
Introduction
The mobile network is undergoing a transformation from infrastructure built with
purpose-built silicon to fully virtualized platforms running on commercial off-the-
shelf (COTS) hardware based on general purpose processors. Early commercial
software-based RANs were first deployed in 2018, and since then the pace of new
deployments and network expansions continues to grow steadily. In addition, the
industry can start deploying new capabilities that will deliver on the full potential
of a fully virtualized infrastructure.

In this paper, we refer to a fully virtualized RAN infrastructure as one where all
the software-based RAN stack layers (Layer 1 or L1, Layer 2 or L2, and Layer 3 or
L3) execute primarily on general purpose processors (CPUs). This approach gives
operators a platform to achieve numerous operational and business benefits,
including:

• reduced total cost of ownership (TCO).

• continuous innovation for delivering new revenue-generating services.

• energy efficiency, not just from a cost point of view but from overall sustainability
considerations and many others.

We first compare major architectures for implementing Layer 1 in the RAN. We also
compare their characteristics and the benefits of a fully virtualized, software-based
L1 for the ecosystem, operator and the entire RAN industry.

Overview of Layer 1 Implementation Approaches
In this section, we describe the two approaches to implementing the Layer 1
in a RAN.

Software-based L1 on general Purpose CPU-based architecture
Foundational to this approach is a high-performant, multi-core processor boosted
with native instructions for efficient processing of certain L1 functions, such as
vector processing. The Intel® Xeon® processor family includes high performance
cores and instructions, such as Intel® AVX-512 and the forthcoming enhanced
AVX512-FP16 signal processing instructions available in 4th Generation Intel®
Xeon® Scalable processors, which are ideal for software-based L1 processing. In
the 2nd and 3rd Generation Intel® Xeon® architecture, as shown in Figure 1, L1
functions for each direction are implemented as a simple pipeline with software
running on CPU cores. The only exceptions to this pipeline are encode/decode
functions associated with forward error correction (FEC), and discrete fourier
transforms (DFT), which are performed in fixed-function accelerator blocks. The
4th generation Intel® Xeon® Scalable processor with Intel® vRAN Boost integrates
the accelerators.

A key characteristic of software for this architecture is that all layers of the RAN
stack are written in standard C/C++ programming language, which leverages
generic compiling, debugging and build tools (for example, gcc, LLVM, gdb). The
software written for one Intel Xeon CPU generation is therefore reusable in follow-
on generations and easily ported to other CPUs.

Benefits of Virtualizing the Layer 1
in a RAN Stack

Virtualized Radio Access Networks

Table of Contents

Overview of Layer 1
Implementation Approaches 1

 Software-based L1 on
general Purpose CPU-based
architecture . 1

 L1 on purpose-built SoC
architecture . 2

RAN L1 implementations:
Implications to RAN networks 3

 Vendor choice for all
components (silicon, hardware, OS/
virtualization, software) 3

 Ecosystem size, availability of
experienced personnel 3

 Velocity and cost of
network evolution, e .g .,
reconfiguration, feature
additions and changes 3

 Velocity and cost of network
infrastructure scaling 3

 Hardware acceleration and
cloud native deployments 4

 Realizing cloud native RAN
benefits . 4

 Network Slicing 5

 Pooling-enabled optimized
infrastructure, network availability and
resiliency . 5

 Energy efficiency and
sustainability . 7

Conclusion . 8

Niall Power
Platform Software Architect

Sindhu Xirasagar
Sr. Director, RAN Solutions

White Paper

White Paper | Benefits of Virtualizing the Layer 1 in a RAN stack

L1 on purpose-built SoC architecture
An alternative to the software-based approach described
in the previous section is to implement L1 with purpose-
built SoCs. Such SoCs typically include a range of fixed-
function IP blocks, each of which may be very specific to
a particular L1 function and potentially include multiple
types of programmable engines or versions thereof that
require specialized and/or proprietary programming models,
languages, tools and build environments. In purpose-built
silicon, as shown in the following Figure 2, L1 is implemented
as a complex mesh of software functions along with multiple
hardware accelerators accessed in look-aside mode.

Figure 1. RAN DU L1 data flow on Intel® Xeon® Scalable processor

Figure 2. RAN DU L1 data flow in Example L1 Purpose-Built SoC

A key characteristic of software for this architecture is that
the software-based functions of Layer 1 of the RAN stack
are written (and often hand-coded) in purpose-built and/
or proprietary languages suitable for the types of DSP cores
embedded in the SoC. They also rely on proprietary tools for
compiling, debugging and building applications. The code is
usually optimized for specific versions of DSP cores and must
be adapted for future generations and even for cores within
the same DSP architecture. For other DSP architectures, the
code must be essentially rewritten. In addition, the pace
of innovation is severely limited with this architecture due
to a dearth of human resources specialized in this type of
software programming.

L2
 S

ch
ed

ul
er

, R
LC

, M
A

C,
 F

1-
* e

tc

TB CRC &
CB Seg

Scramble Modulation
Mapping

Layer
Mapping

Resource
Element
Mapping

Precoding

TB CRC
& CB

Concat

FEC
Decode

De -
scramble

Layer
Demapper

LLR
Demapper

MIMO
Equalizer

PUSCH
Channel

Estimation

PRBS/DMRS
Generation

SRS Channel
Estimation

Beamforming
Gen

ORAN FH
processing

ORAN FH
processing

FEC
Encode

Ethernet

Ethernet

ZC /DMRS
Generation

C/C++ Software Executing on Intel® Xeon® Cores

Fixed Function

PDSCH

PUSCH

L1 control channels (PDCCH,
PUCCH, PRACH, etc..)

DFT/iDFT (mMIMO only)

Standard C code executing on CPU cores

DSP programs Fixed Function

L2
 S

ch
ed

ul
er

, R
LC

, M
A

C,
 F

1-
* e

tc

TB CRC &
CB Seg

Scramble Modulation
Mapping

Layer
Mapping

Resource
Element
Mapping

Precoding

TB CRC
& CB

Concat

FEC
Decode

De -
scramble

Layer
Demapper

LLR
Demapper

MIMO
Equalizer

PUSCH
Channel

Estimation

PRBS/DMRS
Generation

Beamforming Gen
and SRS Channel

Estimation

ORAN FH
processing

ORAN FH
processing

FEC
Encode

Ethernet

Ethernet

ZC /DMRS
Generation

ULFE

L1 control channels (PDCCH,
PUCCH, PRACH, etc..)

RMAP DMAP FDEQ PDEC PENCLENCLDEC

• Platform optimized for high performance, scalability
and flexibility

• Performant C-programmable multi-core architecture
with native instruction set for RAN L1 workload and
targeted acceleration

• Inline CPU Processing of virtually all functions supports
low latency L1 requirements

• Architecture has limited scalability and flexibility

• Inefficiency due to multiple lookaside accelerators in the
dataflow and complexity of SW managed memory (SMEM)
can result in performance and latency issues

• Multiple non-standard and/or proprietary programming
models, languages and tool chains

2

White Paper | Benefits of Virtualizing the Layer 1 in a RAN stack

RAN L1 implementations: Implications
to RAN networks
There are several material implications of building RANs
with the two approaches — a fully virtualized software-
based implementation running on standard CPUs and one
built using a purpose-built SoC. In this section, we evaluate
the relative merits of these two architectures based on
side-by-side comparisons of key performance and business
considerations relevant to both RAN operators and the
industry as a whole. The following sections present side-by-
side comparisons of characteristics of the two architectures
relative to these criteria.

Vendor choice for all components (silicon,
hardware, OS/virtualization, software)
Ideally, each operator should have multiple vendor choices
for each system component and be able to independently
select each component in the system, making tradeoffs
relative to their key network deployment and evolution
criteria: cost, performance, energy efficiency, flexibility,
scalability, etc.

Velocity and cost of network evolution, e .g .,
reconfiguration, feature additions and changes
Operators often need to reconfigure their existing networks
to support new RAN technologies. Further, they may also want
to add features that enable new business models or reduce
operational cost. Software upgrades are easier and have only
marginal cost, while hardware upgrades involve truck rolls
and can require operator ramp-up to become familiar with
proprietary installation and configuration procedures.

• Silicon offerings with x86
architecture available from
multiple ecosystem players

• Standardized interfaces;
Ethernet connectivity

• Hardware/software
disaggregation

• Many vendors for hardware

• Multiple software vendors for
all RAN stack layers

• Standard COTS servers

• Standard C/C++ programming

• Open source toolchains
and widely used build
environments for test,
validation and CI/CD setups

• Standard Linux OS and
open source Kubernetes
(K8s) for orchestration and
management

• Mostly accomplished with
software updates only

• Features added via software
enhancements

• Dynamic hardware
allocation for RAN functions
with software-based re-
configuration — fine-grained
resource control possible

• SKUs with wide range of core
count and performance/power

• High fanout for scaling
fronthaul I/O

• Gen-over-gen software
compatibility enables software
reuse across hardware
upgrades

Virtualized L1 on CPUs
with open architecture, e.g.,

Intel Architecture

Virtualized L1 on CPUs
with open architecture, e.g.,

Intel Architecture

Virtualized L1 on CPUs
with open architecture, e.g.,

Intel Architecture

Virtualized L1 on CPUs
with open architecture, e.g.,

Intel Architecture

• Silicon offerings with
proprietary architectures

• Non-standard software
interfaces create tight L2
dependency

• Purpose-built hardware/
software for L1 specific use
— few vendors

• Special-purpose
accelerator cards

• Proprietary/hand-coded
programming model

• DSP toolchain is specific to
each architecture and often
proprietary

• Programmed L1 functions
execute on proprietary
OS and managed with
proprietary mechanisms

• Mostly require hardware
upgrades

• Fixed-function IP blocks
typically cannot adapt to
support new functions and
changes in dimensions

• Fixed-function IP blocks are
not designed for fine-grain
control required for SLA and
Slice control

• Limited SKUs with low
performance range, marginal
power difference

• Very limited fanout for
scaling fronthaul I/O

• Low compatibility across
DSP architectures requires
recoding, even for later
generations of DSPs sharing
a common architecture

L1 implemented on
purpose-built SoC

L1 implemented on
purpose-built SoC

L1 implemented on
purpose-built SoC

L1 implemented on
purpose-built SoC

Velocity and cost of network infrastructure scaling
As the number of vRAN users grows, usage patterns and
technologies evolve. Operators need to be able to scale
and expand coverage of their network infrastructure. Once
the hardware capacity is reached, hardware upgrades
are required. The two architectures have very different
characteristics that directly translate to different speeds and
costs for operators.

Ecosystem size, availability of experienced
personnel
The ability to rapidly deploy and operate networks is
dependent on the availability of experienced human
resources, which depends on either the ubiquity or specialized
nature of the hardware platforms, reliance on proprietary
or open source operating platforms and tools, and software
programming models and languages, among other things.

3

White Paper | Benefits of Virtualizing the Layer 1 in a RAN stack

Hardware acceleration and cloud native deployments
Some network functions will be limited by the type of
hardware acceleration that they employ. The principles
applied to cloud native network functions in software must
also apply to the hardware accelerators that they use. There
are two fundamental requirements that must be considered:

• Support for multiple cloud native applications: In order
to scale cloud native network functions, the hardware
accelerator must be able to support multiple instances of a
cloud native application in parallel.

• Orchestration and management: The hardware accelerator
must be managed and orchestrated from the cloud
infrastructure layer, such as with a Kubernetes control
plane; it must support the creation and deletion of new
network functions dynamically.

Hardware accelerators that cannot support these requirements
can still be deployed, but they may limit the network function
to being cloud ready as opposed to cloud native.

A stateless function such as FEC can be implemented as an
external accelerator and still be cloud native. On the other
hand, it is more difficult to apply cloud native principles
for purpose-built L1 SOCs which include more complex
fixed function accelerators requiring state information
and interaction between software services to service
requirements.

Realizing cloud native RAN benefits
Cloud-based orchestration and management have greatly
benefited the IT and CSP industries. These principles
can be applied to a fully virtualized RAN (including L1) to
further increase flexibility, scalability and improve ease of
deployment. Cloud native-compliant RAN can achieve better
control of both the quality and reliability of service across
the network.

In a Cloud RAN, applications are designed as microservices
and the infrastructure that orchestrates these microservices
use Kubernetes (K8s). As noted in the following table, the
virtualized L1 offers the ability to implement end-to-end
Cloud RAN.

Many benefits can be realized by implementing an end-to-
end Cloud RAN, including the full implementation of the
Open RAN (O-RAN) architecture:

• Service assurance / High availability: In the event of a
failure, provides the ability to spawn new instances in the
current data center or shift traffic to different data centers;
can be accomplished with concurrency and auto scaling.

• Resource optimization: Ensures optimum use of resources,
with dynamic scaling and no up-front costs but with real-
time automated response to scaling needs.

• Observability: Enables logs, metrics and tracing of the
cloud native application with central control.

• Quality of service (QoS): Enables end-to-end security,
throttling, compliancy and versioning across applications.

• Central control plane (SMO): Provides a central place to
manage every aspect of the cloud native application.

• Resource provisioning: Manages resource allocations (CPU,
memory, storage, network) for each application.

• Multi-cloud support: Provides the ability to manage and
run the application across several cloud environments —
including private, hybrid and public clouds — because a
given application may require components and services
from multiple cloud providers.

• Advanced revenue generating and TCO optimization
features: Use cases like network slicing, pooling and power
management are enabled end-to-end across the entire
network using cloud orchestrated networking to realize the
full benefits; these use cases are discussed in some detail
further below.

Network Slicing
The O-RAN Use Cases Detailed Specification, published by
O-RAN ALLIANCE, defines several use cases that require a
cloud ready or cloud native deployment.

O-RAN cloud ready use case example 1: Multi-vendor slices

This use case enables multiple slices with functions provided
from multiple vendors. In the example highlighted in Figure 3,
slice #1 is composed with a distributed unit (DU) and
centralized unit (CU) provided from vendor A, and slice #2 is
composed with DU and CU provided from vendor B. Without
the ability to share resources between network functions,
this multi-vendor slice use case would not be possible.
Each vendor’s network functions could still be a monolithic
software entity and not require cloud native microservice
architecture. However, it still benefits from hardware and
software disaggregation, hardware pooling, zero touch
provisioning and a common standard orchestration and
management layer.

Network Slice Subnet Instance (NSSI) resource allocation
optimization requires a cloud native approach to open
distributed unit (O-DU) and open central unit (O-CU)
deployments as this use case requires scaling of the cloud
native network function and zero touch automation.

• Cloud native principles are
easily adapted for all layers
of the RAN

• L1, L2 and L3 applications
can be deployed as K8s
microservices

• Common cloud platform
and management for entire DU
(L1, L2 and L3)

Virtualized L1 on CPUs
with open architecture, e.g.,

Intel Architecture

• L1 must be configured
and managed by other
mechanisms

• L1 cannot be managed
as a K8s microservice

• Dependency between
SoC L1 and L2 software
components may not allow
for L2 deployment as a K8s
microservice

• Non-uniform ways to
manage different layers
of the stack

L1 implemented on
purpose-built SoC

4

White Paper | Benefits of Virtualizing the Layer 1 in a RAN stack

Pooling-enabled optimized infrastructure, network
availability and resiliency
Network infrastructure is typically dimensioned for peak
usage. However, the number of users and usage patterns can
vary dramatically over a given 24-hour period. Typically, the
number of users is much higher during the day than at night.
Usages (video, calls, text, gaming, etc.) also change over the
course of the day. Some of these variations are predictable
and some are not. Also, the horsepower requirements for
workloads can vary considerably depending on the traffic
patterns. For example, the L1 workload is heavy during
periods when users consume high bandwidth. The L2
workload depends on the number of simultaneous users as
well. There are additional functions in a DU, such as statistics
collection and processing, AI inferencing models and others
that need to be run from time to time and have flexibility in
when they can be executed.

Pooling enables dynamic allocation of the right number
of cores to each workload; the hardware resources may
be within a server blade or across server blades. Pooling

benefits are maximized when the same type of cores (for
example, general purpose CPUs) are used for all functions:
L1, L2 and additional DU functions.

Pooling can be implemented within a server, pooling the
CPU cores, memory and I/O for multiple cells and also
implemented within a rack of servers. These are not mutually
exclusive and can be leveraged concurrently to improve
power consumption depending on the deployment scenario.
Distributed RAN (DRAN) can achieve use cases where there is
a single server pooling of resources. For DRAN deployments
with more than one server and for centralized RAN (CRAN)
deployments, pooling can be achieved within the server
and within the rack of servers. As the compute resources
scale depending on the user load, power benchmarking
should take this into account and provide a 24-hour power
consumption rather than peak or low power consumption.
This is depicted in Figure 5.

O-RAN ALLIANCE also defines a Baseband Unit (BBU)
Pooling use case to achieve RAN Elasticity and presents
three different classes for pooling: Class 0, Class 1 and
Class 2. In Class 0 pooling, the remote radio head (RRH) is

Figure 3. O-RAN Multi-vendor Network Slice sharing O-Cloud compute resources

Figure 4. Example Resource Profile with pooling within a server and across a rack of servers

Network Slice #2 (e.g. URLLC)

Network Slice #1 (e.g. eMBB)

F1-U E1

F1-U E1

vO-CU
-CP

RAN Vendor B

RAN Vendor A

Shared RRH

vO-DU vO-CU-CP

O-Cloud O-Cloud

vO-DU vO-CU-CP

Busiest cell in network - defines hardware Other cells, various levels of traffic

DRAN

CRAN

Busy hour Quiet hour

Rack

Site 1

Site 2

Site N

server Unused CPU Core (power saving state) Used CPU Core

Busy hour Quiet hour

5

White Paper | Benefits of Virtualizing the Layer 1 in a RAN stack

directly assigned to a single DU during run time.1 Pooling is
achieved through centralization of multiple cells to a single
DU instance running in the cloud platform. Class 1 and 2 are
more aggressive types of pooling and allow a looser coupling
of the RRH to the DU network function. In both these cases,
the RRH is a fixed physical network function and cannot
be changed. Therefore, it is the DU network function that
must support cloud native design principles such as scaling,
zero touch automation, orchestration and management,
automation and more.

Pooling can deliver key cost and power benefits toward
achieving resiliency and high availability:

• Minimizes total number of deployed hardware resources
(CPU cores and servers).

• Enables regular maintenance to be conducted without
interrupting traffic.

• Makes it possible to monitor server health and do
preemptive maintenance by moving traffic to other servers.

• Software-based control of
number of processing cores/
servers relative to cells/UEs

• Since all workloads (L1, L2, L3)
run on the same processor,
additional pooling benefits can
be realized across workloads

Virtualized L1 on CPUs
with open architecture, e.g.,

Intel Architecture

• Fixed-function IP blocks and
DSP cores in a single SoC
architecture do not offer
much flexibility to fluidly
move L1 workload among
all resources, and hence are
not as amenable to pooling
implementation

• Within the L1 SOC, pooling
gains do not extend beyond
the L1 workload.

L1 implemented on
purpose-built SoC

As a simple example, a benchmark was executed using Intel
FlexRAN™ Reference software where multiple 5G NR cells
were executing in BBU Pooled scenario and the number of
cores and power consumption measured. Figure 5 shows
that as the number of active cells increases, optimal core
deployment can be achieved via pooling techniques in a
fully virtualized RAN executing on 3rd Generation Intel Xeon
processors, as shown for an example use case below.

Figure 5. Pooling enables fewer cores to support required
capacity

Figure 6. Pooling results in lower power to support required
capacity

Deployed Cores vs Active Cells

Power Consumption vs Throughput for
Pooling and Non Pooling Workloads

D
ep

lo
ye

d
C

or
es

P
ow

er
 C

on
su

pm
tio

n
(W

at
ts

)

Active Cells

Throughput (Mbps)

Non Pooling

Non Pooling

Pooling

Pooling

• Telemetry information for
monitoring CPU resource
utilization

• Ability to control frequency
and power of silicon resources
(cores)

• Ability to put cores in a sleep
state during periods of low
user activity

Virtualized L1 on CPUs
with open architecture, e.g.,

Intel Architecture

• Fixed-function IP blocks
cannot be controlled for
reducing power during
periods of low traffic

• DSP cores typically do not
support the fine-grain power
state control (e.g, micro-sleep
and hibernate) similar to
those available in CPUs like
the Intel Xeon Processors.

L1 implemented on
purpose-built SoC

Figure 6 shows the associated reduction in power achieved
due to pooling.

Energy efficiency and sustainability
Energy expenditures are a significant component of RAN
operational costs, and network sustainability is an area of
focus for the entire RAN ecosystem.

Energy efficiency is another advantage of cloud native
network functions executing on Intel x86 CPUs where they
can leverage the existing investment into IT domain energy
efficiency solutions. There are three different categories for
energy efficiency in the IT domain that can be applied to
cloud native RAN solutions, and these are:

1. Application-level power control
Application-level power control allows the application
to take advantage of the C-states on the 3rd and 4th
Generation Intel® Xeon® Scalable CPUs with reduced
latency transitions. The application can sleep the
threads when there is no work to do and the CPU will
enter C-states to save power.

2. Server Level Power Control
Server level power control allows a privileged server
executing on the cloud to change the platform power
controls, such as P-states, which allows a per-core
CPU frequency scaling. The cloud platform can reduce
power consumption or tailor the CPU core frequency
for the network function.

6

White Paper | Benefits of Virtualizing the Layer 1 in a RAN stack

3. Cluster Level Power Control
When running in a rack of servers or in a cluster that
supports cloud native RAN network functions, it is
possible to scale and consolidate the workload onto
fewer servers and power off unused servers to save
energy. Without cloud native network functions for
RAN, cluster-level power control will not be possible.

As one example, Deutsche Telekom used its own network
traffic profiles to demonstrate approximately 30% energy
savings in L1 processing in a Deutsche Telekom laboratory
setup. Key aspects of the demo, which was presented at
Mobile World Congress, 2022 in Barcelona, include:

• Virtualized L1 implemented in Intel FlexRAN software
running on Intel 3rd generation Xeon processor.

• Telemetry capabilities and dynamic power controls
available in the Xeon processors used to turn on/off cores
as needed with varying traffic conditions.

• Intelligent L2 MAC scheduler in Intel FlexRAN software
detected periods of low traffic activity and scheduled fewer
cores per radio frame.

• Unused cores transitioned to a deep power down state with
savings of multiple W per core.

Additional power savings can be achieved via pooling
technologies applied in DUs based on virtualized L1. System-
wide power savings can be realized by extending this
approach of combining monitoring telemetry information
and applying CPU power controls to other stack layers and
base station functions, for example, L2, transport, control
and OAM.

Additional details of the use cases and results are presented
in a video that can be viewed at:
https://www.intel.com/content/www/us/en/events/mobile-
world-congress.html

As another example, at the O-RAN Spring Plugfest held in
June and July 2022, Intel collaborated with Vodafone, Wind
River, Radisys and Keysight to demonstrate up to 12% power

Figure 7. Energy efficiency gains with power management of L1 application in a RAN DU

Use Case: Deutsche Telekom AG
Traffic Profile

With no power management

With power management of L1 only

savings with the Vodafone network traffic profile using a
limited application of the power management capabilities
in a RAN DU+CU based on the 3rd Generation Intel Xeon
processor, without any application changes.

In both demonstrations, traffic throughput was not impaired
while achieving the energy efficiency gains.

Enabling the Intelligent RAN
Service providers are increasingly looking to build
intelligence into the network to maximize their return on
investment (ROI) and minimize operational costs.

This is also the goal of the O-RAN Alliance and the RAN
Intelligent Controller (RIC) architecture. The Non-Real time
and Near-Real time RAN Intelligent Controllers (RIC) allows
for combining platform telemetry through O2 interface with
application telemetry through the O1 and E2 interfaces.
xApps and rApps executing in the Near-RT RIC and Non-RT
RIC respectively leverage Artificial Intelligence/Machine
Learning (AI/ML) technologies to implement a variety of use
cases, some examples below:

• Maximize spectral efficiency and use of deployed radio
resources with active antenna management and orchestration

• Enhance real-time response, for example, dynamically
adjust resource allocation, as network conditions change

• Closed loop automation for best configuration settings or
configuration to meet the given workload requirement with
minimal resources

• Faster new user provisioning

• Predictive analytics

• Network anomaly detection and intervention at scale

• Security anomalies and intrusion detection, and automated
application of corrections

• Automated cell deployment

7

White Paper | Benefits of Virtualizing the Layer 1 in a RAN stack

 1 See O-RAN.WG1.Use-Cases-Analysis-Report-v08.00.pdf available at https://orandownloadsweb.azurewebsites.net/specifications
 Performance varies by use, configuration and other factors. Learn more at https://www.intel.com/PerformanceIndex.
 Intel technologies may require enabled hardware, software, or service activation.
 No product or component can be absolutely secure.
 Your costs and results may vary.
 Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.
 © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
 0922/DA/MESH/PDF 352868-002US

Virtualized L1 on CPUs
with open architecture, e.g.,

Intel Architecture

L1 implemented on
purpose-built SoC

Application telemetry for many of these use cases include
dynamic resource and network performance information
from the RAN stack, including L1. Key performance indicators
(KPMs) and resource information may be at the antenna-
level, cell-level and user-level. Beam level information and
physical resource block (PRB) utilization are some examples
of information that the L1 functions can harvest for use by
xApps and rApps.

Moreover, since the use cases, xApps, and rApps continue
to evolve, we simply do not know all the data that needs
to be collected from the L1. Consequently, it is not
possible to pro-actively build all needed capabilities in
the L1 implementation today, and L1 implementations in
provisioned networks must be able to evolve.

• Actionable, real-time,
granular platform telemetry
information for monitoring
CPU resource utilization, power
consumption, fault detection,
and performance

• L1 software can be readily
modified to report dynamic
network KPMs which can be
customized for each xApp
and rApp

• As xApps and rApps evolve,
L1 application can be
evolved to match the needs,
avoiding expensive hardware
replacement

• Heterogenous functional
blocks makes it difficult for
Silicon to report actionable
platform telemetry
information and in a timely
fashion

• Fixed function or
configurable IP blocks cannot
be modified to provide
information needed.

• Since only some of the
functions are in software
running on DSP cores, the
flexibility needed to collect
all such information needed
by xApps & rApps is not
available. Memory is often a
constraint in purpose built
SoC’s restricting the amount,
type and frequency of data
that can be exported

• New requirements by
evolving xApps and rApps
cannot be accommodated
in deployed purpose-built
SOCs and will often require
expensive Silicon revisions
and hardware upgrades.

Several ecosystem players are developing and demonstrating
the value of such applications.

One example of automated deployment with telemetry
abstraction from the DU to the Cloud services is from demo
of Microsoft for Telecommunications at MWC 2022 Hybrid
cloud platform for operators – Azure Operator Distributed
Services. This demonstrates the automated deployment
of DU and CU services and also demonstrated how User
Equipment (UE) telemetry can be exported to review and
help debug parameters like per user Signal Interference to
Noise Ratio (SINR).

Another example is recent MWC demo with an AI
powered vRAN application (rAPP) for massive MIMO beam
management that can optimize the quality of user experience
(QOE) and 5G coverage dynamically as user traffic changes
throughout the day. As a standard C/C++ sw application and
running on COTS hardware the Intel FlexRAN L1 SW was
modified to extract and export the beamforming counters
and data to enable the rApp.

A video of this demonstration is available at: Intel at Mobile
World Congress 5G vRAN & AI powered RIC Applications
on Xeon.

Conclusion
Full virtualization of the RAN offers many technical and
business benefits. Software-based RAN can be made
more agile, leading to flexible network deployments that
are amenable to dynamic orchestration and software-
defined coordination. In combination with the centralization
of network architecture, dynamic resource pooling and
load balancing can be used to improve network resource
utilization, gain energy efficiencies and achieve higher
resiliency. vRAN is also more agile and scalable to meet
network capacity requirements based on demand, compared
to a network infrastructure based on fixed-function devices.
Failures in network operation can be handled without truck
rolls (zero touch) by merely moving the network workload
to a different server, resulting in lower operational expenses
(OpEx). The flexibility of software-based RAN also enables
rapid, simple evolution of the infrastructure to optimize
network resources, reduce TCO and support new capabilities,
such as network slicing, to enable new revenue-generating
business models for operators at optimal cost. Further, a
fully virtualized architecture enables implementation of
innovations such as machine learning algorithms across all
functions in the RAN, including L1, evolving the RAN network
to deliver ever-more capabilities at optimized cost.

8

