

1 Document Number: 778593, Revision: 0.9

Technical Paper
Data Center & Artificial Intelligence
Firmware Solution

coreboot on
Eagle Stream

A guidebook for FSP-coreboot firmware solution on Eagle Stream platform

 Introduction
Flexibility, as one of the concerns in server deployment of internet business, is
getting more attentions in today’s market with growing diversity. For example: high
performance computing may prefer more CPU cores to scale up. Cloud service
calls for huge amount of DRAM to hold VMs. AI business requires more PCI/CXL
interfaces to plug compute cards. Each scenario has its own performance metrics
and could receive a boost by customizing hardware or firmware, to better serve the
business, and to squeeze out the potential of CPU.

Although Intel has a tradition to provide several reference platform designs and
associated UEFI firmware stacks, they cannot cover all the use cases by CSPs, so
OEMs and IBVs are involved to make variants of the reference platform, and
cooperate with CSPs and Intel to develop drivers and features for the final product.
This routine has been paced for a fair long time.

However, this tradition now appears to be inefficient and too slow to meet the fast-
changing demand of the market. From a perspective of firmware, UEFI calls for a
unique skill set and hence takes a long time to breed developers, which has
subsequently slowed down the development of firmware products. On the other
hand, a smaller community also means a lower chance to uncover those sneaky
defects, which result in longer bug shooting cycles.

In comparison, Linux* uses popular tool chains, possesses enormous drivers as
well as a giant community with participation of scientists, engineers, and hobbyists.
It still flourishes after decades of evolution while UEFI firmware remains almost
proprietary. In this situation, absorbing Linux* into firmware becomes an appealing
topic since there is no reason to reject diversity in looking for flexibility.

To embrace this possibility, Intel used to have developed ‘MinPlatform’, a simplified
UEFI firmware, which does only the memory and silicon initialization job, and hand
over control to a Linux* kernel thereafter. The kernel will then take care of onboard
devices initializations. This solution invokes Linux* at late-DXE phase, which is
right before when the production OS is loaded, but it works, as a first try of
LinuxBoot* in cloud firmware.

Table of Contents
Introduction 1

Reading Guide 1

Coreboot Basics 3

Toolchain and Repository 3

Config and Build 3

Boot Flow 4

Application Guide 5

Create Project Folder 5

Binaries and Image Layout 6

Then the Firmware Support Package (FSP) was introduced. FSP packs tedious
memory and silicon initialization routine into binaries and provides interfaces to
let them be called from outside. This mechanism makes it possible to also
leverage open-source firmware stacks at pre-mem phase like coreboot, which
will be the main topic to be covered in this article.

Reading Guide
This document covers two major topics: “coreboot Basics” and “Application Guide”.
In the basic section, we elaborate on tool chain, boot flow and call trace in each phase.
While the latter one is specifically on how to set up coreboot firmware stack on
Intel’s Eagle Stream platform with 4th Gen Intel® Xeon® Scalable processors.

If you are looking for a quick setup and do not care about the design of coreboot

2 Document Number: 778593, Revision: 0.9

White Paper | coreboot on Eagle Stream

FSP Integration 6

Build the Project 7

Development Guide 7

coreboot table 7

ACPI and SMBIOS 7

GPIO Pins 7

SMM and RAS Features 7

architecture, feel free to skip the first section and go directly to the application
guide. If you are interested in the mechanism of coreboot or intended to contribute
to this open-source firmware project, going through the first topic will help clearing
the way for you.

Glossary
BIOS: A legacy firm, now vaguely referred to as the complete set of software running

between operating system and hardware. Equals to “firmware” in this document.
Bootloader: A modern concept in replace of “BIOS”, referred to as a framework, often

provides bootstrap code bringing processors alive and interfaces for third parties
to do platform-specific initialization.

CAR: Cache-As-RAM, a special operation mode of cache that allows it to be used
as RAM.

CSP: Cloud Service Provider, third-party companies offering cloud-based solutions.
EGS: Eagle Stream, the reference server platform for 4th Gen Intel® Xeon® Processor

Scalable Family, Codename Sapphire Rapids.
FSP: Firmware Support Package. A set of software packed in binaries, provided

by Intel for silicon and platform initialization. Could be integrated by bootloaders.
Contains three parts: FSP-T (Temp RAM), FSP-M (Memory), FSP-S (Silicon).

IBV: Independent BIOS vendor.
Payload: A software to be executed when bootloader exits and OS yet to be loaded.

Could be a Linux* kernel or UEFI shell. It usually takes care of device drivers
and other initialization routines according to firmware design.

SMM: System Management Mode.
SPR: Sapphire-Rapids, the codename of the 4th Gen Intel® Xeon® Processor Scalable

Family.

Reference

[1] "coreboot documentation," [Online]. Available: https://doc.coreboot.org/.
[2] "kconfig documentation," [Online]. Available:

https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt.
[3] "coreboot: Starting from scratch," [Online]. Available:

https://doc.coreboot.org/tutorial/part1.html.
[4] "System Management Mode," in Intel 64 and IA-32 Architectures

Software Developer's Manual, 2021, pp. vol 3C, Chapter 31.
[5] "coreboot architecture," [Online]. Available:

https://doc.coreboot.org/_images/comparison_coreboot_uefi.svg.
[6] "u-root," 2023. [Online]. Available: https://github.com/u-root/u-root.
[7] "coreboot Flashmap Descriptor," [Online]. Available:

https://doc.coreboot.org/lib/flashmap.html?highlight=flashmap.
[8] "coreboot table: code," [Online]. Available:

https://github.com/coreboot/coreboot/blob/master/src/commonlib/include
/commonlib/coreboot_tables.h.

3 Document Number: 778593, Revision: 0.9

Figure 1. ‘coreboot’ should be all-lowercase, with no space

Technical Paper | coreboot on Eagle Stream

1 coreboot Basics
This chapter is a recapitulation of coreboot documentation [1],
with focus on what we think to be the most helpful to coreboot
starters. Including how to configure, build, and not to get lost in
the confusing source tree.

1.1 Toolchain and Repository
1.1.1 The Build System
coreboot uses a GNU make build system, with custom
language to support various configurations of projects. In
many ways, this system is like the one of Linux*, for the
author had obviously held such intention to resemble Linux*
in development. Hence naturally, coreboot has become an
out-of-the-box firmware with generic support for Linux*.

In addition to the ‘Makefile’ file, coreboot toolchain also
requires ‘Makefile.inc’ file in its custom language rule.
Distinguished by file extensions, these ‘.inc’ files
separate coreboot build into different classes. A typical
snippet of ‘.inc’ file could be:

‘bootblock’, ‘romstage’ and ‘ramstage’ are the most
important classes to describe different parts of coreboot
build. We will have detailed discussion on it later.
Basically, they are different phases during boot process.
We can add ‘-n’ or ‘-y’ suffixes following with source
name to determine when and where our code should
take place.

Notably, there is only one Makefile at top level, but
many .inc files (one per subdirectory), which means
coreboot has a generic build process to which every
platform-wised configuration must comply. And that is
how we do it.

1.1.2 Repository Hierarchy

As an open-source firmware project, coreboot must support
various mainboards that come from varied brands, different
manufacturers, with different board designs or even chip
architectures.

To accommodate such diversity, coreboot use a straight-
forward method, that is to place source into directories
conforming a Processor-Platform-Board hierarchy.

For example, first comes the generic type of processor (x86,
ARM, RISC and so on), then it is a specific processor model
that must be applied on dedicated platform (4th Gen Intel®
Xeon® Processor Scalable Family, Codename Sapphire

Rapids on Eagle Stream in our case), and finally it is a more
specific board model (the board of your project).

Moreover, coreboot provides callbacks according to such
hierarchy. For example, coreboot has many generic
initializations, there may be say a coreboot_init() function at
some point. But for extensibility, this method must have a
nested soc_init() callback for specific processor models,
developers should overwrite this callback function to port to
their SoCs, and finally platform_init() or mainboard_init()
callback shall also be nested. These callbacks have been
defined as weak methods and would directly return if not
overwritten.

1.2 Config and Build
1.2.1 Kconfig

coreboot uses Kconfig, which has also been also adopted by
Linux* as the main configuration mechanism (the source is
integrated under util/ by coreboot). If you are familiar with the
Linux* config system, then this one of coreboot may not be a

thing, but in case you are confused, referring to Kconfig docs [2]
may be a good choice.

Essentially, Kconfig allows you to define variables and set
default values for them to be used in source code. They can also
be nested in each platform or mainboard directory.

As shown in Figure 4 Sample Kconfig snippet of Archer City, we
defined the path to our board intel/archercity_crb, it is used by
coreboot build system to locate the source. Then a variable
‘MAX_SOCKET’ with default value ‘2’. It can also be referred in
source as ‘CONFIG_MAX_SOCKET’ and has int value ‘2’.

Besides, a ‘menuconfig’ make target could also be used for
graphical Kconfig setting in coreboot.

Figure 2. ‘.inc’ files control which class the source to be
compiled into

config MAINBOARD_DIR
 string
 default "intel/archercity_crb"
config MAX_SOCKET
 int
 default 2
config BOARD_SPECIFIC_OPTIONS
 def_bool y
 select BOARD_ROMSIZE_KB_65536
 select IPMI_KCS
 select VPD
 select MAINBOARD_HAS_TPM2
 select MAINBOARD_USES_FSP2_0
 select SOC_INTEL_SAPPHIRERAPIDS_SP
 select SUPERIO_ASPEED_AST2400
 select HAVE_ACPI_TABLES

Figure 3. The structure of the coreboot source tree

Figure 2. Sample Kconfig snippet of Archer City

bootblock-y += bootblock.c spi.c lpc.c pch.c
romstage-y += romstage.c reset.c utilc spi.c pmutil.c
ramstage-y += memmap.c pch.c lockdown.c finalize.c
ramstage-$(CONFIG_HAVE_ACPI_TABLES) +=
uncore_acpi.c acpi.c

4 Document Number: 778593, Revision: 0.9

White Paper | coreboot on Eagle Stream

1.2.2 Build the Project
Refer to ‘coreboot: Starting from scratch’ [3] webpage for
guidance.

1.3 Boot Flow
coreboot has three main stages in its boot flow: bootblock,
romstage, and ramstage (as shown in Figure 5). Each
stage has its own entry code for environment setup. In this
way, they are mutually independent.

1.3.1 Bootblock
The first stage after machine power-up. Upon entering this
stage, CPU will fetch its first instruction which is called
‘reset vector’ from a fixed address. The reset vector has
been placed by coreboot at top sector of flash ROM, it
contains a jump to the bootstrap code in flash image. The
bootstrap code, written with assembly, differs per different
processor type. But in our case (4th Gen Intel® Xeon®
Processor Scalable Family, Codename Sapphire Rapids
on Eagle Stream), it looks for the entry point of FSP-T in
flash image and execute in-place.

Now that FSP-T enters, does its magic, load microcode
and setup Cache-As-RAM (CAR). Once CAR is available,
coreboot sets up protected mode for CPU and let C-code
into the play. After all these preparations, the bootblock
main() function would now come up.

Bootblock main() is like ‘SecMain()’ on UEFI side. It does
early initializations such as console and GPIO inits. You
could also override the bootblock_mainboard_early_init()
callback here to do early setup for your project. But there
is not much to do, bootblock is a transient stage and will
soon pass its control to Romstage, to do the main memory
setup.

1.3.2 Romstage
In the past, Romstage was pre-compiled with ROMCC,
which turns C code into stack-less assembly code. But
now situation has changed since CAR is available.
Romstage simply calls into the hook fsp_memory_init() on
entry, and standby until main memory is ready.

During its lifetime, FSP-M will cover uncore initialization,
main memory training, memory topology and clustering
setup and so on. It takes up almost 80% of Romstage
time, and returns with pointers to Hand-Off-Blocks (HOBs),
which are

data structures preserved in memory containing memory
training result and crucial system information).

When FSP-M exits, main memory is standing by, and the
control is again returned to coreboot. Romstage would now
preserve a region called ‘cbmem’ in main memory. This
region prevails through all stages, from boot time to OS,
thus can be used to hold global variables, HOBs, ACPI
tables and so on.

Finally at the end of Romstage, everything is migrating to
main memory, so CAR will no longer be used and will be
torn down. This is done by calling into FSP again via the
hook late_car_teardown(). Sometimes this stage is called
‘post-CAR’. After it returns, Romstage would also exit.

1.3.3 Ramstage
Like the other two stages, Ramstage also starts with calling
FSP, but FSP-S (that is, Silicon) in its case. FSP-S takes
care of proprietary CPU and platform features such as
Intel® Software Guard Extensions (Intel® SGX) and Intel®
Server Platform Services (Intel® SPS). It is also at this time
that the firmware flash ROM is locked to prohibit any further
modification.

Notably, Ramstage is when coreboot does the init work
during boot time. It is accomplished by many boot state
machines called ‘Hardwaremain’ state machine. Marked as
‘BS_{FUNCTION}’. By design they are generic, with hooks
for chipset and mainboards customization. In the case of
Eagle Stream, these state machines make up three major
phases:

PCI init: When FSP-S exits after a relatively short time,
coreboot starts to scan PCI devices according to IIO stack
info. In this process:
BS_DEV_ENUMERATE scans PCI devices and update
them to the device tree.
BS_DEV_RESOURCE allocates memory resource like
MMIO windows for devices.
BS_DEV_ENABLE sends commands to let devices operate
properly.
BS_POST_DEVICE provides hooks for additional feature
initializations like PCI Advanced Error Reporting (AER)
mechanism.

MP init: In this phase, coreboot sets each CPU thread into
correct state and assign interrupt controller IDs, to bring

Figure 3. coreboot in a nutshell [5], and a comparison with UEFI firmware.

5 Document Number: 778593, Revision: 0.9

White Paper | coreboot on Eagle Stream

inter-processor-interrupt service online.

Besides, this phase also covers System-Management
Mode init for each thread, including SMRAM allocation and
SMBASE relocation. The flow is devised according to
Software Developer’s Manual [4]

So far, MP init involves BS_DEV_INIT_CHIPS and
BS_DEV_INIT.

ACPI fill-out: This phase comes after the other two above,
with only one state machine BS_WRITE_TABLES. ACPI
and SMBIOS tables can be filled here. These tables are
allocated in cbmem, and their locations will be reported
through system memory map to operating system.

A simplified version of Figure 5 coreboot in a nutshell [5],
plus a comparison with UEFI firmware. indicating the boot
flow is shown next.

Figure 6. Runtime in each stage, the wider the longer

1.3.4 Payload
In a way, Payload is all that coreboot is meant for. Back in
the time when DRAM was not as complicated as today’s,
‘coreboot’ only consisted of very few steps, the last of
which was copying a Linux* kernel from ROM into main
memory, so that the abundant device drivers and utilities
from Linux* community could be used for platform init. The
Linux* kernel at that time was the first instance of Payload,
since then, all the evolution of coreboot serves for only one
goal: “Getting chipset and memory ready for Payload to do
the rest”.

The category of Payload has expanded now and not only
includes Linux* kernel, but also Tianocore, GRUB and U-
Boot and so on. Notably, a Payload image must reside in
ROM and hence is still within the scope of firmware.

Payload is like a counterpart of post-DXE phase of UEFI
firmware, it provides an environment for firmware
applications such as PXE-boot* and busybox*. The
difference is that coreboot does not define the feature of
Payload or come with one, which means Payloads must
be integrated as third-party components.

And it is the duty of Payload to boot the machine into the
final operating system.

2. Application Guide
This section is particularly useful for engineers who are
looking for quick practices with coreboot. In the scope of
this document, we demonstrate a best-known method of
porting coreboot to the Eagle Stream platform.

Before everything, make sure that all dependencies are
met (1.2.2 Build the project) and xgcc toolchain has been
built:

$make crossgcc

2.1 Create Project Folder
Mainboard instances take up a unique level of coreboot
source tree. You can find them under src/mainboard/. The
instance of Eagle Stream Customer Reference Board
(CRB) is located under:

src/mainboard/intel/archercity_crb

This will be the basis of our practice. To work on it, we need

to first create a directory that represents your organization
or company (for example, src/mainboard/myorg), then copy
the Kconfig and Kconfig.name file from src/mainboard/Intel/
into your org folder and change their values accordingly.

2.1.1 Kconfig of Organization
Now we created a new vendor named “My org name” (see
Figure 7). with src/mainboard/myorg as directory. Do not
forget to also change the corresponding values in Kconfig,
shown as next:

2.1.2 Kconfig of Mainboard
For the next step, copy the entire Archer City CRB folder to
your org directory, and rename it to:

src/mainboard/myorg/my_mainboard

Here we have a duplicated instance with all configurations
including GPIO settings identical to Archer City CRB. Note
that there are also Kconfig and Kconfig.name files in the
board instance folder, they also need to be modified
according to our mainboard. Starting from Kconfig.name
(see Figure 9), then all relative fields in Kconfig and
board_info.txt.

Make sure the key config MAINBOARD_DIR in Kconfig has
been set to ‘myorg/my_mainboard’.

After all steps being done correctly, you will see a visible
entry in the ‘mainboard’ list prompted by command line:

$make menuconfig

config BOARD_MYORG_MYBOARD
 bool “My mainboard”

config VENDOR_MYORG
 bool “My org name”

Figure 7. Sample Kconfig.name of ‘myorg’

Figure 4 Sample Kconfig.name of ‘my_mainboard’

If VENDOR_MYORG
choice

prompt “Mainboard model”
source “src/mainboard/myorg/*/Kconfig.name
endchoice
……
endif

Figure 8. Sample Kconfig file of 'myorg'

6 Document Number: 778593, Revision: 0.9

White Paper | coreboot on Eagle Stream

Figure 5 The mainboard we just created

2.1.3 Use defconfig
The ‘menuconfig’ (Figure 10) provides a convenient GUI
that allows us to change basically every configuration
declared in Kconfig files. However, there is a much more
efficient one-click solution for this: using defconfig files.

defconfig files are generated by command line:

$make savedefconfig

They are extracted records of different mainboard configs,
and can be re-used anytime by command line:

$make defconfig KBUILD_DEFCONFIG=“defconfig_path”

This is equivalent to setting configurations via menuconfig,
but with only one click. The defconfig for Archer City CRB
is src/configs/builder/config.intel.crb.ac. Again, we can
copy this Kconfig and rename it to:

src/configs/builder/config.myorg.myboard

Now we have a defconfig file which spots out all pivot
configs of Intel Archer City board. By reading this file, it is
easy to have knowledge of what is changed in the build. In
our practice, we merely created a new vendor “my org”
and a new board “my board”. So, for the first hand, we will
change VENDOR_INTEL to VENDOR_MYORG, and
ARCHERCITY_CRB to MYORG_MYBOARD.

As shown in the example above, the default defconfig of
Archer City CRB uses LinuxBoot* as payload, in which
case an external LinuxBoot* payload file shall be provided.
We recommend U-root* + latest kernel solution here, for
build instructions please refer to the U-root* GitHub*
repository [6]. But if you will not bother to investigate it, it is

fine to change the default payload to Tianocore, and let
coreboot build it from EDKII repository automatically.

Attentions are required here that till now we are not yet
ready to build the project. According to Figure 12, there are
other binary components in the firmware volume that need
to be added, including “Intel Firmware Descriptor” (IFD),
“Management Engine” (ME), “Gigabit Ethernet Conf File”
(GbE) as well as FSPs.

2.2 Binaries and Image Layout
To boot on Eagle Stream platform, the firmware image
must comply Intel firmware layout. We could use the Intel®
Modular Flash Image Tool to decompose a UEFI IFWI from
Intel BKC release, and get the IFD, Intel® ME, FBE binaries
mentioned in previous section. Then on the coreboot side,
we use an “.fmd” file (Figure 11) to control how to re-
compose these binaries into coreboot firmware volume.
Logic and syntax of this flash-map descripting file is well
documented at [7].

The “.fmd” file of our project is under mainboard folder:

src/mainboard/myorg/my_mainboard/board.fmd

By default, this file is the same with Archer City and will not
be touched. We only need to prepare corresponding
binaries and feed their paths to defconfig file.

2.2.1 Use site-local Directory
The “site-local” directory is an optional folder ignored by
coreboot git repo yet still be visited by its make and Kconfig
system. “The intent is to provide a single location to store
local modifications.” – Says coreboot documentation. There
is no magic of it. You could create another GitHub*
repository named “site-local” in the top-level of coreboot
repo anytime and manage local changes like binaries
inside.

The only thing remarkable is that coreboot has actually
integrated site-local (if available) into build process, which
means you can have custom “Makefile.inc” and “Kconfig” in
this folder to control local changes even they are ignored.

In our practice, for example, we could create a folder
named “site-local/myboard” and put all required binaries
inside, then modify the defconfig:

CONFIG_IFD_BIN_PATH = “site-local/myboard/ifd.bin” …
CONFIG_FSP_T_FILE = “site-local/myboard/Server_T.fd” …

2.3 FSP Integration
To correctly integrate FSP into coreboot, FSP headers are
also important other than binaries. Hence for each set of
FSP binaries, you must fetch corresponding UPD and HOB
headers (FsptUpd.h, FspmUpd.h, FspsUpd.h and *Hob.h).
and put them under:

CONFIG_VENDOR_MYORG=y
CONFIG_BOARD_MYORG_MYBOARD=y
…
CONFIG_IFD_BIN_PATH = “…”
CONFIG_ME_BIN_PATH = “…”
CONFIG_GBE_BIN_PATH = “…”
…
CONFIG_FSP_T_FILE = “…”
CONFIG_FSP_M_FILE = “…”
CONFIG_FSP_S_FILE = “…”
…
CONFIG_PAYLOAD_LINUX=y
CONFIG_PAYLOAD_FILE = “…”
CONFIG_PAYLOAD_TIANOCORE=y
CONFIG_TIANOCORE_UPSTREAM=y
…

Figure 11 Image components and payload option in
sample defconfig config.myorg.myboard

FLASH@0xfc000000 64M {
 SI_ALL@0x0 0x03000000 {
 SI_DESC@0x0 0x1000

SI_GBE@0x1000 0x2000
 SI_ME@0x3000 0x2fed000
 SI_PT@0x2ff0000 0x10000
 }
 RW_MRC_CACHE@0x3000000 0x18000
 FMAP 0x800
 RW_VPD(PRESERVE) 0x4000
 RO_VPD(PRESERVE) 0x4000
 COREBOOT(CBFS)
}

Figure 12. The firmware volume memory-mapped at
0xFC000000, with 4K-Descriptor aligned at bottom

and 16M-CBFS at the top

7 Document Number: 778593, Revision: 0.9

White Paper | coreboot on Eagle Stream

src/vendorcode/intel/fsp/fsp2_0/sapphirerapids_sp/

2.4 Build the Project
After all configs, binaries and headers are ready, we can
now build the project via command line:

$make clean && make distclean
$make defconfig KBUILD_DEFCONFIG=
“configs/builder/config.myorg.myboard”
$make -j $job_count

The $job_count is the maximum supported CPU thread
count of your source building machine, in the case of 32-
thread it will take only ~8 seconds to finish the build. But if
you have selected CONFIG_PAYLOAD_TIANOCORE, it
would take some extra few minutes to build the payload
from EDKII.

When the build is done, copy and flash build/coreboot.rom
into the ROM on your board and try to boot.

3. Development Guide
This section provides supplementary reading for firmware
developers, including a minimal guide on porting ACPI and
SMBIOS tables to customized platforms with different
GPIO configurations, plus a brief introduction to coreboot
SMM architecture and RAS feature tuning methods.

3.1 coreboot Table
At the end of Ramstage, yet before payload is loaded, boot
state jumps to BS_WRITE_TABLES when most system
tables are being written to reserved locations in RAM.
Among these tables, there is one uniquely named as
“coreboot table” which worth being mentioned here.

“The coreboot table is for conveying information from the
firmware to the loaded OS image. Primarily this is
expected to be information that cannot be discovered by
other means, such as querying the hardware directly.” [8]
Hence on x86 platform, coreboot table is suitable for
passing memory mapping info to OS, in which case it is
similar to the E820 table on EFI side.

The pointer to coreboot table is passed to payload as a
parameter in boot state BS_PAYLOAD_LOAD so that
Payload could read and parse the pointed mem region for
system information. The “Root System Descriptor Pointer”
(RSDP) is also exposed in coreboot table, for compatibility
with legacy, it is copied to lower memory (0xF0000) to be
auto detected by OS.

Architecturally, coreboot table is just one allocated entry in
cbmem, which is the same with ACPI and SMBIOS tables
and global non-volatile variable area.

3.2 ACPI and SMBIOS
SMBIOS is enabled by default on x86 platform, while ACPI
is toggled by Kconfig HAVE_ACPI_TABLES. Both of these
two types of tables are cbmem items allocated at high
memory region, besides, they both have entry point
addresses copied to lower memory around 0xF0000.

ACPI implementations locate in src/acpi/acpi.c, within

function “write_acpi_tables()”. The function creates generic
ACPI tables like SSDT, DSDT, and FACS. For any table
that needs platform or mainboard specific modifications, we
can create corresponding “__weak” function hooks and
override them in private code.

Additionally, for each device on the platform, we could add
an ACPI creating method (Figure 13) and link it to the
device’s “write_acpi_tables” pointer (different from the
previous function, this is a member function in device driver
with same name)

SMBIOS is implemented in a similar way. The main routine
locates in src/arch/x86/smbios.c: smbios_write_table(),
platform specific changes can be hooked with
“get_smbios_data” in device drivers.

3.3 GPIO pins
Onboard GPIO pins can be initialized at very early phase in
Bootblock. To do this, a common way is to carve a GPIO
table (pin definitions usually lies in gpio_defs.h) that reflects
the board config, then pass it as a parameter to function
gpio_configure_pads(). This function can be invoked at any
stage via mainboard overrider, in the case of Bootblock it is
bootblock_mainboard_early_init().

3.4 SMM and RAS Features
On teh 4th Gen Intel® Xeon® platform, Intel provides only
three FSP binaries: FSP-T, FSP-M, FSP-S, none of these
covers System Management Mode (SMM) initialization or
System Management Interrupt (SMI) handling, so coreboot
has to take over this part.

SMM-related features are controlled by a main switch
HAVE_SMI_HANDLERS defined in x86 Kconfig. On Intel®
Xeon®SP platform, it is enabled by default. Once enabled,
coreboot will cover SMRAM relocation and SMI handler
registration during multi-processor init. This happens in
boot state BS_DEV_INIT.

The symmetric multiprocessing environment for SMI
handling has been re-designed by coreboot community, so
it differs a little from the one of UEFI firmware. Generally,
the re-designed environment has 2 major rules:

for (dev = all_devices; dev; dev = dev->next)
 if (dev->ops && dev->ops->write_acpi_tables) {
 current = dev->ops->write_acpi_tables(dev, current, rsdp);
 current = acpi_align_current(current);

}

Figure 6 ACPI fill-out routine for all devices

8 Document Number: 778593, Revision: 0.9

White Paper | coreboot on Eagle Stream

1. Only 1 thread is allowed to handle SMI event at a

time, others entering SMM will wait until being
released.

2. Threads are allowed to enter SMM
asynchronously; that is, SMI events can be
handled even while some threads are not in SMM.

RAS features can be integrated into SMI handler as a
common solution. Related code could be found in
smm_module_handler.c. In the main handler function
smm_handler_start() where CPU, uncore and I/O
events are handled in order.

At present, there is one example RAS feature
SOC_RAS_ELOG (that is, Enhanced Log) selected on
Intel® Xeon® platform. The feature embeds additional
error reporting mechanism, which saves fatal machine
check errors as detailed log to cbmem, into SMI
handler. The entire operation needs a medium
containing info about where error logs are saved to be
passed to OS, so it is often coupled with Kconfig
SOC_ACPI_HEST.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Learn
more at intel.com, or from the OEM or retailer.
No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages resulting from
such losses.
You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described
herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed
herein.
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. The products described may
contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata
are available on request.
This document contains information on products, services and/or processes in development. All information provided here is subject to change without
notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.
Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.
Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and
confirm whether referenced data are accurate.
Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm .
Intel, Xeon and the Intel logo are trademarks of Intel Corporation or its subsidiaries.
*Other names and brands may be claimed as the property of others.
Copyright © 2023, Intel Corporation. All Rights Reserved.

Figure 7. SMM module execution flow

https://www.intel.com/
https://www.intel.com/content/www/us/en/homepage.html
http://www.intel.com/design/literature.htm

	Data Center & Artificial Intelligence
	Introduction
	Reading Guide
	Glossary
	Reference
	1 coreboot Basics
	1.1 Toolchain and Repository
	1.1.1 The Build System
	1.1.2 Repository Hierarchy

	1.2 Config and Build
	1.2.1 Kconfig
	1.2.2 Build the Project

	1.3 Boot Flow
	1.3.1 Bootblock
	1.3.2 Romstage
	1.3.3 Ramstage
	1.3.4 Payload

	2. Application Guide
	2.1 Create Project Folder
	2.1.1 Kconfig of Organization
	2.1.2 Kconfig of Mainboard
	2.1.3 Use defconfig

	2.2 Binaries and Image Layout
	2.2.1 Use site-local Directory

	2.3 FSP Integration
	2.4 Build the Project

	3. Development Guide
	3.1 coreboot Table
	3.2 ACPI and SMBIOS
	3.3 GPIO pins
	3.4 SMM and RAS Features

