 
case an external LinuxBoot* payload file shall be provided. 
We recommend U-root* + latest kernel solution here, for 
build instructions please refer to the U-root* GitHub* 
repository [6]. But if you will not bother to investigate it, it is 

fine to change the default payload to Tianocore, and let 
coreboot build it from EDKII repository automatically. 

Attentions are required here that till now we are not yet 
ready to build the project. According to Figure 12, there are 
other binary components in the firmware volume that need 
to be added, including “Intel Firmware Descriptor” (IFD), 
“Management Engine” (ME), “Gigabit Ethernet Conf File” 
(GbE) as well as FSPs. 

2.2 Binaries and Image Layout 
To boot on Eagle Stream platform, the firmware image 
must comply Intel firmware layout. We could use the Intel® 
Modular Flash Image Tool to decompose a UEFI IFWI from 
Intel BKC release, and get the IFD, Intel® ME, FBE binaries 
mentioned in previous section. Then on the coreboot side, 
we use an “.fmd” file (Figure 11) to control how to re-
compose these binaries into coreboot firmware volume. 
Logic and syntax of this flash-map descripting file is well 
documented at [7]. 

The “.fmd” file of our project is under mainboard folder: 

src/mainboard/myorg/my_mainboard/board.fmd 

By default, this file is the same with Archer City and will not 
be touched. We only need to prepare corresponding 
binaries and feed their paths to defconfig file. 

2.2.1 Use site-local Directory 
The “site-local” directory is an optional folder ignored by 
coreboot git repo yet still be visited by its make and Kconfig 
system. “The intent is to provide a single location to store 
local modifications.” – Says coreboot documentation. There 
is no magic of it. You could create another GitHub* 
repository named “site-local” in the top-level of coreboot 
repo anytime and manage local changes like binaries 
inside. 

The only thing remarkable is that coreboot has actually 
integrated site-local (if available) into build process, which 
means you can have custom “Makefile.inc” and “Kconfig” in 
this folder to control local changes even they are ignored. 

In our practice, for example, we could create a folder 
named “site-local/myboard” and put all required binaries 
inside, then modify the defconfig: 

CONFIG_IFD_BIN_PATH = “site-local/myboard/ifd.bin” … 
CONFIG_FSP_T_FILE = “site-local/myboard/Server_T.fd” … 

2.3 FSP Integration 
To correctly integrate FSP into coreboot, FSP headers are 
also important other than binaries. Hence for each set of 
FSP binaries, you must fetch corresponding UPD and HOB 
headers (FsptUpd.h, FspmUpd.h, FspsUpd.h and *Hob.h). 
and put them under: 

CONFIG_VENDOR_MYORG=y 
CONFIG_BOARD_MYORG_MYBOARD=y 
… 
CONFIG_IFD_BIN_PATH = “…” 
CONFIG_ME_BIN_PATH = “…” 
CONFIG_GBE_BIN_PATH = “…” 
… 
CONFIG_FSP_T_FILE = “…” 
CONFIG_FSP_M_FILE = “…” 
CONFIG_FSP_S_FILE = “…” 
… 
CONFIG_PAYLOAD_LINUX=y 
CONFIG_PAYLOAD_FILE = “…” 
CONFIG_PAYLOAD_TIANOCORE=y 
CONFIG_TIANOCORE_UPSTREAM=y 
… 

Figure 11 Image components and payload option in 
sample defconfig config.myorg.myboard 

FLASH@0xfc000000 64M { 
        SI_ALL@0x0 0x03000000 { 
         SI_DESC@0x0 0x1000 

SI_GBE@0x1000 0x2000 
 SI_ME@0x3000 0x2fed000 
 SI_PT@0x2ff0000 0x10000 
        } 
        RW_MRC_CACHE@0x3000000 0x18000 
        FMAP 0x800 
        RW_VPD(PRESERVE) 0x4000 
        RO_VPD(PRESERVE) 0x4000 
        COREBOOT(CBFS) 
} 

Figure 12. The firmware volume memory-mapped at 
0xFC000000, with 4K-Descriptor aligned at bottom 

and 16M-CBFS at the top 
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src/vendorcode/intel/fsp/fsp2_0/sapphirerapids_sp/ 

2.4 Build the Project 
After all configs, binaries and headers are ready, we can 
now build the project via command line: 

$make clean && make distclean 
$make defconfig KBUILD_DEFCONFIG= 
“configs/builder/config.myorg.myboard” 
$make -j $job_count 

The $job_count is the maximum supported CPU thread 
count of your source building machine, in the case of 32-
thread it will take only ~8 seconds to finish the build. But if 
you have selected CONFIG_PAYLOAD_TIANOCORE, it 
would take some extra few minutes to build the payload 
from EDKII. 

When the build is done, copy and flash build/coreboot.rom 
into the ROM on your board and try to boot. 

 

3. Development Guide 
This section provides supplementary reading for firmware 
developers, including a minimal guide on porting ACPI and 
SMBIOS tables to customized platforms with different 
GPIO configurations, plus a brief introduction to coreboot 
SMM architecture and RAS feature tuning methods. 

3.1 coreboot Table 
At the end of Ramstage, yet before payload is loaded, boot 
state jumps to BS_WRITE_TABLES when most system 
tables are being written to reserved locations in RAM. 
Among these tables, there is one uniquely named as 
“coreboot table” which worth being mentioned here. 

“The coreboot table is for conveying information from the 
firmware to the loaded OS image. Primarily this is 
expected to be information that cannot be discovered by 
other means, such as querying the hardware directly.” [8] 
Hence on x86 platform, coreboot table is suitable for 
passing memory mapping info to OS, in which case it is 
similar to the E820 table on EFI side. 

The pointer to coreboot table is passed to payload as a 
parameter in boot state BS_PAYLOAD_LOAD so that 
Payload could read and parse the pointed mem region for 
system information. The “Root System Descriptor Pointer” 
(RSDP) is also exposed in coreboot table, for compatibility 
with legacy, it is copied to lower memory (0xF0000) to be 
auto detected by OS. 

Architecturally, coreboot table is just one allocated entry in 
cbmem, which is the same with ACPI and SMBIOS tables 
and global non-volatile variable area. 

3.2 ACPI and SMBIOS 
SMBIOS is enabled by default on x86 platform, while ACPI 
is toggled by Kconfig HAVE_ACPI_TABLES. Both of these 
two types of tables are cbmem items allocated at high 
memory region, besides, they both have entry point 
addresses copied to lower memory around 0xF0000. 

 

 

 

 

 

ACPI implementations locate in src/acpi/acpi.c, within 

function “write_acpi_tables()”. The function creates generic 
ACPI tables like SSDT, DSDT, and FACS. For any table 
that needs platform or mainboard specific modifications, we 
can create corresponding “__weak” function hooks and 
override them in private code. 

Additionally, for each device on the platform, we could add 
an ACPI creating method (Figure 13) and link it to the 
device’s “write_acpi_tables” pointer (different from the 
previous function, this is a member function in device driver 
with same name) 

SMBIOS is implemented in a similar way. The main routine 
locates in src/arch/x86/smbios.c: smbios_write_table(), 
platform specific changes can be hooked with 
“get_smbios_data” in device drivers. 

3.3 GPIO pins 
Onboard GPIO pins can be initialized at very early phase in 
Bootblock. To do this, a common way is to carve a GPIO 
table (pin definitions usually lies in gpio_defs.h) that reflects 
the board config, then pass it as a parameter to function 
gpio_configure_pads(). This function can be invoked at any 
stage via mainboard overrider, in the case of Bootblock it is 
bootblock_mainboard_early_init(). 

3.4 SMM and RAS Features 
On teh 4th Gen Intel® Xeon® platform, Intel provides only 
three FSP binaries: FSP-T, FSP-M, FSP-S, none of these 
covers System Management Mode (SMM) initialization or 
System Management Interrupt (SMI) handling, so coreboot 
has to take over this part. 

SMM-related features are controlled by a main switch 
HAVE_SMI_HANDLERS defined in x86 Kconfig. On Intel® 
Xeon®SP platform, it is enabled by default. Once enabled, 
coreboot will cover SMRAM relocation and SMI handler 
registration during multi-processor init. This happens in 
boot state BS_DEV_INIT. 

The symmetric multiprocessing environment for SMI 
handling has been re-designed by coreboot community, so 
it differs a little from the one of UEFI firmware. Generally, 
the re-designed environment has 2 major rules: 

for (dev = all_devices; dev; dev = dev->next) 
    if (dev->ops && dev->ops->write_acpi_tables) { 
        current = dev->ops->write_acpi_tables(dev, current, rsdp); 
        current = acpi_align_current(current); 

} 

Figure 6 ACPI fill-out routine for all devices 



 

8  Document Number: 778593, Revision: 0.9  

White Paper | coreboot on Eagle Stream 
 
 

 
 
 

 
1. Only 1 thread is allowed to handle SMI event at a 

time, others entering SMM will wait until being 
released. 

2. Threads are allowed to enter SMM 
asynchronously; that is, SMI events can be 
handled even while some threads are not in SMM. 

RAS features can be integrated into SMI handler as a 
common solution. Related code could be found in 
smm_module_handler.c. In the main handler function 
smm_handler_start() where CPU, uncore and I/O 
events are handled in order. 

At present, there is one example RAS feature 
SOC_RAS_ELOG (that is, Enhanced Log) selected on 
Intel® Xeon® platform. The feature embeds additional 
error reporting mechanism, which saves fatal machine 
check errors as detailed log to cbmem, into SMI 
handler. The entire operation needs a medium 
containing info about where error logs are saved to be 
passed to OS, so it is often coupled with Kconfig 
SOC_ACPI_HEST. 
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Figure 7. SMM module execution flow 
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