
1

DEPLOYMENT GUIDE
Intel Corporation

Guidelines for Optimizing Power Consumption of vCMTS

Deployments on Intel® Xeon® Scalable Processors

Authors

Rory Sexton

Intel Senior Software Engineer

David Coyle

Intel Senior Software Engineer

Dominik Przychodni

Intel Network Software Engineer

1 Introduction

This document describes in detail how both C-states and P-states can be used to unlock

significant power savings for virtualized cable modem termination system (vCMTS)

deployments. The goal of the document is to provide a set of practical, step-by-step

instructions detailing how to leverage C-states and P-states within a vCMTS solution to

optimize the power draw of Intel® Xeon® Scalable processors dynamically based on real-

time network load.

This document is intended for independent software vendors (ISVs) and multiple system

operators (MSOs) within the cable industry, who are deploying or planning to deploy

vCMTS solutions based on the Data Plane Development Kit (DPDK) [1] on the latest Intel

Xeon Scalable processors.

To keep the document concise and limit it to only the material required to enable ISVs

and MSOs in the integration of power management with their vCMTS solution on Intel

Xeon Scalable processors, this document assumes a general understanding of the power

management features of Intel Xeon processors, C-states, and P-states. Further

information on C-states and P-states, including a detailed analysis quantifying the power

savings achievable in a vCMTS deployment can be found by studying the reference

resources listed in Table 2.

Deployment Guide | Guidelines for Optimizing Power Consumption of vCMTS Deployments on Intel® Xeon® Scalable Processors

2

Table of Contents

1 Introduction ... 1
1.1 Terminology .. 3
1.2 Reference Documentation ... 3

2 Power-Optimized C-states ... 4
2.1 Technology Overview .. 4
2.2 DPDK Enablement for Ethernet NIC Interfaces .. 4

2.2.1 Enabling PMD Power Management on a NIC Queue ... 5
2.2.2 Disabling PMD Power Management on a NIC Queue .. 5
2.2.3 Configuring PMD Power Management Settings on a NIC Queue .. 6

2.3 DPDK Enablement for Ring Interfaces ... 7
2.3.1 Enabling PMD Power Management on a Ring .. 7
2.3.2 Disabling PMD Power Management on a Ring ... 8
2.3.3 Configuring PMD Power Management Settings on a Ring ... 8

2.4 Recommendations for vCMTS Integration ... 9
2.4.1 Hardware and Software Requirements... 9
2.4.2 Recommended Mode of Operation ... 9
2.4.3 Recommended Heuristics Settings .. 10
2.4.4 Integrating User Wait without DPDK PMD Power Management Feature ... 10

2.5 Monitoring Usage ... 10

3 P-states .. 11
3.1 Technology Overview ... 11
3.2 Configuring BIOS Settings ... 11
3.3 Selecting P-state Kernel Driver ... 12
3.4 Manipulating P-states of CPU Cores.. 12

3.4.1 Determining Available P-state Settings .. 12
3.4.2 Configuring P-state Settings... 13
3.4.3 Verify P-state Settings .. 13

3.5 Recommendations for vCMTS Integration .. 13
3.5.1 Hardware and Software Requirements... 13
3.5.2 Techniques for P-state Manipulation .. 13

3.6 Monitoring Usage ... 14

4 Summary .. 14

Figures
Figure 1. User Wait ‘Pause’ Algorithm Implemented by DPDK .. 4

Tables
Table 1. Terminology .. 3
Table 2. Reference Documents.. 3
Table 3. API to Enable PMD Power Management on a NIC Queue ... 5
Table 4. API to Disable PMD Power Management on a NIC Queue .. 5
Table 5. API to Configure Maximum Empty Poll Parameter on a NIC Queue ... 6
Table 6. API to Configure Pause Duration on a NIC Queue ... 6
Table 7. API to Enable PMD Power Management on a Ring ... 7
Table 8. API to Disable PMD Power Management on a Ring .. 8
Table 9. API to Configure Maximum Empty Poll Parameter on a Ring .. 8
Table 10. API to Configure Pause Duration on a Ring ... 9
Table 11. Recommended PMD Power Management Settings ... 10
Table 12. API to Use User Wait without DPDK PMD Power Management ... 10
Table 13. P-state Specific BIOS Settings ... 11

Deployment Guide | Guidelines for Optimizing Power Consumption of vCMTS Deployments on Intel® Xeon® Scalable Processors

3

Document Revision History

REVISION DATE DESCRIPTION

001 June 2023 Initial revision

1.1 Terminology

Table 1. Terminology

ABBREVIATION DESCRIPTION

API Application Programming Interface

CPU Central Processing Unit

DOCSIS Data Over Cable Service Interface Specification

DPDK Data Plane Development Kit

HWP Hardware P-states

Intel® IPM Intel® Infrastructure Power Manager

ISV Independent Software Vendor

KPI Key Performance Indicator

MAC Media Access Control

MHz Megahertz

MSO Multiple System Operator

NIC Network Interface Card

PMD Poll Mode Driver

TSC Timestamp Counter

vCMTS Virtualized Cable Modem Termination System

1.2 Reference Documentation

Table 2. Reference Documents

REFERENCE SOURCE

1 Data Plane Development Kit (DPDK) https://www.dpdk.org

2 CPU Instruction Reference for User

Wait Instruction Set

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

3 DPDK Power Management Library https://doc.dpdk.org/guides/prog_guide/power_man.html

4 DPDK l3fwd power sample

application

https://doc.dpdk.org/guides/sample_app_ug/l3_forward_power_man.html

5 Intel® vCMTS Reference Dataplane https://www.intel.com/content/www/us/en/developer/topic-technology/open/vcmts-reference-

dataplane/overview.html

6 Pause Patch for DPDK Rings https://patches.dpdk.org/series/27919/mbox

7 Linux CPU Performance Scaling https://www.kernel.org/doc/html/latest/admin-guide/pm/cpufreq.html

8 intel_pstate CPU Performance

Scaling Driver

https://www.kernel.org/doc/html/latest/admin-guide/pm/intel_pstate.html

9 Intel CommsPowerManagement https://github.com/intel/CommsPowerManagement

10 Intel® Infrastructure Power Manager

Solution Brief

https://www.intel.com/content/www/us/en/wireless-network/core-network/infrastructure-power-

manager-solution-brief.html

https://www.dpdk.org/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://doc.dpdk.org/guides/prog_guide/power_man.html
https://doc.dpdk.org/guides/sample_app_ug/l3_forward_power_man.html
https://www.intel.com/content/www/us/en/developer/topic-technology/open/vcmts-reference-dataplane/overview.html
https://www.intel.com/content/www/us/en/developer/topic-technology/open/vcmts-reference-dataplane/overview.html
https://patches.dpdk.org/series/27919/mbox
https://www.kernel.org/doc/html/latest/admin-guide/pm/cpufreq.html
https://www.kernel.org/doc/html/latest/admin-guide/pm/intel_pstate.html
https://github.com/intel/CommsPowerManagement
https://www.intel.com/content/www/us/en/wireless-network/core-network/infrastructure-power-manager-solution-brief.html
https://www.intel.com/content/www/us/en/wireless-network/core-network/infrastructure-power-manager-solution-brief.html

Deployment Guide | Guidelines for Optimizing Power Consumption of vCMTS Deployments on Intel® Xeon® Scalable Processors

4

2 Power-Optimized C-states

2.1 Technology Overview

4th Gen Intel Xeon Scalable processors introduce new power-optimized C-states, which are considered substates of C0, and known

as C0.1 and C0.2. Like the deeper C-states (C1, C1E, C6), instruction execution stops once a CPU core enters one of these new C-

states. However, the new C-states have much lower exit latencies and are, therefore, much better suited to dataplane workloads.

These C-states can be very effective at reducing power consumption for DPDK-based “100% polling” dataplane workloads, such as

a vCMTS Data Over Cable Service Interface Specification (DOCSIS) MAC dataplane. Key to their suitability for such workloads is the

new User Wait (or WAITPKG) instruction set [2]. This instruction set can be used to place CPU cores into the new C-states, for

example, when network load is below peak rates. Because they do not require root privilege, the instructions can be called directly

from a user-space application.

The recommended instruction from this set is TPAUSE, which instructs the core to stop instruction execution for a defined period.

During this period, the core can either enter the C0.1 or C0.2 states or switch to a hyper-thread sibling. The TPAUSE instruction is

recommended as it can be used in several use-cases – amongst others, it can be used in:

• scenarios which require multiple receive queue interfaces to be polled.

• scenarios which require time-critical processing e.g., messages which must be processed within a specific time window.

2.2 DPDK Enablement for Ethernet NIC Interfaces

The Ethernet Poll Mode Driver (PMD) Power Management [3] feature was added to DPDK v21.02 in the form of new APIs, to allow

applications to enable and disable power savings on a per NIC port/queue basis. The API enables/disables an algorithm that tracks

the rate at which packets are received when the NIC interface is polled and instructs an associated CPU core, through the User Wait

instruction set, to enter the C0.1 or C0.2 states if they are available.

This API introduced several modes of operation, but the recommended mode for a vCMTS dataplane is the ‘Pause’ mode. When this

mode is configured at application initialization time, the algorithm shown in Figure 1 below is enabled within the DPDK ‘ethdev’ and

‘power’ libraries, and within the DPDK PMD responsible for polling the NIC queue. The algorithm tracks the number of packets

received on every read of a queue. Once a configured threshold of empty reads is reached, the PMD issues the TPAUSE instruction

to place the core into the optimized power state for a configured number of microseconds. The core is re-activated (i.e. it exits the

C-state) after the configured TPAUSE duration has elapsed.

Figure 1. User Wait ‘Pause’ Algorithm Implemented by DPDK

Handled
By
Hardware

Threshold of empty
reads reached?

Yes -
Issue TPAUSE

Attempt to read
packets from NIC/ring

Enter power optimized
C-state

Exit power optimized
C-state

Any packets read?

Enter workload pipeline
and process any packets

No

Yes

No

after
configured
duration

Deployment Guide | Guidelines for Optimizing Power Consumption of vCMTS Deployments on Intel® Xeon® Scalable Processors

5

The following sections describe the API calls that can be used to enable, disable, and configure this algorithm. Recommended

settings for configurable parameters of the algorithm are specified later in section 2.4.

Additional information on each of the APIs can be found in the DPDK Power Management documentation [3]. Examples of calling

the APIs can also be found in the DPDK l3fwd-power sample application [4] or in the Intel® vCMTS Reference Dataplane [5].

2.2.1 Enabling PMD Power Management on a NIC Queue

Table 3. API to Enable PMD Power Management on a NIC Queue

API

__rte_experimental int rte_power_ethdev_pmgmt_queue_enable(

unsigned int lcore_id,

uint16_t port_id,

uint16_t queue_id,

enum rte_power_pmd_mgmt_type mode)

DPDK Version Introduced

v21.02

DPDK Header File

lib/power/rte_power_pmd_mgmt.h

Description

This API call enables the PMD Power Management User Wait algorithm on a particular NIC Rx queue and specifies the power

saving mechanism that will be used on its associated polling core. This API should be called during application initialization for

each NIC Rx queue and core that requires power management. It is the only API call that is strictly required to allow a DPDK-

based vCMTS application leverage power savings via the new power-optimized C-states for NIC interfaces.

Once enabled, after a certain number of empty reads are detected on the NIC queue identified by port_id/queue_id, the CPU

core identified by the lcore_id parameter will enter the C-state.

This API call MUST be called after configuring the NIC port and queue.

This API call MUST be called before starting the NIC port and queue.

Parameters

lcore_id Logical-core identifier of the CPU core that polls and reads the NIC port/queue

port_id Port identifier of the NIC port

queue_id Queue identifier of the NIC port’s queue

mode The PMD Power Management mode to use: RTE_POWER_MGMT_TYPE_PAUSE

2.2.2 Disabling PMD Power Management on a NIC Queue

Table 4. API to Disable PMD Power Management on a NIC Queue

API

__rte_experimental int rte_power_ethdev_pmgmt_queue_disable(

unsigned int lcore_id,

uint16_t port_id,

uint16_t queue_id)

DPDK Version Introduced

v21.02

DPDK Header File

lib/power/rte_power_pmd_mgmt.h

Description

Deployment Guide | Guidelines for Optimizing Power Consumption of vCMTS Deployments on Intel® Xeon® Scalable Processors

6

When exiting the DPDK-based vCMTS application, the following API should be called for each of the NIC ports/queues that had

PMD Power Management enabled during application initialization. This removes the PMD Power Management link between the

NIC queue identified by port_id/queue_id and the CPU core identified by lcore_id.

This API call MUST be called after stopping the NIC port and queue.

Parameters

lcore_id Logical-core identifier of the CPU core that polls and reads the NIC port/queue

port_id Port identifier of the NIC port

queue_id Queue identifier of the NIC queue

2.2.3 Configuring PMD Power Management Settings on a NIC Queue

Additional functionality was added to the PMD Power Management feature in DPDK v22.07, to give the user the option to

manipulate settings within the heuristics that apply the power management.

2.2.3.1 Configuring Maximum Empty Poll Parameter

Table 5. API to Configure Maximum Empty Poll Parameter on a NIC Queue

API

__rte_experimental void rte_power_pmd_mgmt_set_emptypoll_max(unsigned int max)

__rte_experimental unsigned int rte_power_pmd_mgmt_get_emptypoll_max(void)

DPDK Version Introduced

v22.07

DPDK Header File

lib/power/rte_power_pmd_mgmt.h

Description

These APIs allow the user to set and get the maximum number of empty polls that must occur for a specific NIC queue before it’s

associated core enters the power saving state. Manipulating this setting gives additional control over the User Wait algorithm

within the PMD Power Management feature, allowing for more aggressive or conservative power savings.

The default maximum empty poll setting is 512, though it is recommended to reduce this as low as 32 for optimum power

savings while still not impacting any key performance indicators (KPIs) of the vCMTS application.

There is no strict requirement on when either of these APIs should be called.

Parameters

max (set API

only)
The value to set the maximum number of empty pools to

2.2.3.2 Configuring Pause Duration

Table 6. API to Configure Pause Duration on a NIC Queue

API

__rte_experimental int rte_power_pmd_mgmt_set_pause_duration(unsigned int duration)

__rte_experimental unsigned int rte_power_pmd_mgmt_get_pause_duration(void)

DPDK Version Introduced

v22.07

DPDK Header File

lib/power/rte_power_pmd_mgmt.h

Deployment Guide | Guidelines for Optimizing Power Consumption of vCMTS Deployments on Intel® Xeon® Scalable Processors

7

Description

These APIs allow the user to set and get the duration (in microseconds) of the pause used by the ‘Pause’ mode of the PMD Power

Management, and hence the maximum length of time the core is put into the power saving state for. The default pause duration

is 1 microsecond. This API allows for manipulation of this duration.

There is no strict requirement on when either of these APIs should be called.

Parameters

duration (set API

only)
The value to set the pause duration to

2.3 DPDK Enablement for Ring Interfaces

Not all application threads will be based on receiving packets from an Ethernet NIC interface. It is very common to have threads

which read packets from a DPDK ring interface. Such threads can also benefit from the User Wait power management techniques

provided by the PMD Power Management feature.

Work is ongoing to add full support for the PMD Power Management techniques to DPDK ring interfaces – this will be available in a

future DPDK version. In the meantime, a patch file has been implemented that mirrors some the PMD Power Management

functionality for DPDK ring interfaces. The patch is available on the DPDK patchwork site at the link provided at reference [6]. There

are 2 options available to apply the patch to DPDK v22.11:

1. Download the patch from a browser by using the link provided at reference [6], copy to the DPDK v22.11 repository clone

and apply with the ‘git am’ command.

2. Apply directly within the DPDK v22.11 repository clone by executing ‘wget <patch link> -O - | git am, replacing

<patch link> with the URL provided at reference [6].

The patch implements the ‘Pause’ mode of the PMD Power Management feature and therefore follows the same algorithm shown

previously in Figure 1.

The following sections describe the API calls that can be used to enable, disable and configure the algorithm. Recommended

settings for configurable parameters of the algorithm are specified later in section 2.4.

2.3.1 Enabling PMD Power Management on a Ring

Table 7. API to Enable PMD Power Management on a Ring

API

__rte_experimental int rte_ring_pmgmt_ring_enable(

unsigned int lcore_id,

char *ring_name)

DPDK Version Introduced

v22.11 (via patch)

DPDK Header File

lib/ring/rte_ring_pmgmt.h

Description

This API call enables the PMD Power Management ‘Pause’ mode algorithm on a particular ring and its associated polling core.

This API should be called during application initialization for each ring and core that requires power management and is the only

API call that is strictly required to allow a DPDK-based vCMTS application leverage power savings via the new power-optimized

C-states for ring interfaces.

Once enabled, after a certain number of empty reads are detected on the ring identified by ring_name, the CPU core identified

by the lcore_id parameter will enter the C-state for a duration of 1 microsecond by default.

This API call MUST be called after initializing the ring.

Parameters

lcore_id Logical-core identifier of the CPU core that polls and reads the ring

Deployment Guide | Guidelines for Optimizing Power Consumption of vCMTS Deployments on Intel® Xeon® Scalable Processors

8

ring_name Name of the ring

2.3.2 Disabling PMD Power Management on a Ring

Table 8. API to Disable PMD Power Management on a Ring

API

__rte_experimental int rte_ring_pmgmt_ring_disable(

 unsigned int lcore_id,

 char *ring_name)

DPDK Version Introduced

v22.11 (via patch)

DPDK Header File

lib/ring/rte_ring_pmgmt.h

Description

When exiting the DPDK-based vCMTS application, the following API should be called for each of the rings that had PMD Power

Management ‘Pause’ mode enabled during application initialization. This removes the PMD Power Management link between the

ring identified by ring_name and the CPU core identified by lcore_id.

This API call MUST be called before freeing the ring.

Parameters

lcore_id Logical-core identifier of the CPU core that polls and reads the NIC port/queue

ring_name Name of the ring

2.3.3 Configuring PMD Power Management Settings on a Ring

2.3.3.1 Configuring Maximum Empty Poll Parameter

Table 9. API to Configure Maximum Empty Poll Parameter on a Ring

API

__rte_experimental void rte_ring_pmgmt_set_emptypoll_max(unsigned int max)

__rte_experimental unsigned int rte_ring_pmgmt_get_emptypoll_max(void)

DPDK Version Introduced

v22.11 (via patch)

DPDK Header File

lib/ring/rte_ring_pmgmt.h

Description

These APIs allow the user to set and get the maximum number of empty polls that must occur for a specific ring interface before

it’s associated core enters the power saving state. Manipulating this setting gives additional control over the User Wait algorithm

within the PMD Power Management feature, allowing for more aggressive or conservative power savings.

The default maximum empty poll setting is 512, though it is recommended to reduce this as low as 32 for optimum power

savings while still not impacting any key performance indicators (KPIs) of the vCMTS application.

There is no strict requirement on when either of these APIs should be called.

Parameters

max (set API

only)
The value to set the maximum number of empty pools to

Deployment Guide | Guidelines for Optimizing Power Consumption of vCMTS Deployments on Intel® Xeon® Scalable Processors

9

2.3.3.2 Configuring Pause Duration

Table 10. API to Configure Pause Duration on a Ring

API

__rte_experimental int rte_ring_pmgmt_set_pause_duration(unsigned int duration)

__rte_experimental unsigned int rte_ring_pmgmt_get_pause_duration(void)

DPDK Version Introduced

v22.11 (via patch)

DPDK Header File

lib/ring/rte_ring_pmgmt.h

Description

These APIs allow the user to set and get the duration (in microseconds) of the pause used by the ‘Pause’ mode of the PMD Power

Management. In ‘Pause’ mode, the default pause duration that the core is put into a power savings state for is 1 microsecond. The

new API calls below allow for manipulation of this default duration.

There is no strict requirement on when either of these APIs should be called.

Parameters

duration (set API

only)
The value to set the pause duration to

2.4 Recommendations for vCMTS Integration

The preceding sections describe the API calls required to enable, disable, and configure use of the User Wait instruction set to

optimize power consumption of a vCMTS deployment. However, it may still be unclear as to how exactly it can be enabled and

configured within an application. This section aims to provide some additional tips and recommendations to leverage the feature

for power savings in your vCMTS solution1.

2.4.1 Hardware and Software Requirements

To make of use the User Wait instruction set and leverage power savings through the power-optimized C-states using the API calls

described in the previous sections, certain criteria must be adhered to. The following are the basic hardware and software

requirements that must be met:

✓ Must be deployed on 4th Gen Intel Xeon Scalable processor CPUs with User Wait instruction set support.

✓ Packet Processing pipeline must be based on DPDK v21.02 onwards, preferably DPDK v22.07 or later.

✓ Threads must be driven by reading packets with one of the following DPDK API calls:

▪ rte_eth_rx_burst, rte_eth_rx_bulk, rte_ring_dequeue_burst, rte_ring_dequeue_bulk

✓ Ideally the threads should be designed in a run-to-completion manner, where once a ‘burst’ of packets is received they are

processed and transmitted before the next burst is received.

2.4.2 Recommended Mode of Operation

As already described, the recommended mode to be used is ‘Pause’ mode, which can enabled for both NIC port/queue and DPDK

ring interfaces by specifying the RTE_POWER_MGMT_TYPE_PAUSE option on the relevant enabling API call. The ‘Pause’ mode and

the underlying TPAUSE instruction can be used in scenarios which require multiple receive interfaces to be polled, or where critical

time-based processing is required. Both scenarios may be valid in a vCMTS application:

• A thread may need to poll both a NIC port/queue interface for IP packets and a ring interface for control plane or MAC

management messages.

• A thread may need to poll a NIC port/queue interface, whilst also handling critical time-based operations, such as DOCSIS

Upstream Bandwidth Allocation Map messages, at a defined fixed interval.

The ‘Pause’ mode ensures that core will only enter the C0 substate for the predefined duration before exiting and allowing other

interfaces to be polled and/or other time-sensitive operations to be handled.

1 The recommendations provided in this section are valid at the time of writing and are subject to change at any time and without notice.

Deployment Guide | Guidelines for Optimizing Power Consumption of vCMTS Deployments on Intel® Xeon® Scalable Processors

10

2.4.3 Recommended Heuristics Settings

The default maximum empty poll parameter for the PMD Power Management modes is 512 empty polls before a C0 substate is

triggered. This is a very conservative setting in terms of power management. It is recommended to reduce this setting using the

relevant API calls to as low as 32 – this maximizes power savings by entering the C0 substates more frequently.

The default pause duration for the ‘Pause’ mode of the PMD Power Management feature is 1 microsecond. For dataplane threads it

is not recommended to change this setting. For control-plane threads, increasing this duration using the relevant API calls may be

considered, though likely not necessary.

The following table summarizes the default and recommended settings for each of the configurable parameters.

Table 11. Recommended PMD Power Management Settings

Configurable Parameter Default Setting Recommended Setting

Maximum Empty Polls 512 32

Pause Duration 1 microsecond 1 microsecond

2.4.4 Integrating User Wait without DPDK PMD Power Management Feature

Upon studying this documentation, it may become apparent that your vCMTS solution is not suitable to leverage the User Wait

instruction set using the DPDK PMD Power Management feature in its current form. Alternatively, it may be desirable to leverage the

User Wait instruction set for non-DPDK based software threads. Examples may include an upstream scheduler thread, control plane

thread or other legacy threads not based on DPDK.

Table 12. API to Use User Wait without DPDK PMD Power Management

API

__rte_experimental int rte_power_pause(const uint64_t tsc_timestamp)

DPDK Version Introduced

v20.11

DPDK Header File

lib/eal/include/generic/rte_power_intrinsics.h

Description

This API places the core on which it was ran into the power-optimized C-state for the duration specified by tsc_timestamp,

through the User Wait TPAUSE instruction if it is available on the platform. The API can be called from any user-space application

based on any criteria the developer deems worthy.

The function can be called directly from a DPDK based application or the function can be studied and re-implemented for use in

a non-DPDK based application as required.

Parameters

tsc_timestamp The maximum duration in timestamp counter (TSC) ticks to pause the core for

2.5 Monitoring Usage

To monitor usage of the C0 substates by each CPU core, event counters are available. The CPU_CLK_UNHALTED.C01 and

CPU_CLK_UNHALTED.C02 event counters represent the number of clock cycles that a core spends in the C0.1 and C0.2 state

respectively. These counters can be monitored using the ‘perf’ tool from the Linux command line. C0.1 is represented by the r10ec

event and C0.2 is represented by the r20ec event within the perf stat tool.

The counters increment for each clock tick of the CPU core that is spent in the power-optimized state. Actual percentage of time

can then be computed by comparing the number of clock ticks to the TSC of the CPU. The ‘perf’ tool supports many command line

options. The example below specifies both C0.1 and C0.2 events to be recorded for CPUs 2, 3, 66 and 67 at an interval of 1000

milliseconds. The reported number of ticks under the ‘counts’ column is a sum of all the CPUs specified in the command. A per-core

utilization breakdown can be obtained by adding the ‘--per-core’ option to the command. Additional options can be viewed using

the ‘--help’ option.

Deployment Guide | Guidelines for Optimizing Power Consumption of vCMTS Deployments on Intel® Xeon® Scalable Processors

11

perf stat -e r20ec -e r10ec -I 1000 -C 2,3,66,67

time counts unit events

 1.001087032 3,555,349,439 r20ec

 1.001087032 0 r10ec

 2.002228997 3,479,781,677 r20ec

 2.002228997 0 r10ec

 3.003305175 3,479,237,965 r20ec

 3.003305175 0 r10ec

There is also a counter to show whether the core is using C0.1 and C0.2, as opposed to just executing a pause instruction (a pause

instruction is used when C0.1/C0.2 are not available on the platform). The counter is CPU_CLK_UNHALTED.C0_WAIT and it is

incremented for every clock tick that the CPU core is using the C0 substates. It is represented by the r70ec event with the perf stat

tool and can be viewed as follows.

perf stat -e r70ec -I 1000 -C 2,3,66,67

time counts unit events

 1.001092348 3,939,902,087 r70ec

 2.002250619 3,916,458,216 r70ec

 3.003327327 3,916,409,293 r70ec

This is good way of verifying that C0 substates are supported by the CPU and being used as expected by the CPU cores. On a

platform where C0 substates are not supported and a pause instruction is executed instead, this r70ec event counter would always

read 0.

3 P-states

3.1 Technology Overview

P-states refer to the specific frequency and voltage that a core operates at while executing instructions. They offer power savings by

reducing the voltage and frequency of CPU cores while they run. Unlike with C-states, the execution of instructions continues as P-

states are altered on the CPU core, albeit at an adjusted rate. This has made them an effective mechanism for reducing power

consumption across all generations of Intel Xeon Scalable processors. P-states are beneficial to vCMTS deployments as reducing

the operating voltage and frequency of the CPU cores that vCMTS dataplane threads are running on results in a corresponding

reduction in power consumed by the CPU. Their suitability to vCMTS deployments is further strengthened by the significant

reductions in P-state transition latency seen on both 3rd and 4th Gen Intel Xeon Scalable processors.

3.2 Configuring BIOS Settings

It is recommended that the following P-state specific settings be configured in the BIOS settings, to allow full control of the CPU P-

states from user-space applications and tools. Note that the BIOS option names and menu locations listed in the table below are

presented as a guide only. The exact option names and locations will vary depending on the server. Please contact your Intel®

representative if you cannot find a particular option.

Table 13. P-state Specific BIOS Settings

BIOS Setup Menu BIOS Option Setting

Advanced → Power & Performance CPU Power and Performance profile Balanced Performance

Advanced → Power & Performance → CPU P State Control Hardware P-states (HWP) Disabled

Advanced → Power & Performance → CPU P State Control Intel® Turbo Boost Technology Disabled2

Advanced → Power & Performance → CPU P State Control Energy Efficient Turbo Disabled

Advanced → Power & Performance → CPU P State Control Enhanced Intel® Speed Select

Technology

Enabled

2 While enabling and using Intel Turbo Boost Technology on CPU cores will improve vCMTS dataplane throughput, it will also increase power consumption. As

this guide aims to reduce power consumption, it is therefore recommended to disable this option.

Deployment Guide | Guidelines for Optimizing Power Consumption of vCMTS Deployments on Intel® Xeon® Scalable Processors

12

3.3 Selecting P-state Kernel Driver

The Linux kernel provides two different drivers to implement processor frequency scaling, namely the acpi-cpufreq and intel_pstate

and drivers. Both drivers use the cpufreq subsystem of the Linux kernel to scale CPU frequencies up and down, but have their own

different implementations and unique features:

• acpi-cpufreq is the older of the two drivers, and uses the governors provided by the cpufreq subsystem, where each

governor implements a different performance scaling algorithm – these governors are: ‘performance’, ‘powersave’,

‘userspace’, ‘schedutil’, ‘ondemand’ and ‘conservative’. For more details on these governors and the cpufreq subsystem as

a whole, please see [7].

• intel_pstate, on the other hand doesn’t use the cpufreq subsystem’s governors. Instead, it implements its own

‘performance’ and ‘powersave’ policies internally. It is worth noting that while the ‘performance’ algorithm implemented by

intel_pstate is similar to that of cpufreq, the ‘powersave’ algorithm of intel_pstate is more similar to the ‘schedutil’ governor

of cpufreq. For more details on the intel_pstate driver, please see [8].

Both kernel drivers can be effectively utilized in a vCMTS deployment to scale CPU core frequencies, using the governors or policies

provided and within configurable maximum and minimum frequency limits. However, it is recommended to use the acpi-cpufreq

driver as it provides a ‘userspace’ governor, which allows userspace applications or tools to have full control of setting the CPU

frequency. The remainder of this document assumes use of the acpi-cpufreq driver.

By default, the intel_pstate driver is used on Intel Xeon Scalable processors. In order to switch to the acpi-cpufreq driver, the

following must be added to the kernel parameters (e.g. through the grub settings):

intel_pstate=disable

3.4 Manipulating P-states of CPU Cores

P-states settings can be manipulated from the Linux command line using the power.py python tool available from the Intel

CommsPowerManagement GitHub repository [9]. Regardless of the kernel driver selected, this tool allows setting and getting of P-

state settings such as the governor (or policy), and maximum, minimum, and configured frequencies on a per-core basis.

The usage is described in detail in the power.md file in the above repository.

3.4.1 Determining Available P-state Settings

Once downloaded to the server, the available P-state settings can be determined by running the tool as follows:

./power.py -i

 P-State Driver: acpi-cpufreq

 CPU Base Frequency: 0MHz

 Available P-States: [1801.0, 1800.0, 1700.0, 1600.0, 1500.0, 1400.0, 1300.0, 1200.0, 1100.0,

1000.0, 900.0, 800.0]

 Turbo Available: Yes (use pstate '1801.0')

 Number of CPUs: 128

Available Governors: ['conservative', 'ondemand', 'userspace', 'powersave', 'performance',

'schedutil']

 Available C-States: ['C1_ACPI', 'C2_ACPI', 'POLL']

The current P-state settings can be determined by running the tool as follows:

./power.py -l

==== ====== ====== ====== =========== ======= ======= =======

 P-STATE INFO C-STATES DISABLED?

Core Max Min Now Governor POLL C1_ACPI C2_ACPI

==== ====== ====== ====== =========== ======= ======= =======

 0 1800 1800 1800 userspace no no no

 1 1800 1800 1800 userspace no no no

...

...

 126 1800 1800 1800 userspace no no no

 127 1800 1800 1800 userspace no no no

Deployment Guide | Guidelines for Optimizing Power Consumption of vCMTS Deployments on Intel® Xeon® Scalable Processors

13

Depending on the CPU of the host platform, the displayed output will be some variation of what is shown above.

3.4.2 Configuring P-state Settings

Specific P-states can be configured on a per CPU core basis by running the tool as follows. This command specifies the ‘userspace’

governor (-g) with a minimum (-m), maximum (-M) and configured (-s) P-state of 1800 MHz on CPUs 0-127 (-r).

./power.py -g userspace -m 1800 -M 1800 -s 1800 -r 0-127

Setting the governor to ‘userspace’ and using the same value for the minimum, maximum and configured P-state setting effectively

fixes the core frequencies to that frequency, 1800 MHz in above case, with no further adjustments being made by the governor

algorithm.

To see a description of all possible options run:

./power.py -h

3.4.3 Verify P-state Settings

Once the P-state settings have been re-configured the changes can be verified either using the power.py tool or using the Linux

turbostat utility from the command line.

./power.py -l

OR

turbostat -d -i 1 -c 0-127

3.5 Recommendations for vCMTS Integration

The preceding sections describe how to manipulate P-states of CPU cores. However, it may still be unclear as to how exactly they

can be used in a vCMTS deployment. This section aims to provide some practical advice for manipulating P-states in order to

reduce power consumption3.

3.5.1 Hardware and Software Requirements

There are very little hardware and software requirements of a vCMTS solution which can leverage P-states:

✓ Should be deployed on 3rd or 4th Gen Intel Xeon Scalable processor CPUs with P-states enabled.

▪ Will also work on earlier generations, but P-state transition latency is higher.

3.5.2 Techniques for P-state Manipulation

The main challenge to optimize power usage with P-states is identifying opportunities where network load is lower than the

maximum load for which the platform has been provisioned and subsequently altering the P-states accordingly. Traditional P-state

controls within both the OS and hardware itself are unable to distinguish between low and high network activity on CPU cores

processing packets using DPDK PMDs, which always show 100% CPU utilization since the PMDs relentlessly poll NIC or ring

interfaces regardless of network load. As a result, alternative techniques are required to determine an accurate representation of

the true CPU load the network traffic is generating.

3.5.2.1 Time-of-Day Based

The most basic technique to achieve power savings with P-states is to configure a pre-determined core frequency capable of

handling the expected network load based on the largely predictable nature of DOCSIS traffic over a 24-hour period. Pre-adjusting

the frequency of cores (e.g. using the power.py script mentioned previously) in such a manner is sure to provide power savings,

particularly at nighttime when networks are usually much under-utilized. This approach, however, comes with some pitfalls. Pre-

configuring the P-state leaves the operator susceptible to unexpected increases in network load atypical of a normal 24-hour

period. The lack of real-time metrics used in this P-state tuning technique gives it clear limitations.

3 The recommendations provided in this section are valid at the time of writing and are subject to change at any time and without notice.

Deployment Guide | Guidelines for Optimizing Power Consumption of vCMTS Deployments on Intel® Xeon® Scalable Processors

14

3.5.2.2 Real-Time Telemetry Based

Additional software can be developed to make P-state manipulation decisions based on real-time telemetry from the underlying

vCMTS application. Telemetry from the application including current throughput, number of empty polls occurring (i.e. the statistic

that is used in the User Wait heuristics) or other metrics can all be used to accurately calculate the true CPU load of the core running

the vCMTS application and the P-states can be manipulated accordingly (e.g. using the power.py script mentioned previously). With

the correct implementation, such a technique not only optimizes power consumption based on network load but is also capable of

reacting to unexpected changes in network load, thus ensuring KPIs are maintained.

Intel has developed the Intel® Infrastructure Power Manager (IPM) [10] to manipulate P-states based on real-time busyness

telemetry from a DPDK-based vCMTS application. More info will be added to this document about Intel IPM in a future revision, but

in the meantime, please contact your Intel representative to find out more about it.

3.6 Monitoring Usage

P-states can be monitored using the power.py and turbostat tools from the Linux command line.

./power.py -l

OR

turbostat -d -i 1 -c 0-127

P-state statistics are also captured and available on a per CPU core basis under the following directory on a Linux OS.

tree /sys/devices/system/cpu/cpu0/cpufreq/stats/

/sys/devices/system/cpu/cpu0/cpufreq/stats/

├── reset

├── time_in_state

├── total_trans

└── trans_table

4 Summary

Optimizing the power consumption of vCMTS deployments, and in particular the DOCSIS MAC dataplane, is becoming more and

more important. Intel Xeon Scalable processors provide several techniques to achieve this goal.

The document has shown how the Intel User Wait instruction set can be integrated into a vCMTS deployment to optimize power

consumption based on real-time network load. Use of these instructions allows CPU cores enter new power-optimized C-states

which are available on 4th Gen Intel Xeon Scalable processors. The document covered all the relevant API calls and recommended

settings for enabling this feature within DPDK. Supporting documentation in Table 2 provides further information, including the

power savings achievable in a vCMTS deployment on such processors using this technique.

The document has also shown how to manipulate P-states of CPU cores and contains some suitable techniques for leveraging P-

states to further optimize power consumption in a vCMTS deployment on 4th Intel Xeon Scalable processors, and to enable power

efficiencies on previous 1st, 2nd, and 3rd Gen Intel Xeon Scalable processors.

Deployment Guide | Guidelines for Optimizing Power Consumption of vCMTS Deployments on Intel® Xeon® Scalable Processors

15

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR

OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND

CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED

WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH

THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATHMAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or

characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no

responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without

notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from

published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the

latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document,

or other Intel literature, may be obtained by calling 1-800-548- 4725, or by visiting Intel’s Web site at www.intel.com.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may

be claimed as the property of others.

http://www.intel.com/

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Power-Optimized C-states
	2.1 Technology Overview
	2.2 DPDK Enablement for Ethernet NIC Interfaces
	2.2.1 Enabling PMD Power Management on a NIC Queue
	2.2.2 Disabling PMD Power Management on a NIC Queue
	2.2.3 Configuring PMD Power Management Settings on a NIC Queue
	2.2.3.1 Configuring Maximum Empty Poll Parameter
	2.2.3.2 Configuring Pause Duration

	2.3 DPDK Enablement for Ring Interfaces
	2.3.1 Enabling PMD Power Management on a Ring
	2.3.2 Disabling PMD Power Management on a Ring
	2.3.3 Configuring PMD Power Management Settings on a Ring
	2.3.3.1 Configuring Maximum Empty Poll Parameter
	2.3.3.2 Configuring Pause Duration

	2.4 Recommendations for vCMTS Integration
	2.4.1 Hardware and Software Requirements
	2.4.2 Recommended Mode of Operation
	2.4.3 Recommended Heuristics Settings
	2.4.4 Integrating User Wait without DPDK PMD Power Management Feature

	2.5 Monitoring Usage

	3 P-states
	3.1 Technology Overview
	3.2 Configuring BIOS Settings
	3.3 Selecting P-state Kernel Driver
	3.4 Manipulating P-states of CPU Cores
	3.4.1 Determining Available P-state Settings
	3.4.2 Configuring P-state Settings
	3.4.3 Verify P-state Settings

	3.5 Recommendations for vCMTS Integration
	3.5.1 Hardware and Software Requirements
	3.5.2 Techniques for P-state Manipulation
	3.5.2.1 Time-of-Day Based
	3.5.2.2 Real-Time Telemetry Based

	3.6 Monitoring Usage

	4 Summary

