
Introduction
The mobile network is undergoing a transformation from infrastructure built with 
purpose-built silicon to fully virtualized platforms running on commercial off-the-
shelf (COTS) hardware based on general purpose processors. Early commercial 
software-based RANs were first deployed in 2018, and since then the pace of new 
deployments and network expansions continues to grow steadily. In addition, the 
industry can start deploying new capabilities that will deliver on the full potential 
of a fully virtualized infrastructure.

In this paper, we refer to a fully virtualized RAN infrastructure as one where all 
the software-based RAN stack layers (Layer 1 or L1, Layer 2 or L2, and Layer 3 or 
L3) execute primarily on general purpose processors (CPUs). This approach gives 
operators a platform to achieve numerous operational and business benefits, 
including: 

• reduced total cost of ownership (TCO).

• continuous innovation for delivering new revenue-generating services.

•  energy efficiency, not just from a cost point of view but from overall sustainability 
considerations and many others. 

We first compare major architectures for implementing Layer 1 in the RAN. We also 
compare their characteristics and the benefits of a fully virtualized, software-based 
L1 for the ecosystem, operator and the entire RAN industry.

Overview of Layer 1 Implementation Approaches 
In this section, we describe the two approaches to implementing the Layer 1  
in a RAN.

Software-based L1 on general Purpose CPU-based architecture
Foundational to this approach is a high-performant, multi-core processor boosted 
with native instructions for efficient processing of certain L1 functions, such as 
vector processing. The Intel® Xeon® processor family includes high performance 
cores and instructions, such as Intel® AVX-512 and the forthcoming enhanced 
AVX512-FP16 signal processing instructions available in 4th Generation Intel® 
Xeon® Scalable processors, which are ideal for software-based L1 processing. In 
the 2nd and 3rd Generation Intel® Xeon® architecture, as shown in Figure 1, L1 
functions for each direction are implemented as a simple pipeline with software 
running on CPU cores. The only exceptions to this pipeline are encode/decode 
functions associated with forward error correction (FEC), and discrete fourier 
transforms (DFT), which are performed in fixed-function accelerator blocks. The 
4th generation Intel® Xeon® Scalable processor with Intel® vRAN Boost integrates 
the accelerators. 

A key characteristic of software for this architecture is that all layers of the RAN 
stack are written in standard C/C++ programming language, which leverages 
generic compiling, debugging and build tools (for example, gcc, LLVM, gdb). The 
software written for one Intel Xeon CPU generation is therefore reusable in follow-
on generations and easily ported to other CPUs.
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in a RAN Stack
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L1 on purpose-built SoC architecture
An alternative to the software-based approach described 
in the previous section is to implement L1 with purpose-
built SoCs. Such SoCs typically include a range of fixed-
function IP blocks, each of which may be very specific to 
a particular L1 function and potentially include multiple 
types of programmable engines or versions thereof that 
require specialized and/or proprietary programming models, 
languages, tools and build environments. In purpose-built 
silicon, as shown in the following Figure 2, L1 is implemented 
as a complex mesh of software functions along with multiple 
hardware accelerators accessed in look-aside mode. 

Figure 1. RAN DU L1 data flow on Intel® Xeon® Scalable processor

Figure 2. RAN DU L1 data flow in Example L1 Purpose-Built SoC 

A key characteristic of software for this architecture is that 
the software-based functions of Layer 1 of the RAN stack 
are written (and often hand-coded) in purpose-built and/
or proprietary languages suitable for the types of DSP cores 
embedded in the SoC. They also rely on proprietary tools for 
compiling, debugging and building applications. The code is 
usually optimized for specific versions of DSP cores and must 
be adapted for future generations and even for cores within 
the same DSP architecture. For other DSP architectures, the 
code must be essentially rewritten. In addition, the pace 
of innovation is severely limited with this architecture due 
to a dearth of human resources specialized in this type of 
software programming.  
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•  Platform optimized for high performance, scalability  
and flexibility

•  Performant C-programmable multi-core architecture  
with native instruction set for RAN L1 workload and  
targeted acceleration

•  Inline CPU Processing of virtually all functions supports  
low latency L1 requirements

•  Architecture has limited scalability and flexibility

•  Inefficiency due to multiple lookaside accelerators in the 
dataflow and complexity of SW managed memory (SMEM) 
can result in performance and latency issues

•  Multiple non-standard and/or proprietary programming 
models, languages and tool chains 
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RAN L1 implementations: Implications  
to RAN networks
There are several material implications of building RANs 
with the two approaches — a fully virtualized software-
based implementation running on standard CPUs and one 
built using a purpose-built SoC. In this section, we evaluate 
the relative merits of these two architectures based on 
side-by-side comparisons of key performance and business 
considerations relevant to both RAN operators and the 
industry as a whole. The following sections present side-by-
side comparisons of characteristics of the two architectures 
relative to these criteria.

Vendor choice for all components (silicon, 
hardware, OS/virtualization, software) 
Ideally, each operator should have multiple vendor choices 
for each system component and be able to independently 
select each component in the system, making tradeoffs 
relative to their key network deployment and evolution 
criteria: cost, performance, energy efficiency, flexibility, 
scalability, etc. 

Velocity and cost of network evolution, e .g ., 
reconfiguration, feature additions and changes
Operators often need to reconfigure their existing networks 
to support new RAN technologies. Further, they may also want 
to add features that enable new business models or reduce 
operational cost. Software upgrades are easier and have only 
marginal cost, while hardware upgrades involve truck rolls 
and can require operator ramp-up to become familiar with 
proprietary installation and configuration procedures.

•  Silicon offerings with x86 
architecture available from 
multiple ecosystem players 

•  Standardized interfaces; 
Ethernet connectivity 

•  Hardware/software 
disaggregation

•  Many vendors for hardware 

•  Multiple software vendors for 
all RAN stack layers

• Standard COTS servers

•  Standard C/C++ programming 

•  Open source toolchains 
and widely used build 
environments for test, 
validation and CI/CD setups

•  Standard Linux OS and 
open source Kubernetes 
(K8s) for orchestration and 
management

•  Mostly accomplished with 
software updates only

•  Features added via software 
enhancements

•  Dynamic hardware 
allocation for RAN functions 
with software-based re-
configuration — fine-grained 
resource control possible

•  SKUs with wide range of core 
count and performance/power

•  High fanout for scaling 
fronthaul I/O

•  Gen-over-gen software 
compatibility enables software 
reuse across hardware 
upgrades

Virtualized L1 on CPUs  
with open architecture, e.g.,  

Intel Architecture 

Virtualized L1 on CPUs  
with open architecture, e.g.,  

Intel Architecture 

Virtualized L1 on CPUs  
with open architecture, e.g.,  

Intel Architecture 

Virtualized L1 on CPUs  
with open architecture, e.g.,  

Intel Architecture 

•  Silicon offerings with 
proprietary architectures 

•  Non-standard software 
interfaces create tight L2 
dependency

•  Purpose-built hardware/
software for L1 specific use 
— few vendors

•  Special-purpose  
accelerator cards

•  Proprietary/hand-coded 
programming model

•  DSP toolchain is specific to 
each architecture and often 
proprietary

•  Programmed L1 functions 
execute on proprietary 
OS and managed with 
proprietary mechanisms  

•  Mostly require hardware 
upgrades

•  Fixed-function IP blocks 
typically cannot adapt to 
support new functions and 
changes in dimensions

•  Fixed-function IP blocks are 
not designed for fine-grain 
control required for SLA and 
Slice control

•  Limited SKUs with low 
performance range, marginal 
power difference

•  Very limited fanout for 
scaling fronthaul I/O

•  Low compatibility across 
DSP architectures requires 
recoding, even for later 
generations of DSPs sharing 
a common architecture 

L1 implemented on  
purpose-built SoC

L1 implemented on  
purpose-built SoC

L1 implemented on  
purpose-built SoC

L1 implemented on  
purpose-built SoC

Velocity and cost of network infrastructure scaling
As the number of vRAN users grows, usage patterns and 
technologies evolve. Operators need to be able to scale 
and expand coverage of their network infrastructure. Once 
the hardware capacity is reached, hardware upgrades 
are required. The two architectures have very different 
characteristics that directly translate to different speeds and 
costs for operators. 

Ecosystem size, availability of experienced 
personnel
The ability to rapidly deploy and operate networks is 
dependent on the availability of experienced human 
resources, which depends on either the ubiquity or specialized 
nature of the hardware platforms, reliance on proprietary 
or open source operating platforms and tools, and software 
programming models and languages, among other things.
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Hardware acceleration and cloud native deployments 
Some network functions will be limited by the type of 
hardware acceleration that they employ. The principles 
applied to cloud native network functions in software must 
also apply to the hardware accelerators that they use. There 
are two fundamental requirements that must be considered: 

•  Support for multiple cloud native applications: In order 
to scale cloud native network functions, the hardware 
accelerator must be able to support multiple instances of a 
cloud native application in parallel.

•  Orchestration and management: The hardware accelerator 
must be managed and orchestrated from the cloud 
infrastructure layer, such as with a Kubernetes control 
plane; it must support the creation and deletion of new 
network functions dynamically.

Hardware accelerators that cannot support these requirements  
can still be deployed, but they may limit the network function 
to being cloud ready as opposed to cloud native. 

A stateless function such as FEC can be implemented as an 
external accelerator and still be cloud native. On the other 
hand, it is more difficult to apply cloud native principles 
for purpose-built L1 SOCs which include more complex 
fixed function accelerators requiring state information 
and interaction between software services to service 
requirements. 

Realizing cloud native RAN benefits
Cloud-based orchestration and management have greatly 
benefited the IT and CSP industries. These principles 
can be applied to a fully virtualized RAN (including L1) to 
further increase flexibility, scalability and improve ease of 
deployment. Cloud native-compliant RAN can achieve better 
control of both the quality and reliability of service across  
the network. 

In a Cloud RAN, applications are designed as microservices 
and the infrastructure that orchestrates these microservices 
use Kubernetes (K8s). As noted in the following table, the 
virtualized L1 offers the ability to implement end-to-end 
Cloud RAN.

Many benefits can be realized by implementing an end-to-
end Cloud RAN, including the full implementation of the 
Open RAN (O-RAN) architecture:

•  Service assurance / High availability: In the event of a 
failure, provides the ability to spawn new instances in the 
current data center or shift traffic to different data centers; 
can be accomplished with concurrency and auto scaling.

•  Resource optimization: Ensures optimum use of resources, 
with dynamic scaling and no up-front costs but with real-
time automated response to scaling needs.

•  Observability: Enables logs, metrics and tracing of the 
cloud native application with central control. 

•  Quality of service (QoS): Enables end-to-end security, 
throttling, compliancy and versioning across applications. 

•  Central control plane (SMO): Provides a central place to 
manage every aspect of the cloud native application. 

•  Resource provisioning: Manages resource allocations (CPU, 
memory, storage, network) for each application. 

•  Multi-cloud support: Provides the ability to manage and 
run the application across several cloud environments — 
including private, hybrid and public clouds — because a 
given application may require components and services 
from multiple cloud providers. 

•  Advanced revenue generating and TCO optimization 
features: Use cases like network slicing, pooling and power 
management are enabled end-to-end across the entire 
network using cloud orchestrated networking to realize the 
full benefits; these use cases are discussed in some detail 
further below.

Network Slicing  
The O-RAN Use Cases Detailed Specification, published by 
O-RAN ALLIANCE, defines several use cases that require a 
cloud ready or cloud native deployment.  

O-RAN cloud ready use case example 1: Multi-vendor slices

This use case enables multiple slices with functions provided 
from multiple vendors. In the example highlighted in Figure 3,  
slice #1 is composed with a distributed unit (DU) and 
centralized unit (CU) provided from vendor A, and slice #2 is 
composed with DU and CU provided from vendor B. Without 
the ability to share resources between network functions, 
this multi-vendor slice use case would not be possible. 
Each vendor’s network functions could still be a monolithic 
software entity and not require cloud native microservice 
architecture. However, it still benefits from hardware and 
software disaggregation, hardware pooling, zero touch 
provisioning and a common standard orchestration and 
management layer.  

Network Slice Subnet Instance (NSSI) resource allocation 
optimization requires a cloud native approach to open 
distributed unit (O-DU) and open central unit (O-CU) 
deployments as this use case requires scaling of the cloud 
native network function and zero touch automation.  

•  Cloud native principles are 
easily adapted for all layers  
of the RAN  

•  L1, L2 and L3 applications 
can be deployed as K8s 
microservices

•  Common cloud platform  
and management for entire DU 
(L1, L2 and L3)

Virtualized L1 on CPUs  
with open architecture, e.g.,  

Intel Architecture 

•  L1 must be configured 
and managed by other 
mechanisms

•  L1 cannot be managed  
as a K8s microservice 

•  Dependency between 
SoC L1 and L2 software 
components may not allow 
for L2 deployment as a K8s 
microservice

•  Non-uniform ways to 
manage different layers  
of the stack 

L1 implemented on  
purpose-built SoC
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Pooling-enabled optimized infrastructure, network 
availability and resiliency 
Network infrastructure is typically dimensioned for peak 
usage. However, the number of users and usage patterns can 
vary dramatically over a given 24-hour period. Typically, the 
number of users is much higher during the day than at night. 
Usages (video, calls, text, gaming, etc.) also change over the 
course of the day. Some of these variations are predictable 
and some are not. Also, the horsepower requirements for 
workloads can vary considerably depending on the traffic 
patterns. For example, the L1 workload is heavy during 
periods when users consume high bandwidth. The L2 
workload depends on the number of simultaneous users as 
well. There are additional functions in a DU, such as statistics 
collection and processing, AI inferencing models and others 
that need to be run from time to time and have flexibility in 
when they can be executed.  

Pooling enables dynamic allocation of the right number 
of cores to each workload; the hardware resources may 
be within a server blade or across server blades. Pooling 

benefits are maximized when the same type of cores (for 
example, general purpose CPUs) are used for all functions:  
L1, L2 and additional DU functions. 

Pooling can be implemented within a server, pooling the 
CPU cores, memory and I/O for multiple cells and also 
implemented within a rack of servers. These are not mutually 
exclusive and can be leveraged concurrently to improve 
power consumption depending on the deployment scenario. 
Distributed RAN (DRAN) can achieve use cases where there is 
a single server pooling of resources. For DRAN deployments 
with more than one server and for centralized RAN (CRAN) 
deployments, pooling can be achieved within the server 
and within the rack of servers. As the compute resources 
scale depending on the user load, power benchmarking 
should take this into account and provide a 24-hour power 
consumption rather than peak or low power consumption. 
This is depicted in Figure 5.

O-RAN ALLIANCE also defines a Baseband Unit (BBU) 
Pooling use case to achieve RAN Elasticity and presents 
three different classes for pooling: Class 0, Class 1 and 
Class 2. In Class 0 pooling, the remote radio head (RRH) is 

Figure 3. O-RAN Multi-vendor Network Slice sharing O-Cloud compute resources

Figure 4. Example Resource Profile with pooling within a server and across a rack of servers
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directly assigned to a single DU during run time.1 Pooling is 
achieved through centralization of multiple cells to a single 
DU instance running in the cloud platform. Class 1 and 2 are 
more aggressive types of pooling and allow a looser coupling 
of the RRH to the DU network function. In both these cases, 
the RRH is a fixed physical network function and cannot 
be changed. Therefore, it is the DU network function that 
must support cloud native design principles such as scaling, 
zero touch automation, orchestration and management, 
automation and more.

Pooling can deliver key cost and power benefits toward 
achieving resiliency and high availability:

•  Minimizes total number of deployed hardware resources 
(CPU cores and servers). 

•  Enables regular maintenance to be conducted without 
interrupting traffic.

•  Makes it possible to monitor server health and do 
preemptive maintenance by moving traffic to other servers.

•  Software-based control of 
number of processing cores/
servers relative to cells/UEs

•  Since all workloads (L1, L2, L3) 
run on the same processor, 
additional pooling benefits can 
be realized across workloads

Virtualized L1 on CPUs  
with open architecture, e.g.,  

Intel Architecture 

•  Fixed-function IP blocks and 
DSP cores in a single SoC 
architecture do not offer 
much flexibility to fluidly 
move L1 workload among 
all resources, and hence are 
not as amenable to pooling 
implementation

•  Within the L1 SOC, pooling 
gains do not extend beyond 
the L1 workload.

L1 implemented on  
purpose-built SoC

As a simple example, a benchmark was executed using Intel 
FlexRAN™ Reference software where multiple 5G NR cells 
were executing in BBU Pooled scenario and the number of 
cores and power consumption measured. Figure 5 shows 
that as the number of active cells increases, optimal core 
deployment can be achieved via pooling techniques in a 
fully virtualized RAN executing on 3rd Generation Intel Xeon 
processors, as shown for an example use case below.

Figure 5. Pooling enables fewer cores to support required 
capacity

Figure 6. Pooling results in lower power to support required 
capacity
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•  Telemetry information for 
monitoring CPU resource 
utilization 

•  Ability to control frequency 
and power of silicon resources 
(cores) 

•  Ability to put cores in a sleep 
state during periods of low 
user activity

Virtualized L1 on CPUs  
with open architecture, e.g.,  

Intel Architecture 

•  Fixed-function IP blocks 
cannot be controlled for 
reducing power during 
periods of low traffic 

•  DSP cores typically do not 
support the fine-grain power 
state control (e.g, micro-sleep 
and hibernate) similar to 
those available in CPUs like 
the Intel Xeon Processors.

L1 implemented on  
purpose-built SoC

Figure 6 shows the associated reduction in power achieved 
due to pooling.

Energy efficiency and sustainability
Energy expenditures are a significant component of RAN 
operational costs, and network sustainability is an area of 
focus for the entire RAN ecosystem.

Energy efficiency is another advantage of cloud native 
network functions executing on Intel x86 CPUs where they 
can leverage the existing investment into IT domain energy 
efficiency solutions. There are three different categories for 
energy efficiency in the IT domain that can be applied to 
cloud native RAN solutions, and these are: 

1.  Application-level power control 
Application-level power control allows the application 
to take advantage of the C-states on the 3rd and 4th 
Generation Intel® Xeon® Scalable CPUs with reduced 
latency transitions. The application can sleep the 
threads when there is no work to do and the CPU will 
enter C-states to save power. 

2.  Server Level Power Control  
Server level power control allows a privileged server 
executing on the cloud to change the platform power 
controls, such as P-states, which allows a per-core 
CPU frequency scaling. The cloud platform can reduce 
power consumption or tailor the CPU core frequency 
for the network function.  
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3.  Cluster Level Power Control 
When running in a rack of servers or in a cluster that 
supports cloud native RAN network functions, it is 
possible to scale and consolidate the workload onto 
fewer servers and power off unused servers to save 
energy. Without cloud native network functions for 
RAN, cluster-level power control will not be possible.

As one example, Deutsche Telekom used its own network 
traffic profiles to demonstrate approximately 30% energy 
savings in L1 processing in a Deutsche Telekom laboratory 
setup. Key aspects of the demo, which was presented at 
Mobile World Congress, 2022 in Barcelona, include:  

•  Virtualized L1 implemented in Intel FlexRAN software 
running on Intel 3rd generation Xeon processor. 

•  Telemetry capabilities and dynamic power controls 
available in the Xeon processors used to turn on/off cores 
as needed with varying traffic conditions.

•  Intelligent L2 MAC scheduler in Intel FlexRAN software 
detected periods of low traffic activity and scheduled fewer 
cores per radio frame. 

•  Unused cores transitioned to a deep power down state with 
savings of multiple W per core.

Additional power savings can be achieved via pooling 
technologies applied in DUs based on virtualized L1. System-
wide power savings can be realized by extending this 
approach of combining monitoring telemetry information 
and applying CPU power controls to other stack layers and 
base station functions, for example, L2, transport, control 
and OAM.

Additional details of the use cases and results are presented 
in a video that can be viewed at: 
https://www.intel.com/content/www/us/en/events/mobile-
world-congress.html

As another example, at the O-RAN Spring Plugfest held in 
June and July 2022, Intel collaborated with Vodafone, Wind 
River, Radisys and Keysight to demonstrate up to 12% power 

Figure 7. Energy efficiency gains with power management of L1 application in a RAN DU

Use Case: Deutsche Telekom AG 
Traffic Profile

   
With no power management

   
With power management of L1 only

savings with the Vodafone network traffic profile using a 
limited application of the power management capabilities 
in a RAN DU+CU based on the 3rd Generation Intel Xeon 
processor, without any application changes. 

In both demonstrations, traffic throughput was not impaired 
while achieving the energy efficiency gains.

Enabling the Intelligent RAN
Service providers are increasingly looking to build 
intelligence into the network to maximize their return on 
investment (ROI) and minimize operational costs.

This is also the goal of the O-RAN Alliance and the RAN 
Intelligent Controller (RIC) architecture. The Non-Real time 
and Near-Real time RAN Intelligent Controllers (RIC) allows 
for combining platform telemetry through O2 interface with 
application telemetry through the O1 and E2 interfaces.  
xApps and rApps executing in the Near-RT RIC and Non-RT 
RIC respectively leverage Artificial Intelligence/Machine 
Learning (AI/ML) technologies to implement a variety of use 
cases, some examples below: 

•  Maximize spectral efficiency and use of deployed radio  
resources with active antenna management and orchestration

•  Enhance real-time response, for example, dynamically 
adjust resource allocation, as network conditions change

•  Closed loop automation for best configuration settings or 
configuration to meet the given workload requirement with 
minimal resources

• Faster new user provisioning

• Predictive analytics

• Network anomaly detection and intervention at scale

•  Security anomalies and intrusion detection, and automated 
application of corrections

• Automated cell deployment
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Virtualized L1 on CPUs  
with open architecture, e.g.,  

Intel Architecture 

L1 implemented on  
purpose-built SoC

Application telemetry for many of these use cases include 
dynamic resource and network performance information 
from the RAN stack, including L1. Key performance indicators 
(KPMs) and resource information may be at the antenna-
level, cell-level and user-level. Beam level information and 
physical resource block (PRB) utilization are some examples 
of information that the L1 functions can harvest for use by 
xApps and rApps.

Moreover, since the use cases, xApps, and rApps continue 
to evolve, we simply do not know all the data that needs 
to be collected from the L1. Consequently, it is not 
possible to pro-actively build all needed capabilities in 
the L1 implementation today, and L1 implementations in 
provisioned networks must be able to evolve.

•  Actionable, real-time, 
granular platform telemetry 
information for monitoring 
CPU resource utilization, power 
consumption, fault detection, 
and performance

•  L1 software can be readily 
modified to report dynamic 
network KPMs which can be 
customized for each xApp  
and rApp

•  As xApps and rApps evolve, 
L1 application can be 
evolved to match the needs, 
avoiding expensive hardware 
replacement 

•  Heterogenous functional 
blocks makes it difficult for 
Silicon to report actionable 
platform telemetry 
information and in a timely 
fashion

•  Fixed function or 
configurable IP blocks cannot 
be modified to provide 
information needed.

•  Since only some of the 
functions are in software 
running on DSP cores, the 
flexibility needed to collect 
all such information needed 
by xApps & rApps is not 
available. Memory is often a 
constraint in purpose built 
SoC’s restricting the amount, 
type and frequency of data 
that can be exported   

•  New requirements by 
evolving xApps and rApps 
cannot be accommodated 
in deployed purpose-built 
SOCs and will often require 
expensive Silicon revisions 
and hardware upgrades.

Several ecosystem players are developing and demonstrating 
the value of such applications.

One example of automated deployment with telemetry 
abstraction from the DU to the Cloud services is from demo 
of Microsoft for Telecommunications at MWC 2022 Hybrid 
cloud platform for operators – Azure Operator Distributed 
Services. This demonstrates the automated deployment 
of DU and CU services and also demonstrated how User 
Equipment (UE) telemetry can be exported to review and 
help debug parameters like per user Signal Interference to 
Noise Ratio (SINR).

Another example is recent MWC demo with an AI 
powered vRAN application (rAPP) for massive MIMO beam 
management that can optimize the quality of user experience 
(QOE) and 5G coverage dynamically as user traffic changes 
throughout the day. As a standard C/C++ sw application and 
running on COTS hardware the Intel FlexRAN L1 SW was 
modified to extract and export the beamforming counters 
and data to enable the rApp.

A video of this demonstration is available at: Intel at Mobile 
World Congress 5G vRAN & AI powered RIC Applications  
on Xeon.

Conclusion
Full virtualization of the RAN offers many technical and 
business benefits. Software-based RAN can be made 
more agile, leading to flexible network deployments that 
are amenable to dynamic orchestration and software-
defined coordination. In combination with the centralization 
of network architecture, dynamic resource pooling and 
load balancing can be used to improve network resource 
utilization, gain energy efficiencies and achieve higher 
resiliency. vRAN is also more agile and scalable to meet 
network capacity requirements based on demand, compared 
to a network infrastructure based on fixed-function devices. 
Failures in network operation can be handled without truck 
rolls (zero touch) by merely moving the network workload 
to a different server, resulting in lower operational expenses 
(OpEx). The flexibility of software-based RAN also enables 
rapid, simple evolution of the infrastructure to optimize 
network resources, reduce TCO and support new capabilities, 
such as network slicing, to enable new revenue-generating 
business models for operators at optimal cost. Further, a 
fully virtualized architecture enables implementation of 
innovations such as machine learning algorithms across all 
functions in the RAN, including L1, evolving the RAN network 
to deliver ever-more capabilities at optimized cost.
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