

Copyright © 2023 Intel Corporation. All rights reserved.

Linux* Stacks for Intel® Trust Domain

Extension 1.0

v0.9

May 2023

Document Number: 355388-001

2 Document Number: 355388-001

Contents

1 Introduction ... 8

1.1 Overview .. 8

1.2 Terminology ... 11

2 Install .. 12

2.1 Hardware .. 12

2.2 BIOS ... 13

2.3 Components .. 15

2.4 Building Stacks ... 16

2.4.1 Build Packages ... 17

2.4.2 Create Guest Image.. 17

2.5 Install IaaS Host .. 19

2.5.1 Install Packages .. 19

2.5.2 Configure Grub ... 20

2.5.3 Set Default Kernel ... 20

2.5.4 Reboot with the Intel TDX kernel .. 21

3 Manage the TD guest ...23

3.1 Overview ..23

3.2 Boot TD Guest ... 26

3.2.1 Launch via QEMU ... 26

3.2.2 Launch via Libvirt ... 28

3.3 Use VirtIO Device ... 29

3.4 Secure Boot ... 30

3.5 Full Disk Encryption .. 33

3.5.1 Workflow ... 34

3.5.2 Prepare Encryption Image ... 35

4 Measurement & Attestation .. 37

4.1 TEE, TCB, Quote .. 37

3 Document Number: 355388-001

4.2 TDX Measurement ... 38

4.2.1 TD Report ... 38

4.2.2 MRTD and RTMR .. 38

4.2.3 Pre-Boot Measurement ... 39

4.2.4 PyTdxMeasure Tool ... 40

4.2.5 Linux Runtime Measurement .. 41

4.3 Attestation ... 42

4.3.1 Overview ... 43

4.3.2 Set Up DCAP Repo ... 44

4.3.3 Set Up PCCS ... 45

4.3.4 Set Up DCAP on Host ... 47

4.3.5 Generate Quote ... 48

4.3.6 Verify Quote .. 51

4.4 Use Intel Project Amber ... 52

4.4.1 Overview .. 52

4.4.2 Installation ... 52

4.4.3 Example Usage ... 53

5 Validation ..55

5.1 Overview ..55

5.2 PyCloudStack ..56

5.2.1 Overview ..56

5.2.2 Installation .. 58

5.2.3 Example ..59

5.3 Intel TDX Tests .. 60

5.3.1 Overview ... 60

5.3.2 Prerequisite... 62

5.3.3 Setup Environment ... 63

5.3.4 Run Tests .. 64

6 Develop & Debug ...66

4 Document Number: 355388-001

6.1 Override the Intel TDX SEAM module ...66

6.2 Off-TD Debug via GDB from the Host .. 68

6.3 Check Memory Encryption ...70

6.4 Run Intel AMX workload within TDX Guest .. 71

7 Disclaimer ... 74

8 References ... 76

5 Document Number: 355388-001

Figures

FIGURE 1 INTEL® TDX ... 8
FIGURE 2 INTEL TDX COMPONENT INTERFACES .. 9
FIGURE 3 LINUX STACK FOR INTEL TDX ... 10
FIGURE 4 8+0 DIMM POPULATION FOR INTEL TDX ... 12
FIGURE 5 16+0 DIMM POPULATION FOR INTEL TDX ... 13
FIGURE 6 BIOS SETTINGS FOR INTEL TDX ... 14
FIGURE 7 END-TO-END HOST AND GUEST STACK FOR LINUX AND INTEL TDX ... 16
FIGURE 8 BUILD PROCESS FOR INTEL TDX PACKAGES ... 17
FIGURE 9 CREATE INTEL TDX GUEST IMAGE ... 18
FIGURE 10 TD GUEST BOOT PROCESS .. 23
FIGURE 11 THE DETAIL BOOT FLOW FOR DIFFERENT TD BOOT .. 25
FIGURE 12 TDX GUEST ATTACK SURFACE ... 29
FIGURE 13 ENABLE SECURE BOOT ... 30
FIGURE 14 FULL DISK ENCRYPTION IN TDX GUEST .. 34
FIGURE 15 MEASUREMENT AND ATTESTATION FOR TEE .. 37
FIGURE 16 TD MEASUREMENT PROCESS .. 40
FIGURE 17 ENABLE IMA EXTEND HASH TO RTMR .. 41
FIGURE 18 INTEL TDX ATTESTATION FLOW ... 43
FIGURE 19 SET UP DCAP SOFTWARE ON THE TDX HOST .. 47
FIGURE 20 APPROACHES TO GENERATE INTEL TDX QUOTE .. 50
FIGURE 21 VERIFY QUOTE .. 51
FIGURE 22 INTEL TDX E2E FULL STACK VALIDATION ... 55
FIGURE 23 PYCLOUDSTACK FRAMEWORK ... 56
FIGURE 24 SCENARIOS FOR VMM AND LIBVIRT ... 57
FIGURE 25 ABSTRACT COMMON OPERATIONS FOR CLOUD STACK .. 57
FIGURE 26 BIOS SEARCH TDX MODULE FROM ESP ... 66
FIGURE 27 OFF-TD DEBUG VIA GDB ... 68

6 Document Number: 355388-001

TABLES

TABLE 1 INTEL TDX BIOS CONFIGURATIONS ... 14
TABLE 2 LINUX STACK FOR INTEL TDX COMPONENTS .. 15
TABLE 3 BOOT TYPE FOR TD GUEST ... 23
TABLE 4 START-QEMU.SH PARAMETERS ... 26
TABLE 5 RTMR DEFINITIONS .. 39
TABLE 6 LINUX STACK FOR INTEL TDX VALIDATIONS .. 55
TABLE 7 TDX STACK TESTS ... 60

7 Document Number: 355388-001

Revision History

Revision

Number

Description Date

0.8 Initial Release 1st May 2023

0.9 • Add the reference tool of check-tdx-host.sh

• Add chapter 4.2.5 Linux Runtime Measurement

via IMA (Linux Integrity Measurement

Architecture)

• Add chapter 3.5 Full Disk Encryption

• Add chapter 4.4 Use Intel Project Amber

• Complete the incomplete steps for Secure boot

• Add chapter 6.3 Check Memory Encryption

27th May 2023

8 Document Number: 355388-001

1 Introduction

1.1 Overview

Intel® Trust Domain Extension (Intel® TDX) refers to an Intel technology that

extends virtual machine extensions (VMX) and Intel® Total Memory Encryption –

Multi-Key (Intel® TME-MK) with a new kind of virtual machine guest called a trust

domain (TD). A TD runs in a CPU mode that is designed to protect the

confidentiality of its memory contents and its CPU state from any other software,

including the hosting virtual machine monitor (VMM) [1]

Figure 1 Intel® TDX

The white paper or specifications for Intel TDX can be found at Intel® Trust Domain

Extensions, the major components’ interfaces are defined in the specifications in

Figure 2 Intel TDX Component Interfaces.

https://github.com/intel/tdx-tools/wiki/API-&-Specifications
https://github.com/intel/tdx-tools/wiki/API-&-Specifications

9 Document Number: 355388-001

Figure 2 Intel TDX Component Interfaces

Linux* Stacks for Intel® TDX is an end-to-end hypervisor cloud stack including the

Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) components to

produce the following minimal use cases:

• Launch Intel® TDX guest VM to run general computing workloads

• Do launch-time measurement within the Intel® TDX guest VM

• Do runtime attestation with the quote generated by Intel® Software Guard

Extensions (Intel® SGX)-based quote generation service (QGS) on the IaaS

host

10 Document Number: 355388-001

Figure 3 Linux Stack for Intel TDX

The open-source code for Linux Stack for Intel TDX can be found at

https://github.com/intel/tdx-tools.

NOTE: tdx-tools has multiples release tags. Please make sure to use the correct tag

which matches the release version. Release tag and kernel version mapping can be

found in tdx-tools wiki.

This document introduces:

• The deployment, cloud stack test, and other common uses for those who

want to validate confidential workloads or tune performance.

• The debug and development methods for those who want to integrate stack

for their IaaS/PaaS framework.

https://github.com/intel/tdx-tools
https://github.com/intel/tdx-tools/tags
https://github.com/intel/tdx-tools/wiki#1-overview

11 Document Number: 355388-001

1.2 Terminology

TERM DESCRIPTION
ACM Authenticated Code Module

CFV Configuration Firmware V olume

CMR Convertible Memory Ranges

CPLD Complex Programmable Logic Device

CRB Customer Reference Board

DCAP Data Center Attestation Primitives

DIMM Dual In-line Memory Module

ECC Error Correction Code memory

ESP EFI System Partition

GVA Guest Virtual Address

HVC Hypervisor Virtual Console

IBV Independent BIOS Vendor

Intel SGX Intel® Software Guard Extensions (Intel® SGX)

Intel TDX Intel® Trust Domain Extension (Intel® TDX)

LIV server Live server is used for attestation with

production CPU SKUs

LUKS Linux Unified Key Setup

MRTD Measurement of Trust Domain Firmware

OVMF Opensource Virtual Machine Firmware

PCS Provisioning Certification Service

PCCS Provisioning Certificate Caching Service

QMP QEMU Monitor Protocol

RTMR Runtime Measurement Register

SBX server Sandbox server is used for attestation with pre-

production CPU SKUs

SEAM Secure Arbitration Mode

SVN Security Version Number

TCB Trusted-Computing Base

TDVF Trusted Domain Virtual Firmware

TDVM A TD guest VM

TEE Trusted Execution Environment

12 Document Number: 355388-001

2 Install

2.1 Hardware

Linux Stack for Intel TDX needs the following hardware support that enables Intel

TDX:

• CPU Processor SKU. Contact Intel sales rep for details.

• Board configurations via hardware jumper or CPLD (complex programmable

logic device). Contact your ODM/OEM vendor.

• DDR5 DIMM with the type of 10 × 4 ECC (error correction code memory)

• DDR5 RDIMMs with integrity protection.

• DIMM (Dual in-line memory module) population. We recommend that all

channel 0 slots be populated (8 DIMMs per socket) at least. DIMM population

must be symmetric across IMCs (integrated memory controller).

Figure 4 8+0 DIMM Population for Intel TDX

Intel TDX also supports the full DIMM population 16+0 as the follows:

13 Document Number: 355388-001

Figure 5 16+0 DIMM Population for Intel TDX

2.2 BIOS

BIOS configurations are needed to support Intel TDX. Contact an Intel sales

representee or IBV (independent BIOS vendor) for details. The following settings

are examples for reference:

14 Document Number: 355388-001

Figure 6 BIOS settings for Intel TDX

Please see the explanations in below table

Table 1 Intel TDX BIOS Configurations

BIOS Setting Notes

Volatile Memory = 1LM Intel TDX and CMR (Convertible Memory Ranges) logical

integrity, isolation, and cryptographic integrity are only

available with directly attached DDR5 memory.

Total Memory Encryption

(Intel TME) = Enable

Intel TDX technology depends on Intel® Total Memory

Encryption (Intel® TME).

Total Memory Encryption

(Intel TME) Bypass =

Auto

4th generation Intel Xeon Scalable processors introduce

an Intel TME bypass mode to allow memory outside of

Intel TME multi-tenant virtual machines, Intel SGX

enclaves, and Intel TDX trust domains to be unencrypted

to improve the performance of nonconfidential software.

Total Memory Encryption

Multi-Tenant (TME-MT) =

Enable

128 Intel TME – Multi-Tenant encryption keys.

Memory Integrity = Disable 4th generation Intel Xeon Scalable processor E-stepping

does not support Intel TDX-CI, but only supports Intel

TDX-LI.

Intel TDX = Enable Intel TDX should be enabled.

TDX Key Split = <Non-zero

Value)

Keys split between Intel TME multi-tenant and Intel TDX.

Software Guard Extension =

Enable

Intel TDX depends on Intel SGX technology for hardware

TCB and remote attestation.

Note: The configuration or the menus might be different on your BIOS. Contact the

IBV or OEM/ODM for the correct settings.

15 Document Number: 355388-001

2.3 Components

Linux Stack for Intel TDX is a vertical end-to-end stack including a series of

components, which are listed in Table 2 Linux Stack for Intel TDX Components.

Table 2 Linux Stack for Intel TDX Components

Components Description Source

Intel TDX SEAM

Module

An attested software module

running in SEAM Root Mode.

Intel Trust Domain Extensions

SEAM Loader A SEAM module intended

to install an Intel TDX

module into SEAM range.

Intel Trust Domain Extensions

Intel TDX Host

Kernel

The host kernel with Intel TDX

patches being upstreamed.

https://github.com/intel/tdx/tree/kv

m

Intel TDX Qemu QEMU with Intel TDX patches

being upstreamed.

https://github.com/intel/qemu-tdx

Intel TDX Libvirt Libvirt with Intel TDX patches

being upstreamed.

https://github.com/intel/libvirt-

tdx/tree/for_qemu_upstream

TDVF Virtual firmware (aka OVMF)

with Intel TDX features already

upstreamed.

https://github.com/tianocore/edk2

DCAP Intel SGX-based DCAP (data

center attestation primitives)

for the platform certificate

after registration.

https://github.com/intel/SGXDataC

enterAttestationPrimitives

QGS QGS provides the functionality

of Intel TDX quote generation

within an Intel SGX-based

quote enclave. It is part of the

DCAP running on the IaaS host

or legacy VM.

https://github.com/intel/SGXDataC

enterAttestationPrimitives

Intel TDX Guest

Kernel

The guest kernel with Intel

TDX patches being

upstreamed.

https://github.com/intel/tdx/tree/g

uest-upstream

Grub2 The bootloader grub2 with

Intel TDX patches already

upstreamed.

https://github.com/intel/grub-

tdx/tree/2.06-upstream-v4

Shim The bootloader shim with Intel

TDX patches already

upstreamed.

https://github.com/intel/shim-tdx

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://github.com/intel/tdx/tree/kvm
https://github.com/intel/tdx/tree/kvm
https://github.com/intel/qemu-tdx
https://github.com/intel/libvirt-tdx/tree/for_qemu_upstream
https://github.com/intel/libvirt-tdx/tree/for_qemu_upstream
https://github.com/tianocore/edk2
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/tdx/tree/guest-upstream
https://github.com/intel/tdx/tree/guest-upstream
https://github.com/intel/grub-tdx/tree/2.06-upstream-v4
https://github.com/intel/grub-tdx/tree/2.06-upstream-v4
https://github.com/intel/shim-tdx

16 Document Number: 355388-001

Intel TDX

Attestation

Agent

A sample Intel TDX attestation

agent to call

TDVMCALL.getQuote(). It is

part of DCAP.

https://github.com/intel/SGXDataC

enterAttestationPrimitives

PyTdxMeasure A Python measurement library

that dumps RTMR, the CCEL

ACPI table, and verifies the

RTMR via replaying the TD

event log.

https://github.com/intel/tdx-tools

NOTE: Some of the components have completed patch upstreaming such as Grub,

Shim, and TDVF, while others are still in progress.

2.4 Building Stacks

For an end-to-end stack setup and validation, tdx-tools provides downstream

patches and a build tool to construct the whole stack in a few simple steps.

Note: Please make sure to use the correct tag which matches the release version so

that the tools can work with different Intel TDX kernel and Intel TDX QEMU

versions.

The supported distros’ versions are as follows for both host and guest packages:

• RHEL 8.x (will uses the latest RHEL 8.x version)

• Ubuntu 22.04

Figure 7 End-to-End Host and Guest Stack for Linux and Intel TDX

The end-to-end stack building includes two steps:

https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/tdx-tools

17 Document Number: 355388-001

• Step 1: Build packages

• Step 2: Create guest image

2.4.1 Build Packages

A build.sh script is provided by tdx-tools to download upstream source, apply Intel

TDX patches from the directory <build>/common, and do package building via OS

packaging tool (such as rpmbuild for RHEL) and Debian for Ubuntu.

Note: When obtaining tdx-tools, please make sure to use the correct tag which

matches the release version.

Figure 8 Build process for Intel TDX packages

The kernel config is provided in the kernel package directory with Intel TDX

configurations, such as build/rhel-8/intel-mvp-tdx-kernel/tdx-kernel.spec for the

RHEL-8 distro. All kernel configurations have been optimized for performance.

After the packages have been built successfully, two repositories are generated.

One is the host repository, which includes the Intel TDX host kernel, Intel TDX

Qemu, Intel TDX Libvirt, and TDVF. The other repository is the guest repository

with the Intel TDX guest kernel, grub2, and shim.

2.4.2 Create Guest Image

As with non-confidential virtual machines, the Intel TDX virtual machine requires

guest images with the Intel TDX guest kernel. Also, the grub2 and shim packages

are required for grub boot and secure boot.

18 Document Number: 355388-001

The Intel TDX virtual machine needs an EFI guest image to be booted by EFI BIOS

TDVF (aka Intel TDX enabled OVMF).

• Some distros provide EFI enabled guest/cloud images, such as https://cloud-

images.ubuntu.com/ for Ubuntu, so you just need to install the guest kernel

and bootloaders (shim/grub) into the existing Ubuntu cloud image.

• If the default distro cloud image does not support an EFI schema, tdx-tools

provides the tool, such as using build/rhel-8/guest-image/create-efi-img.sh

to create the RHEL EFI guest image via the kickstart1 tool.

NOTE: When obtaining tdx-tools, please make sure to use the correct tag which

matches the release version.

Based on the EFI guest image downloaded from the distro portal or created by

create-efi-guest.sh, use tdx-guest-stack.sh to install the binary packages for Intel

TDX guest kernel and bootloaders (shim and grub) into the guest image.

Figure 9 Create Intel TDX guest image

The example steps are shown as below:

• For RHEL8.x

$ # Prerequiste: build the RHEL packages via build-repo.sh

$

$ cd build/rhel-8/guest-image

$

$ # Create the EFI guest image from via kickstart scripts

$./create-efi-img.sh

$

$ # Install additional packages into guest image

1 https://linuxhint.com/beginners-kickstart/

https://cloud-images.ubuntu.com/
https://cloud-images.ubuntu.com/
https://linuxhint.com/beginners-kickstart/

19 Document Number: 355388-001

$./tdx-guest-stack.sh

• For Ubuntu

$ # Prerequiste: build the Ubuntu packages via build-repo.sh

$

$ cd build/ubuntu-22.04/guest-image

$

$ # Install additional packages into guest image

$./tdx-guest-stack.sh

2.5 Install IaaS Host

Perform the following steps to deploy the packages on IaaS host.

NOTE: Please disable Intel TDX in the BIOS to install Intel TDX packages. Because

before installing Intel TDX host kernel, the distro default kernel may unintentionally

cleanup MTRR (memory type range register) for Intel TDX memory range, which

causes an MCHECK error. After Intel TDX packages have been installed and please

set the Intel TDX kernel as the default one in grub boot menu, and reboot into BIOS

to enable Intel TDX again.

2.5.1 Install Packages

For RHEL 8.x host

• Move the generated host repo to a directory that will be used in the repo file.

$ sudo mkdir -p /srv/

$ sudo mv <the generated repo directory> /srv/tdx-host

• Set up the host repository. Generate the file /etc/yum.repos.d/tdx-host-

local.repo and add the following content.

$ vi /etc/yum.repos.d/tdx-host-local.repo

[tdx-host-local]

name=tdx-host-local

baseurl=file:///srv/tdx-host

enabled=1

gpgcheck=0

module_hotfixes=true

• Add the EPEL repo. It provides the packages of capstone and libcapstone

required by Intel TDX Qemu.

$ sudo dnf install https://dl.fedoraproject.org/pub/epel/epel-releaselatest-

8.noarch.rpm

• Install the host packages.

20 Document Number: 355388-001

$ sudo dnf install intel-mvp-tdx-kernel intel-mvp-tdx-qemu-kvm intel-mvp-ovmf

intel-mvp-tdx-libvirt

• If you get an error about qemu-kvm conflicts, remove the existing qemu-kvm

package with the following command and then re-run the command above to

install host packages.

$ sudo dnf remove qemu-kvm

For Ubuntu 22.04 host

• Install all Debian packages

$ cd host_repo

$ sudo apt -y --allow-downgrades install ./*.deb

NOTE: please copy the Debian package file to a directory such as /tmp and then use

the /tmp path in the apt command to install.

> Download is performed unsandboxed as root as file as file ... couldn't be

accessed by user '_apt'. - pkgAcquire::Run (13: Permission denied)

2.5.2 Configure Grub

For RHEL 8.x

$ vi /etc/default/grub

Add "numa_balancing=disable" in GRUB_CMDLINE_LINUX

GRUB_CMDLINE_LINUX=". . . numa_balancing=disable"

$ sudo grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

For Ubuntu 22.04

$ vi /etc/default/grub

Add "numa_balancing=disable" in GRUB_CMDLINE_LINUX_DEFAULT

GRUB_CMDLINE_LINUX_DEFAULT=". . . numa_balancing=disable"

$ sudo update-grub

2.5.3 Set Default Kernel

For RHEL 8.x

$ ls /boot/vmlinuz* | grep <kernel-version>

21 Document Number: 355388-001

$ # Use output of above command, such as

$ # "/boot/vmlinuz-6.2.0-tdx.v1.5.mvp7.el8.x86_64" in the

$ # below command

$ sudo grubby --set-default=/boot/vmlinuz-<kernel version>

For Ubuntu 22.04

$ grep -A100 submenu /boot/grub/grub.cfg | grep menuentry | grep <TDX kernel

version>

$ # Use the string in above output, such as "gnulinux-6.2.0-mvp4v1+2-

$ # generic-advanced-34db9317-bf73-44c3-8425-2fa83446e8d5" in

$ # /etc/default/grub file as value of “GRUB_DEFAULT"

$ vi /etc/default/grub

GRUB_DEFAULT="gnulinux-6.2.0-mvp4v1+2-generic-advanced-34db9317-bf73-44c3-8425-

2fa83446e8d5"

$ sudo update-grub

2.5.4 Reboot with the Intel TDX kernel

After installing the Intel TDX kernel and host packages successfully, reboot the

system into the BIOS menu to turn on the Intel TDX configurations; refer to chapter

2.2 BIOS. Intel TDX should be enabled in the subsequent boot into the Intel TDX

kernel. Use the following approach to verify its status or the script of check-tdx-

host.sh from tdx-tools:

• Check whether TDX Module is initialized. The expected output is “TDX

module initialized”.

$ sudo dmesg | grep -i tdx

……
tdx: TDX module initialized.

• Check Intel TME enable status; expect a return code of 1.

$ sudo rdmsr -f 1:1 0x982

1

• Check Intel TME max keys.

$ sudo rdmsr -f 50:36 0x981

• Check the Intel SGX and MCHECK status, expecting a code of 0.

$ sudo rdmsr 0xa0

0

• Check the Intel TDX Status, expecting a code of 1.

$ sudo rdmsr -f 11:11 0x1401

https://github.com/intel/tdx-tools/blob/main/utils/check-tdx-host.sh
https://github.com/intel/tdx-tools/blob/main/utils/check-tdx-host.sh

22 Document Number: 355388-001

1

• Check the number of Intel TDX keys

$ sudo rdmsr -f 63:32 0x87

1

• Check the information for the Intel TDX SEAM module.

$ cat /sys/firmware/tdx/tdx_module/*

23 Document Number: 355388-001

3 Manage the TD guest

Like a normal virtual machine, a TD guest can be launched by QEMU via command

line or orchestrated by Libvirt via XML templates. This chapter introduces how to

manage the lifecycle of a TD guest for diverse boots such as secure boot, direct

boot, and grub boot.

NOTE: Please make sure to use the correct tag of tdx-tools which matches the

release version.

3.1 Overview

You can boot a TD guest either by using the QEMU command line or by using a

Libvirt XML template and virsh commands. Libvirt translates the XML template to

QEMU commands and calls qemu-kvm to complete the VM boot. Similarly, you can

call qemu-kvm directly with parameters to boot a VM.

The following diagram illustrates the TD guest boot type and boot process.

Figure 10 TD Guest Boot Process

The following table explains different boot types:

Table 3 Boot Type for TD Guest

Boot Type Description Difference from a non-

confidential VM

24 Document Number: 355388-001

Direct Boot Boot the guest by explicitly specifying

kernel binary via qemu launching

parameter "-kernel", specifying the

initrd binary via qemu launching

parameter "-initrd", specifying the

kernel command via qemu launching

parameter “-append".

Bootloaders, such as shim/grub are

not involved in direct boot.

No differences on qemu

launch parameters for

confidential VM, but

requires TDVF/OVMF to do

measured boot and record

the measurement into

RTMR(Runtime

Measurement Register)

register

Grub Boot Boot the guest without "-kernel" and

"-append" in qemu launching params.

The OVMF/TDVF search for and

start the bootloader from ESP

No differences on qemu

launch parameters for

confidential VM, but

requires Intel TDX Grub2 to

do measured boot and

record the measurement

into RTMR register

Measured Boot It is the process of measuring and

storing securely (i.e. using a TPM) the

next stage object in the boot process

by the UEFI BIOS, bootloader, kernel,

etc.

The secure register is a PCR

register in a trusted

computing group (TCG)-

defined trusted platform

module (TPM), while is

RTMR in Intel TDX SEAM

module

Secure Boot Secure boot is a security standard

developed by members of the PC

industry to help make sure that a

device boot using only software that

is trusted by the original equipment

manufacturer (OEM). The Secure

boot certificate should be protected

by measured boot.

The secure boot certificate

can be enrolled in runtime of

guest VM for non-

confidential VM, while the

secure boot must be

enrolled in TDVF offline for

the consistent

measurement on MRTD

(measurement of trust

domain)

The detail boot flow for different TD boot methods can be found in Figure 11 The

detail boot flow for different TD boot

25 Document Number: 355388-001

Figure 11 The detail boot flow for different TD boot

26 Document Number: 355388-001

3.2 Boot TD Guest

3.2.1 Launch via QEMU

Since the QEMU parameter list is quite long and complicated, tdx-tools provides the

start-qemu.sh script to handle some parameters by default. It supports both direct

boot and grub boot of TD guest. It also provides a few interactive parameters for you

to meet customization requirement.

Note: the parameters in “start-qemu.sh” may vary along with different Intel TDX

kernel and Intel TDX QEMU versions. Please make sure to use the correct tag of tdx-

tools which matches the release

The start-qemu.sh script offers several parameters so you can boot TD guest on

demand. The parameters are listed in Table 4 start-qemu.sh parameters:

Table 4 start-qemu.sh parameters

Parameter Description
-i <guest image file> Guest image file name and location

-k <kernel file> Kernel binary name and location

-t [legacy | efi | td] VM type supported; default is "td"

-b [direct | grub] Boot type, default value is "direct" which requires

kernel binary specified via "-k"

-p <Monitor port> Monitor port via telnet. Refer to the usage of QEMU

Monitor

-f <SSH Forward port> Host port used for guest VM SSH forwarding. Refer

to QEMU SSH port forwarding

-o <OVMF file> BIOS firmware device file. OVMF/TDVF is used for

"td" and "efi" VM type. "efi" is used for non-

confidential VM, while "td" is used for TD VM guest

-m <11:22:33:44:55:66> MAC address of VM. If MAC address changes for a

TD guest, RTMR value will change and Intel TDX

measurement will fail

-q [tdvmcall | vsock] TD quote generation supports using tdvmcall or

vsock. Choose the corresponding value to boot TD

guest.

-c <number> Number of vCPU. Default value is 1.

-r <root partition> Root partition for direct boot, default is /dev/vda3

-e <extra kernel command> Extra kernel command needed in VM boot

-v Flag to enable vsock

-d Flag to enable "debug=on" for GDB guest. Refer to

chapter 6 Develop & Debug

https://github.com/intel/tdx-tools/blob/main/start-qemu.sh
https://qemu-project.gitlab.io/qemu/system/monitor.html
https://qemu-project.gitlab.io/qemu/system/monitor.html
https://wiki.qemu.org/Documentation/Networking

27 Document Number: 355388-001

-s Flag to use serial console instead of hypervisor virtual

console (HVC).

-h Show usage help

• Direct boot TD guest via QEMU command

This is an example of direct boot using start-qemu.sh. You need to provide

the guest image and kernel image as shown. Direct boot is used by default, so

it's not required to use “-b direct”.

$./start-qemu.sh -i <guest image> -k <kernel binary>

• Grub boot TD guest via QEMU command

This is an example of grub boot using start-qemu.sh. You need to provide the

guest image and specify to use grub boot via “-b grub”.

$./start-qemu.sh -i <guest image> -b grub

• Direct boot non-confidential guest via QEMU command

This is an example of direct boot non-TD guest using You need to provide the

guest image and kernel image as shown. It also requires using "-t efi" to boot

non-confidential guest via OVMF/TDVF or "-t legacy" to boot non-

confidential guest via legacy SeaBIOS.

$./start-qemu.sh -i <guest image> -k <kernel image> -t efi

$./start-qemu.sh -i <guest image> -k <kernel image> -t legacy

https://github.com/qemu/seabios

28 Document Number: 355388-001

3.2.2 Launch via Libvirt

Libvirt is a popular orchestrator to manage the VM guest via the virsh command.

tools provides both direct boot and grub boot XML templates for TD guest at tdx-

tools/doc/.

Template Description

tdx_libvirt_direct.xml.template TD guest direct boot

tdx_libvirt_grub.xml.template TD guest grub boot

NOTE: The templates may vary with a different kernel version or QEMU version.

Please make sure to use the correct tag of tdx-tools which matches the release

version.

To create the final VM’s XML from the template, you must update the XML

template to refer to the guest image, kernel image, and OVMF binary:

• Update OVMF binary

<loader>/path/to/OVMF.fd</loader>

• Update guest image

<source file="/path/to/guest-image.qcow2"/>

• Update kernel image (This is not needed when using grub boot template)

<kernel>/path/to/vmlinuz-jammy</kernel>

Unlike QEMU, Libvirt uses the concept of a domain to manage the VM lifecycle

across reboot cycle. Libvirt distinguishes between two different types of domains:

transient and persistent2.

• Transient domains only exist until the domain is shut down or when the host

server is restarted.

• Persistent domains last indefinitely.

This example uses a Transient domain to start TD guest:

$ virsh start tdx_libvirt_direct.xml

You can check whether a TD guest is running with the following command. It's

expected to see TD guest running.

2 https://wiki.libvirt.org/VM_lifecycle.html

https://wiki.libvirt.org/VM_lifecycle.html

29 Document Number: 355388-001

$ virsh list

You can enter the TD guest console with the following command.

$ virsh console <TD guest name>

3.3 Use VirtIO Device

Within the Intel TDX guest, the drivers contribute 90% of threat attack surface.

They access host-controlled PCI config space and perform MMIO and port IO. Refer

to Figure 12 TDX Guest Attack Surface or detail threat analysis at [2].

Figure 12 TDX Guest Attack Surface

Limit the set of drivers that are enabled in runtime for the TD guest kernel. By

default, all PCI and ACPI bus drivers are blocked unless they are in the allow-list. The

current default allow-list for the PCI bus is limited to the following VirtIO drivers:

• virtio_net

• virtio_console

• virtio_blk

• 9pnet_virtio

• virtio_vsock

30 Document Number: 355388-001

Since most of the ACPI tables are not needed for an Intel TDX guest, the

implemented ACPI table allow-list limits them to a small, predefined list with a

possibility to pass additional tables via a command line option. The current allow-list

is limited to the following tables:

• XSDT

• FACP

• DSDT

• FACS

• APIC

• SVKL

• CCEL

3.4 Secure Boot

The secure boot for TD guest is almost the same as a traditional non-confidential

VM. The major difference is the OMVF.fd/TDVF.fd needs to be measured into

MRTD statically. Since the EFI variable is read-only in runtime with TDX guest VM,

it does not permit enrolling the secure boot key into the EFI variable FV (firmware

volume) via a tool such as EnrollDefaultKey at runtime. Instead, a new tool

ovmfkeyenroll fromtdx-tools is developed to help enroll the secure boot certificate

offline before measurement.

Figure 13 Enable Secure Boot

The steps of enrolling the secure boot key are as follows:

https://github.com/tianocore/edk2/tree/master/OvmfPkg/EnrollDefaultKeys
https://github.com/intel/tdx-tools/tree/main/utils/ovmfkeyenroll

31 Document Number: 355388-001

• Step 1: Generate customized secure boot keys and certificates, instead of

using MSFT cert

#!/bin/bash

NAME="Test"

openssl req -new -x509 -newkey rsa:2048 -subj "/CN=$NAME PK/" -keyout PK.key \

-out PK.crt -days 3650 -nodes -sha256

openssl req -new -x509 -newkey rsa:2048 -subj "/CN=$NAME KEK/" -keyout KEK.key \

-out KEK.crt -days 3650 -nodes -sha256

openssl req -new -x509 -newkey rsa:2048 -subj "/CN=$NAME DB/" -keyout DB.key \

-out DB.crt -days 3650 -nodes -sha256

openssl x509 -in PK.crt -out PK.cer -outform DER

openssl x509 -in KEK.crt -out KEK.cer -outform DER

openssl x509 -in DB.crt -out DB.cer -outform DER

GUID=$(python3 -c 'import uuid; print(str(uuid.uuid1()))')

echo $GUID > myGUID.txt

chmod 0600 *.key

Regarding the use of various digital certificates, you can refer to the following

materials:

o Managing EFI Boot Loaders for Linux: Controlling Secure Boot

o UEFI Specification

• Step 2: Build and install ovmfkeyenroll tool, Refer to source

• Step 3: Enroll key into OVMF.fd (aka TDVF.fd)

$ ovmfkeyenroll -fd <absolute-path-to-OVMF.fd> \

 -pk <pk-key-guid> <absolute-path-to>/PK.cer \

 -kek <kek-guid> <absolute-path-to>/KEK.cer \

 -db <db-key-guid> <absolute-path-to>/DB.cer

NOTE: Replace GUID with content of myGUID.txt generated above.

• Step 4: Install signing tool

o Build from source: sbsigntools

o Use RPM or DEB packages built by third-party. For example

$ wget https://download-

ib01.fedoraproject.org/pub/fedora/linux/releases/33/Everything/

x86_64/os/Packages/s/sbsigntools-0.9.4-2.fc33.x86_64.rpm

$ sudo rpm -ihvf sbsigntools-0.9.4-2.fc33.x86_64.rpm

• Step 5: Extract following components from the guest’s packages

o shimx64.efi

o mmx64.efi

o grubx64.efi

o fbx64.efi

o guest kernel binary file like vmlinuz

• Step 6: Sign Shim/Grub/Kernel with customized secure boot key

sbsign --key <path-to>/DB.key --cert <path-to>/DB.crt --output shimx64-signed.efi

shimx64.efi

http://www.rodsbooks.com/efi-bootloaders/controlling-sb.html
https://uefi.org/sites/default/files/resources/UEFI%20Spec%202.8B%20May%202020.pdf
https://github.com/intel/tdx-tools/tree/main/utils/ovmfkeyenroll
https://git.kernel.org/pub/scm/linux/kernel/git/jejb/sbsigntools.git

32 Document Number: 355388-001

sbsign --key <path-to>/DB.key --cert <path-to>/DB.crt --output mmx64-signed.efi

mmx64.efi

sbsign --key <path-to>/DB.key --cert <path-to>/DB.crt --output grubx64-signed.efi

grubx64.efi

sbsign --key <path-to>/DB.key --cert <path-to>/DB.crt --output fbx64-signed.efi

fbx64.efi

sbsign --key <path-to>/DB.key --cert <path-to>/DB.crt --output vmlinuz-signed

vmlinuz-

<guest-kernel-version>

NOTE: if the DB.key / DB.crt / file to be signed is not in the same directory,

you need to use a relative address.

 The get following files:

o shimx64-signed.efi

o mmx64-signed.efi

o grubx64-signed.efi

o fbx64-signed.efi

o vmlinuz-signed

• Step 7: Customize guest QCOW2 Image

o Create the directories for mounting ESP and rootfs partitions:

mkdir -p workspace/efi

mkdir -p workspace/rootfs

o Connect the QCOW2 image to /dev/nbdx:

sudo modprobe nbd max_part=8

sudo qemu-nbd --connect=/dev/nbd0 /path/of/td-guest.qcow2

o Mount ESP and rootfs

For RHEL 8.x:

sudo mount /dev/nbd0p2 workspace/efi

sudo mount /dev/nbd0p3 workspace/rootfs

For Ubuntu 22.04:

sudo mount /dev/nbd0p15 workspace/efi

sudo mount /dev/nbd0p1 workspace/rootfs

o

o Replace the files

For RHEL 8.x:

sudo cp /path/to/shimx64-signed.efi workspace/efi/EFI/BOOT/BOOTX64.EFI sudo cp

/path/to/shimx64-signed.efi workspace/efi/EFI/redhat/shimx64.efi sudo cp

/path/to/fbx64-signed.efi workspace/efi/EFI/BOOT/fbx64.efi sudo cp /path/to/mmx64-

signed.efi workspace/efi/EFI/BOOT/mmx64.efi sudo cp /path/to/mmx64-signed.efi

workspace/efi/EFI/redhat/mmx64.efi sudo cp /path/to/grubx64-signed.efi

workspace/efi/EFI/redhat/grubx64.efi # please pay attention to replace the correct

33 Document Number: 355388-001

version of the kernel sudo cp /path/to/vmlinuz-signed

workspace/rootfs/boot/vmlinuz-<kernel-version>

For Ubuntu 22.04:

sudo cp /path/to/shimx64-signed.efi workspace/efi/EFI/BOOT/BOOTX64.EFI sudo cp

/path/to/shimx64-signed.efi workspace/efi/EFI/ubuntu/shimx64.efi sudo cp

/path/to/fbx64-signed.efi workspace/efi/EFI/BOOT/fbx64.efi sudo cp /path/to/mmx64-

signed.efi workspace/efi/EFI/BOOT/mmx64.efi sudo cp /path/to/mmx64-signed.efi

workspace/efi/EFI/ubuntu/mmx64.efi sudo cp /path/to/grubx64-signed.efi

workspace/efi/EFI/ubuntu/grubx64.efi # please pay attention to replace the correct

version of the kernel sudo cp /path/to/vmlinuz-signed

workspace/rootfs/boot/vmlinuz-<kernel-version>

• Step 8: Unmount the ESP and rootfs partitions:

For RHEL 8.x:

sudo mount /dev/nbd0p2 workspace/efi

sudo mount /dev/nbd0p3 workspace/rootfs

For Ubuntu 22.04:

sudo mount /dev/nbd0p15 workspace/efi

sudo mount /dev/nbd0p1 workspace/rootfs

• Step 9: Disconnect the QCOW2 image

sudo qemu-nbd --disconnect /dev/nbd0

Then use the modified OVMF.sb.fd and tdx-guest.sb.qcow2 to start TDVM, and

verify whether the secure boot is enabled via dmesg log:

dmesg | grep -i "Secure Boot"

It expects to show "Secure Boot Enabled"

3.5 Full Disk Encryption

FDE (Full disk encryption) is a security method for protecting sensitive data by

encrypting all data on a disk partition. In non-confidential VM, FDE is using LUKS

(Linux Unified Key Setup) with user input disk encryption key. In confidential

environment like Intel TDX, to achieve zero trust, the encryption key should be got

from the replying party via remote attestation as Figure 14 Full Disk Encryption in

TDX Guest.

34 Document Number: 355388-001

Figure 14 Full Disk Encryption in TDX Guest

The FDE can be done in OVMF at pre-boot stage or initrd at Linux early boot stage

like Figure 14 Full Disk Encryption in TDX Guest, please refer the presentation

“Secure Bootloader for Confidential Computing”.

3.5.1 Workflow

This section introduces a solution/implementation integrating FDE with Intel TDX.

The workflow can be divided into 5 steps, including

1. Register key and keyid from the KBS.

2. Create an encrypted guest image with key retrieved in Step 1

3. Install FDE components in the encrypted guest image

4. Enroll necessary variables into OVMF

5. Launch a TDX guest based on the encrypted guest image and the OVMF

In Step 1, a pair of the key and the keyid should be registered in the KBS. Typically,

the key will be used to encrypt the guest image, and the keyid will be treated as an

identifier of the key in the KBS, which will be used in the decryption process. Given

that KBS providers have different designs for their keys and keyids, it is

https://lpc.events/event/16/contributions/1260/attachments/932/1950/Secure%20bootloader%20for%20Confidential%20Computing%20-%20LPC.pdf

35 Document Number: 355388-001

recommended to register the pair of the key and the keyid after consulting the KBS

provider.

The Step 2, Step 3 create a FDE-enabled guest image. The tdx-tools provides an

integrated script “tdx-tools/attestation/full-disk-encryption/tools/image/fde-

image.sh” to complete the task. The key and the keyid is retrieved in Step 1 and the

tdx-repo is built from the tdx-tools.

$ cd attestation/full-disk-encryption/tools/image

$./fde-image.sh -k ${key} -i ${keyid} -d ${tdx-repo}

In Step 4, several variables are enrolled in the OVMF. These variables, such as keyid,

are retrieved by the fde-agent from the OVMF to help remote attestation and

retrieve the key from the KBS. For example, assume that the keyid is saved in a json

file. The python script “tdx-tools/attestation/full-disk-

encryption/tools/image/enroll_vars.py” helps enroll the data.

$ cd attestation/full-disk-encryption/tools/image

$ cat userdata.txt

{

 "keyid":"sth"

}

$ NAME="KBSUserData"

$ GUID="732284dd-70c4-472a-aa45-1ffda02caf74"

$ DATA="userdata.txt"

$ python3 tools/image/enroll_vars.py -i OVMF.fd -o OVMF.fd -n $NAME -g $GUID -d

$DATA

In Step 5, a TDX guest is launched from the encrypted guest image. The script “tdx-

tools/start-qemu.sh” can launch it.

$ OVMF_PATH=/path/to/OVMF

$ IMAGE_PATH=/path/to/image

$ start-qemu.sh \

 -b grub \

 -q tdvmcall \

 -o ${OVMF_PATH} \

 -i ${IMAGE_PATH}

The detail steps are described in tdx-tools/doc/full_disk_encryption.md.

3.5.2 Prepare Encryption Image

It is complicated to create an encrypted guest image in Step 2 and Step 3. In Step 2,

an empty image is created firstly. The image will be partitioned into several volumes

36 Document Number: 355388-001

and the root filesystem partition is encrypted with the key in actual. Then the rootfs

is copy to the root filesystem partition.

In the Step 3, a binary named by the fde-agent and its related configuration need to

be installed into the initrd. Besides, a parameter “cryptdevice=${root-enc}” that

specifies the encrypted root partition, is appended in the kernel cmdline to enable

the FDE.

More details are described in the tdx-tools/ attestation/full-disk-

encryption/README.md.

37 Document Number: 355388-001

4 Measurement & Attestation

4.1 TEE, TCB, Quote

Typically, a TEE can provide evidence or measurements of its origin and current

state so that the evidence can be verified by another party and, programmatically or

manually, it can decide whether to trust code running in the TEE. It is typically

important that such evidence is signed by hardware that can be vouched for by a

manufacturer, so that the party checking the evidence has strong assurances that it

was not generated by malware or other unauthorized parties. [3] The remote party

allows sending the secret or key to the TEE environment after successfully verifying

the evidence.

Figure 15 Measurement and Attestation for TEE

The trusted computing base (TCB) refers to all of a system's hardware, firmware,

and software components that provide a secure environment. For a confidential

VM, it includes hardware information such as CPU, SEAM firmware, and guest

components such as OVMF, bootloader (shim/grub), and kernel. Theother host

software such as QEMU VMM and Orchestrator Libvirt are out of TCB.

The hash-chained measurement on TCB will be extended to some secure registers

such as TPM PCR (platform configuration register). The values from several secure

registers construct to a report and are finally signed to be a quote by an attestation

key.

38 Document Number: 355388-001

4.2 TDX Measurement

4.2.1 TD Report

Figure 6 Intel TDX Measurement

The API TDG.MR.REPORT in the Intel TDX SEAM module creates a

TDREPORT_STRUCT structure3 containing the TD measurements, initial

configuration of the TD that was locked at finalization (TDH.MR.FINALIZE), the

Intel TDX module measurements, and the REPORTDATA value [1]:

• The measurement of SEAM module is recorded in the field MRSEAM.

• The measurement of TDVF/OVMF is record in the field MRTD.

• The measurement of TD-Hob, ACPI is record in the RTMR [0].

• The measurement of bootloaders like grub/shim is recorded in the field

RTMR [1].

• The measurement of kernel and initrd is recorded in the field RTMR [2].

NOTE: for direct boot, there is no bootloader, so the measurement of kernel is

recorded in the field RTMR [1].

4.2.2 MRTD and RTMR

There are two types of measurement registers – MRTD and RTMR for Intel TDX:

3 https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Tdx.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Tdx.h

39 Document Number: 355388-001

• MRTD (TD measurement register) provides static measurement of TD build

process and the initial contents of TD)

• RTMR (runtime measurement register) is an array of general-purpose

measurement registers to Intel TDX software to enable measuring additional

logic and data loaded into the TD at runtime. As designed, RTMR can be used

by the guest TD software to measure boot process.

There are 4 RTMR registers:

Table 5 RTMR Definitions

Register Content Measured by
RTMR [0] Static configuration (CFV); Dynamic

Configuration (TD HOB, ACPI)

TDVF

RTMR [1] PCI option ROM, OS loader, OS kernel,

initrd, GPT, boot variable, boot

parameter

TDVF

RTMR [2] TD OS App OS applications
RTMR [3] Reserved

4.2.3 Pre-Boot Measurement

The pre-boot environment before the kernel includes the TDVF/OVMF phase of the

bootloader phase (shim and grub). The whole boot chain will be measured into

RTMR via EFI_CC_MEASUREMENT_PROTOCOL4.

4 https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/CcMeasurement.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/CcMeasurement.h

40 Document Number: 355388-001

Figure 16 TD Measurement Process

Similar to TCG event log [4], EFI_CC_MEASUREMENT_PROTOCOL logs the

events into ACPI table CCEL 5 and the measurement hash is extended to the

corresponding RTMR register. The event logs in CCEL table can be replayed within

TD guest to verify the RTMR value.

4.2.4 PyTdxMeasure Tool

PyTdxMeasure intdx-tools provides a Python library and utilities for TD

measurement that can be used by tenant workload, attestation agent, or validation

tools:

• Get RTMR value from TDREPORT via Linux attestation driver.

• Get the full TD event log from CCEL ACPI table.

• Verify value of RTMR by replaying event logs.

Here are step by step instructions to use PyTdxMeasure:

Intel TDX measurement depends on Intel TDX grub2 and shim. Make sure Linux

Stack for Intel TDX grub2 and shim are installed in the guest VM image before

running measurement tool.

• Install

$ python3 -m pip install pytdxmeasure

5 https://uefi.org/specs/ACPI/6.5/05_ACPI_Software_Programming_Model.html#cc-event-log-

acpi-table

https://github.com/intel/tdx-tools/tree/main/attestation/pytdxmeasure
https://uefi.org/specs/ACPI/6.5/05_ACPI_Software_Programming_Model.html#cc-event-log-acpi-table
https://uefi.org/specs/ACPI/6.5/05_ACPI_Software_Programming_Model.html#cc-event-log-acpi-table

41 Document Number: 355388-001

• Run

o Get Event Log.

$./tdx_eventlogs

Refer to the example outputs at measurement log for grub

boot and measurement log for direct boot

o Get TDREPORT, which includes value of RTMR.

$./tdx_tdreport

o Verify RTMR.

$./tdx_verify_rtmr

The tool will compare RTMR value from TDREPORT and RTMR value

replayed via event log. The two values are expected to be identical,

which means the measured contents are not tampered with.

4.2.5 Linux Runtime Measurement

Integrity Measurement Architecture (IMA) is the Linux kernel integrity subsystem

to detect if files have been accidentally or maliciously altered, both remotely and

locally. Currently IMA maintains the runtime measurement list if anchored in a

hardware Trusted Platform Module (TPM) to make the measured hashes of files

immutable. It also supports the appraise mechanism to enforce local file integrity by

appraising the measurement against a "good" value stored as an extended attribute.

Extra kernel changes have been introduced to enable IMA in TD guest and maintain

the runtime measurement list inside RTMR [2].

Figure 17 Enable IMA extend hash to RTMR

https://github.com/intel/tdx-tools/blob/main/doc/measure_log_grub_boot.txt
https://github.com/intel/tdx-tools/blob/main/doc/measure_log_grub_boot.txt
https://github.com/intel/tdx-tools/blob/main/doc/measure_log_direct_boot.txt

42 Document Number: 355388-001

Different configurations (kernel command line) can be applied to define the scope

to be measured. Available options include:

• “ima_hash=sha384”: Enable measurement against boot aggregates, which

covers firmware, boot loader, kernel command line and etc.

• “ima_hash=sha384 ima_policy=critical_data”: Enable measurements

against boot aggregates and kernel integrity critical data.

• “ima_hash=sha384 ima_policy=tcb”: Enable measurements against all

programs executed, files mmap’d for execution, and all files opened with the

read mode bit set by either the effective uid (euid=0) or uid=0.

Custom policies can be set by user to define the scope to be measured. For more

details, please refer to the IMA documentations.

Here are sample instructions to enable and validate this feature in TD guest:

• Sample configuration to start up the TD VM

$./start-qemu.sh -k <path-to-kernel> -i <path-to-image> -e

"ima_hash=sha384 ima_policy=critical_data"

• Run

o Get IMA measurement count.

$ cat /sys/kernel/security/integrity/ima/runtime_measurements_count

o Get full IMA measurement list stored inside kernel securityfs.

$ cat /sys/kernel/security/integrity/ima/ascii_runtime_measurements

o Verify RTMR within TDREPORT by using the PyTdxMeasure Tool.

$ cd tdx-tools/attestation/pytdxmeasure

$./tdx_tdreport

User can find the measurements extended in RTMR [3] inside the

TDREPORT. TPM PCR Calculator (available in Microsoft Store) can be

used to replay the result with the ASCII measurements that fetched

inside kernel security FS.

4.3 Attestation

43 Document Number: 355388-001

4.3.1 Overview

Intel TDX remote attestation demonstrates applications that are running securely

on a given trusted environment (TD guest) to a relying party. This increases the

confidence of a remote party that the software is running inside a TD on a genuine

Intel TDX system at a given security level, which is also referenced as the TCB

version. The TDX attestation reuses Intel SGX infrastructure to provide attestation

to a given measurement. It is based on TD Quote, which is the signed TD Report in

TD Quoting Enclave [1].

Figure 18 Intel TDX Attestation Flow

• Step 1: A TD receives an attestation request from an off-platform challenger.

• Step 2: the TD then requests an Intel TDX module to provide the TD a report

• Step 3,4: The Intel TDX module invokes the SEAMREPORT instruction to

request the CPU generate a Report structure, including the TD-provided

data, the measurements of the TD as maintained by the module, and SVNs

(security version number) of all elements in the TDX TCB.

• Step 5, 6: The TD requests the VMM converts the report into a Quote for

remote attestation.

• Step 7, 8, 9: The TD-quoting enclave then verifies the MAC on the report

using EVERIFYREPORT2 and converts the report, if verified, into a Quote by

signing the report using the TD’s asymmetric-attestation key.

• Step 10: The Quote is returned to the challenger.

44 Document Number: 355388-001

• Step 11, 12: The challenger uses an attestation-verification service to perform

quote verification.

Linux Stack for Intel TDX provides end-to-end Intel TDX attestation capability by

integrating the Intel® Software Guard Extensions Data Center Attestation

Primitives6 (Intel® SGX DCAP). In this section, it will introduce how to run Intel TDX

remote attestation.

4.3.2 Set Up DCAP Repo

Before running the steps, download DCAP from https://download.01.org/intel-

sgx/latest/dcap-latest/linux/ based on the OS distro.

This example shows how to set up the package repository on an Intel TDX host with

either Ubuntu 22.04 or RHEL 8.x.

Get the latest instruction from https://download.01.org/intel-sgx/latest/dcap-

latest/linux/docs/ or

https://github.com/intel/SGXDataCenterAttestationPrimitives

1. Ubuntu 22.04

$ tar zxvf <sgx_debian_local_repo file name>.tar.gz

$ mv sgx_debian_local_repo /srv/sgx_debian_local_repo

 # Set up local Debian repository

$ cat <<EOF >> /etc/apt/sources.list.d/sgx_debian_local_repo.list

deb [trusted=yes arch=amd64] file:/srv/sgx_debian_local_repo jammy main

EOF

$ sudo apt update

$ sudo apt install -y gcc make tar

 # Install latest nodejs, version 18 shown below is an example

$ curl -sL https://deb.nodesource.com/setup_18.x -o nodesource_setup.sh

$ sudo bash nodesource_setup.sh sudo apt-get install -y nodejs

2. RHEL 8.x

$ sudo su cd /srv/

$ tar zxvf <sgx_rpm_local_repo file name>.tar.gz

$ mv sgx_rpm_local_repo /srv/sgx_rpm_local_repo

Set up local RPM repository

$ cat <<EOF >> /etc/yum.repos.d/tdx-attestation.repo

[tdx-attestation-local]

name=tdx-attestation-local

baseurl=file:///srv/sgx_rpm_local_repo

6 https://github.com/intel/SGXDataCenterAttestationPrimitives

https://download.01.org/intel-sgx/latest/dcap-latest/linux/
https://download.01.org/intel-sgx/latest/dcap-latest/linux/
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives

45 Document Number: 355388-001

enabled=1

gpgcheck=0

module_hotfixes=true

EOF

$ sudo dnf check-update

$ sudo dnf install -y gcc make tar sudo dnf module reset nodejs

 # Install latest nodejs, version 18 shown below is an example

$ sudo dnf module install nodejs:18

4.3.3 Set Up PCCS

Intel provides a reference provisioning certification caching service (PCCS) to

enable Intel SGX attestation runtime workloads without a dependence on the Intel

services. PCCS is a reference caching server to allow a CSP or a data center to

cache PCK Certificates and other endorsements from the Intel® Software Guard

Extensions Provisioning Certification Service (Intel® SGX Provisioning Certification

Service) in their local network. You’ll need to set up PCCS for remote attestation

purpose.

Figure 9 Set up PCCS

1. Obtain a provisioning API key for PCCS RESTful API request

46 Document Number: 355388-001

Goto https://api.portal.trustedservices.intel.com/provisioning-certification

and click 'Subscribe'. An API key will be generated. Be sure to keep the API

key for future use.

2. Install package sgx-dcap-pccs as following steps:

o Ubuntu 22.04

$ sudo apt update

$ sudo apt install -y --no-install-recommends sgx-dcap-pccs

$ cd /opt/intel/sgx-dcap-pccs

$ sudo -u pccs ./install.sh

o RHEL 8.x

$ sudo dnf install -y sgx-dcap-pccs

$ cd /opt/intel/sgx-dcap-pccs

$ sudo -u pccs ./install.sh

During the installation, when prompted for the API key and password, use the

API key from the previous step. Other steps can accept default value when

prompted.

After the installation is completes successfully, make sure the PCCS is

configured to use v4 API. Check “uri” in configuration file /opt/intel/sgx-

dcap-pccs/config/default.json:

"uri": "https://api.trustedservices.intel.com/sgx/certification/v4/"

3. Restart PCCS

$ sudo systemctl restart pccs

Note: Please Delete the previously created database before restarting the

PCCS service.

$ sudo rm -rf /opt/intel/sgx-dcap-pccs/pckcache.db

$ sudo systemctl restart pccs

$ sudo systemctl status pccs

4. Check PCCS service log

- You can check PCCS service log by running the following command.

$ journalctl -u pccs -f

https://api.portal.trustedservices.intel.com/provisioning-certification

47 Document Number: 355388-001

4.3.4 Set Up DCAP on Host

This section introduces the installation of Quote Generation Service from DCAP

and performs Intel SGX platform registration.

Figure 19 Set up DCAP software on the TDX host

1. Install the Intel® Software Guard Extensions SDK for Linux* OS (Intel® SGX

SDK for Linux* OS)to the folder /opt/intel/

o Ubuntu 22.04 host

$ sudo ./sgx_linux_x64_sdk_2.18.100.4-u2204.bin

o RHEL 8.x host

$ sudo ./sgx_linux_x64_sdk_2.18.100.4.bin

2. Install QGS and QPL packages on the host

o Ubuntu 22.04 host

$ sudo apt install -y --no-install-recommends tdx-qgs libsgx-dcap-default-qpl

o RHEL 8.x host

$ sudo dnf install -y tdx-qgs libsgx-dcap-default-qpl

Modify the configuration file: /etc/sgx_default_qcnl.conf and use the

following content.

// PCCS server address

48 Document Number: 355388-001

"pccs_url": "https://<PCCS_IP>:8081/sgx/certification/v4/",

// To accept insecure HTTPS certificate, set this option to false

"use_secure_cert": false,

3. Install PCKIDRetrievalTool

o Ubuntu 22.04 host

$ sudo apt install -y sgx-pck-id-retrieval-tool

o For RHEL 8.* host, run below commands:

$ sudo dnf install -y sgx-pck-id-retrieval-tool

NOTE: the reported version of PCKIDRetrievalTool may be different.

4. Modify the configuration file /opt/intel/sgx-pck-id-retrieval-

toolnetwork_setting.conf with the following content.

PCCS_URL=https://<PCCS_IP>:8081/sgx/certification/v4/platforms

if using localhost as pccs

PCCS_URL=https://localhost:8081/sgx/certification/v4/platforms

USE_SECURE_CERT=FALSE

5. Do SGX platform Registration via PCKIDRetrievalTool

$ sudo sh -c “./PCKIDRetrievalTool”

The expected response is as follows. The reported version may be different.

Intel® Software Guard Extensions PCK Cert ID Retrieval Tool Version 1.14.100.3

Registration status has been set to completed status. pckid_retrieval.csv has been

generated successfully!

NOTE: If it returns a message like "Platform Manifest not available", you may need to

perform SGX Factory Reset in BIOS and run PCKIDRetrievalTool again.

4.3.5 Generate Quote

This section introduces the quote generation steps including launching TDX with

quote generation support and generating a quote within the TDX guest.

49 Document Number: 355388-001

Figure 11 Quote Generation

4.3.5.1 Launch TD with Quote Generation Support

There are two ways to run quote generation:

50 Document Number: 355388-001

Figure 20 Approaches to Generate Intel TDX Quote

• Approach 1: Get quote via vsock call from the user space within TD guest to

QGS directly

o If launched via QEMU, add the following parameter

-device vhost-vsock-pci,guest-cid=3

o If launched via libvirt, add following fields in XML

<vsock model='virtio'>

<cid auto='yes' address='3'/>

<address type='pci' domain='0x0000' bus='0x05' slot='0x00' function='0x0'/>

</vsock>

• Approach 2: Get quote via TDG.VP.VMCALL.GETQUOTE

o If launched via QEMU, add “quote-generation-service=vsock:2:4050”

in parameter -object

-object tdx-guest,sept-ve-disable,id=tdx,quote-generation-service=vsock:2:4050

o If launched via libvirt, add following fields in XML

<launchSecurity type='tdx'>

......

<Quote-Generation-Service>vsock:2:4050</Quote-Generation-Service>

</launchSecurity>

• Within TD guest, create file at /etc/tdx-attest.conf with the following content:

port=4050

4.3.5.2 Generate Quote within Intel TDX Guest

1. Set up the package repository in TD guest same as 4.3.2Set Up DCAP

- Install libtdx-attest, libtdx-attest-dev

o For Ubuntu 22.04

$ sudo apt install -y libtdx-attest libtdx-attest-dev

o For RHEL 8.x

$ sudo dnf install -y libtdx-attest libtdx-attest-devel

2. Build quote generation sample

$ cd /opt/intel/tdx-quote-generation-sample/

$ make clean

$ make

3. Generate quote and quote.dat will be generated.

$./test_tdx_attest

51 Document Number: 355388-001

4.3.6 Verify Quote

Figure 21 Verify Quote

After Quote is generated, you can use sample Quote verification application to

verify the Quote.

1. Install the Quote verification libraries:

o For Ubuntu 22.04

$ sudo apt install -y libsgx-dcap-quote-verify

$ sudo apt install -y libsgx-dcap-quote-verify-dev

$ sudo apt install -y libsgx-ae-qve

o For RHEL 8.x

$ sudo dnf install -y libsgx-dcap-quote-verify

$ sudo dnf install -y libsgx-dcap-quote-verify-devel

$ sudo dnf install -y libsgx-ae-qve

2. Copy quote.dat from TDVM

Use scp or virt_copy_out to copy the quote from TDVM

$ virt-copy-out -a <image_name> <directory_in_TDVM_contains_quote.dat>

<a_host_directory>

52 Document Number: 355388-001

NOTE: Terminate TDVM before using virt_copy_out to copy out the quote.dat.

3. Build and run sample application verifying the generated quote located at

<PATH>:

$ git clone https://github.com/intel/SGXDataCenterAttestationPrimitives.git

$ git checkout 6f77ba8f153e7cecd8da3cf65a0f1bb0cdc1f638

$ cd SGXDataCenterAttestationPrimitives/SampleCode/TDQuoteVerificationSample

$ make DEBUG=1

$./app -quote <PATH>/quote.dat

4.4 Use Intel Project Amber

Intel Project Amber is Intel’s first step in creating a new multi-cloud, multi-TEE

service for third-party attestation and will drive forward adoption of confidential

computing for the broader industry. Please refer Project Amber for more details.

This section introduces how to install Amber client to access services.

4.4.1 Overview

Intel® Project Amber Go Client Library7 is a beta version of Go Library for integrating with

Intel® Project Amber V1 API. A beta version Intel® Project Amber Go TDX CLI8 (amber-cli)

is provided in this library repository. This amber-cli provides basic functionality like create

RSA key pair, get an Amber signed token, get a TD Quote with nonce and user data, and

decrypt an encrypted blob. This section will introduce the installation and example usages.

4.4.2 Installation

A build script is provided by tdx-tools, please refer to chapter 2.4.1 Build Packages to

build packages and chapter 2.5.1 Install Packages to set up the repository.

NOTE: This package is only for TD guests, and please make sure the attestation

environment has been set up following previous steps.

• Install the Amber Client package and its dependency

o For Ubuntu 22.04

$ sudo apt install -y libtdx-attest amber-cli

o For RHEL 8.x

$ sudo dnf install libtdx-attest intel-mvp-amber-cli

7 https://github.com/intel/amber-client
8 https://github.com/intel/amber-client/tree/main/amber-cli-tdx

https://www.intel.com/content/www/us/en/security/project-amber.html

53 Document Number: 355388-001

4.4.3 Example Usage

To get the TD Quote, a nonce and user data can be used as input parameter.

• Get a TD Quote

$ amber-cli quote

• Get a TD Quote with nonce

$ amber-cli quote --nonce <base64 encoded nonce>

• Get a TD Quote with nonce and user data

$ amber-cli quote --nonce <base64 encoded nonce> --user-data <base64 encoded

userdata>

To get an Amber signed token, the AMBER _URL and AMBER_API_KEY is needed,

please contact Intel® Project Amber team to get them.

• Export environment variables

$ export AMBER_URL=<amber api url>

$ export AMBER_API_KEY=<amber attestation api key>

• Create RSA key pair

$ amber-cli create-key-pair --key-path <private key file path>

• Get an Amber signed token

$ amber-cli token

• Get an Amber signed token with user data and policy-ids

$ amber-cli token --user-data <base64 encoded userdata> --policy-ids <comma

separated amber attestation policy ids>

The amber-cli provides a feature to decrypt an encrypted blob, the encrypted blob

should be encoded by base64.

$ amber-cli decrypt --key-path <private key file path> --in <base64 encoded

encrypted blob> --out <output file path>

54 Document Number: 355388-001

55 Document Number: 355388-001

5 Validation

5.1 Overview

Linux Stack for Intel TDX provides end to end TDX capability across diverse

infrastructures like hypervisor and Kubernetes within hypervisor.

Figure 22 Intel TDX E2E Full Stack Validation

The end-to-end validation of Linux Stack for Intel TDX covers the scopes in Table 6

Linux Stack for Intel TDX Validations:

Table 6 Linux Stack for Intel TDX Validations

Validation Scope Description

System Status IaaS Verify the hardware and BIOS status like Intel SGX, Intel

TME-MK, Intel TDX, Intel TDX SEAM module, etc.

IaaS Host IaaS Verify the functionality of IaaS components like

platform registration, QGS service, libvirt and QEMU

configurations

56 Document Number: 355388-001

VM Lifecycle PaaS Diverse boot types for TD VM guest, pre-boot

environment measurement, etc.

VM Environment PaaS CPUID, TSC, VirtIO devices, etc.

Workload PaaS Container workloads run in TD guest or the Kubernetes

cluster within TD guest

To support complex validation and automation scenarios, the pyCloudStack

framework is designed to support the scopes mentioned in Table 6 Linux Stack for

Intel TDX Validations.

5.2 PyCloudStack

5.2.1 Overview

PyCloudStack abstracts the common objects, operations, and resources for diverse

cloud architectures like hypervisor stack based on libvirt or direct QEMU

commands, container stack orchestrated by Kubernetes or direct docker

commands, and running on local or remote IaaS hosts. It can be used to create

advance deployment CI/CD operator via Python plugin for ansible, end-to-end

validation framework with customized components and configurations in a full

vertical stack.

The overall architecture diagram is illustrated as below:

Figure 23 PyCloudStack Framework

57 Document Number: 355388-001

The framework supports scenarios for VM management: via QEMU direct or via

libvirt:

Figure 24 Scenarios for VMM and Libvirt

• Scenarios 1: QEMU manage VM directly via QMP (QEMU monitor protocol)9

• Scenarios 2: Libvirt manage VM via VirtAPI10

The framework abstracts the common operations for host, virtual machine,

kubernetes, and container:

Figure 25 Abstract Common Operations for Cloud Stack

 More specifics for VM use case:

• VMGuestFactory is designed to communicate and handle VM configurations

with test cases. For example, you can specify the size of a virtual machine by

indicating how many CPUs and how much memory are required.

“VMGuestFactory” usually works with “VMParam” and “VMImage”.

9 https://wiki.qemu.org/Documentation/QMP
10 https://github.com/virtapi/virtapi

https://wiki.qemu.org/Documentation/QMP
https://github.com/virtapi/virtapi

58 Document Number: 355388-001

o “VMParam” operator provides predefined VM parameters for typical

configuration. It also provides the capability for you to customize VM

parameters.

o “VMImage” is designed to manage guest images for guest VMs so that

multiple guest distros can be supported. You can customize guest

images based on test requirement.

• “VMM” operators are responsible for VM lifecycle management using given

configuration. VMM operator includes “VMMLibvirt” and “VMMQEMU”.

“VMMLibvirt” needs to work together with “virtXML” operator.

• “virtXML” is responsible for Libvirt XML template management. It helps you

to customize XML template for VMs.

For Kubernetes use case:

• “cluster” operator is designed to implement Kubernetes object management.

“Registry” is used to manage container images. With them working together,

you can create Kubernetes objects, such as deployment and service. Then

cloud workload can run in a Kubernetes cluster.

There are also some other common operators for “Device management” at the

bottom of the diagram.

• “CMDRunner” is designed to run commands on local host or remote targets

via ssh connection.

• “DUT” is designed to manage devices under test, such as CPU frequency of

host.

• “MSR” operator provides methods to read and write register.

Finally, with PyCloudStack framework, functionality, stability, performance, and

interoperability tests are well supported.

5.2.2 Installation

PyCloudStack has been uploaded to PyPI .

Install PyCloudStack via the following command.

$ pip3 install pycloudstack

https://pypi.org/project/pycloudstack/

59 Document Number: 355388-001

5.2.3 Example

Most of automation tests in the tdx-tools repo are based on the PyCloudStack

framework. Here are several examples:

• Example 1: Operate VM via Libvirt

from pycloudstack.vmguest import VMGuestFactory

from pycloudstack.vmparam import VM_STATE_SHUTDOWN, VM_STATE_RUNNING,

VM_STATE_PAUSE, VM_TYPE_TD

vm_factory = VMGuestFactory(vm_image, vm_kernel)

LOG.info("Create TD guest")

inst = vm_factory.new_vm(VM_TYPE_TD, auto_start=True)

inst.wait_for_ssh_ready()

LOG.info("Suspend TD guest")

inst.suspend()

ret = inst.wait_for_state(VM_STATE_PAUSE)

assert ret, "Suspend timeout"

LOG.info("Resume TD guest")

inst.resume()

ret = inst.wait_for_state(VM_STATE_RUNNING)

assert ret, "Resume timeout"

• Example 2: Customize the VM

import logging

import psutil

Get host total cores and sockets, assign 80% vcpu and 80% memory to vm

total_core = psutil.cpu_count()

cores = int(total_core * 0.4)

memsize = int(psutil.virtual_memory().available / 1000 * 0.8)

vmspec = VMSpec(sockets=2, cores=cores, memsize=memsize)

inst = vm_factory.new_vm(VM_TYPE_TD, vmspec=vmspec, auto_start=True)

• Example 3: Run TensorFlow AI microbench boosted by AMX within TDVM

LOG.info("Create TD guest to test tensorflow")

td_inst = vm_factory.new_vm(vm_type, vmspec=VMSpec.model_large())

customize the VM image

td_inst.image.inject_root_ssh_key(vm_ssh_pubkey)

create and start VM instance

td_inst.create()

td_inst.start()

td_inst.wait_for_ssh_ready()

It may take up to 30 minutes to complete the test

LOG.info("====== The test running may take up to 30 minutes! ======")

command = '''

60 Document Number: 355388-001

cd /root/models-2.5.0 && DNNL_MAX_CPU_ISA=AVX512_CORE_AMX OMP_NUM_THREADS=16

KMP_AFFINITY=granularity=fine,verbose,compact

python3 ./benchmarks/launch_benchmark.py

 --model-name dien --mode inference --precision bfloat16

 --framework tensorflow --data-location /root/dien

 --exact-max-length=100 --num-inter-threads 1 --num-intra-threads 16

 --batch-size 8 --graph-type=static

 --in-graph /root/dien_fp32_static_rnn_graph.pb

 --benchmark-only --verbose --

 '''

runner = td_inst.ssh_run(command.split(), vm_ssh_key)

assert runner.retcode == 0, "Failed to execute remote command"

throughput should not be 0

patt_ok = r'Approximate accelerator performance in recommendations/second is

(\d*.\d*)'

match = re.search(patt_ok, '\n'.join(runner.stdout))

assert match is not None

images_per_s = match.group(1)

LOG.info('Throughput: %s recommendations/s', images_per_s)

assert float(images_per_s) > 0

5.3 Intel TDX Tests

Intel TDX tests from tdx-tools are designed to cover basic acceptance tests,

functionality, workload, and environment tests for Intel TDX. It also provides

interoperability tests by using AMX in Intel TDX guest VM.

NOTE: The tests implementation depends on PyCloudStack framework. The tests

execution must be on an Intel TDX-enabled Linux platform with an Intel TDX-

enabled kernel, QEMU, Libvirt installed.

NOTE: Please make sure to use the correct tag of tdx-tools which matches the

release version so that the tests can work with different Intel TDX kernel and Intel

TDX QEMU versions.

5.3.1 Overview

The tests can be classified into 4 categories – Lifecycle, Environment, Workload and

Interoperability. Please check tests list in below table. Some of the tests requires to

customize guest image before running tests. Please refer to corresponding item in

“Chapter 5.3.2 Prerequisite”

Table 7 TDX Stack Tests

Test case Category Description Prerequisite

61 Document Number: 355388-001

test_tdvm_lifecycle

.py

Lifecycle Use virsh to

create/start/shutdown/suspend a

VM guest including non-

confidential VM and TD VM.

N/A

test_multiple_tdvm

s.py

Lifecycle Co-existence of multiple TD guest

VMs

N/A

test_vm_coexists.p

y

Lifecycle Check TDVM and legacy VM co-

existence

N/A

test_max_cpu.py Lifecycle Check TDVM boot with 80% host

CPU utilization

N/A

test_vm_shutdown

_mode.py

Lifecycle Check TDVM shutdown mode via

Libvirt

N/A

test_acpi_reboot.p

y

Lifecycle Check ACPI reboot in TDVM N/A

test_acpi_shutdow

n.py

Lifecycle Check ACPI shutdown in TDVM N/A

test_vm_shutdown

_qga.py

Lifecycle Check VM shutdown via QEMU

guest agent

#1

test_vm_reboot_qg

a.py

Lifecycle Check VM reboot via QEMU guest

agent

#1

test_tdvm_tsc.py Environme

nt

Check TDX guest TSC clock

source and frequency

N/A

test_tdx_guest_sta

tus.py

Environme

nt

Check TDX initialization in TD

guest

N/A

test_tdx_host_stat

us.py

Environme

nt

Check Intel TME-MK, Intel TDX,

Intel SGX, SEAMRR in host

N/A

test_tdvm_network

.py

Environme

nt

Check network functions in TDVM N/A

test_workload_redi

s.py

Workload Redis workload running in TDVM #2, #3

test_workload_ngin

x.py

Workload Nginx workload running in TDVM #2, #3

test_amx_docker_t

f.py

Interopera

bility

Run AI model mobilenetv1_bf16

with AMX acceleration in docker

container on TDVM

#2, #4

test_amx_vm_tf.py Interopera

bility

Run AI model dien_bf16 with AMX

acceleration in TDVM

#5

A full example for a workload test case – redis is as follows.

def test_tdvm_redis(vm_factory, vm_ssh_pubkey, vm_ssh_key):

 """

 Run redis benchmark test

 Ref: https://redis.io/topics/benchmarks

62 Document Number: 355388-001

 Use official docker images redis:latest

 Test Steps:

 1. start VM

 2. Run remote command "systemctl status docker" to check docker service's

status

 3. Run remote command "systemctl start docker" to force start docker service

 4. Run remote command "/root/bat-script/redis-bench.sh"

 to launch redis container and benchmark testing

 """

 LOG.info("Create TD guest to run redis benchmark")

 td_inst = vm_factory.new_vm(VM_TYPE_TD)

 # customize the VM image

 td_inst.image.inject_root_ssh_key(vm_ssh_pubkey)

 td_inst.image.copy_in(

 os.path.join(CURR_DIR, "redis-bench.sh"), "/root/")

 # create and start VM instance

 td_inst.create()

 td_inst.start()

 td_inst.wait_for_ssh_ready()

 command_list = [

 'systemctl start docker',

 '/root/redis-bench.sh -t get,set'

]

 for cmd in command_list:

 LOG.debug(cmd)

 runner = td_inst.ssh_run(cmd.split(), vm_ssh_key)

 assert runner.retcode == 0, "Failed to execute remote command"

5.3.2 Prerequisite

Guest image is required for all the tests. Please refer to “Chapter 2.4.2 Create Guest

Image” to generate basic guest image. Additional prerequisite is required for some

of the tests. Please check prerequisite of each test and take corresponding action as

follows. Please start a VM using your guest image and go through corresponding

items required by tests. Then shutdown the VM and use the guest image for further

tests.

1. Install Qemu guest agent in guest image.

For Ubuntu 22.04 guest image:

$ sudo apt-get install qemu-guest-agent

For RHEL 8.x guest image:

$ sudo dnf install qemu-guest-agent

63 Document Number: 355388-001

2. Install docker in guest image.

For Ubuntu 22.04 guest image:

$ sudo apt-get install docker.io

For RHEL 8.x guest image:

$ sudo dnf install docker

3. For workload tests, make sure the latest docker image is in guest image. It

needs docker image “nginx:latest” and “redis:latest”.

$ docker pull nginx:latest

$ docker pull redis:latest

4. Install intel-tensorflow-avx512 in guest image. Download DIEN_bf16 model

and put it under /root in guest image.

For ubuntu 22.04 guest image:

$ pip3 install intel-tensorflow-avx512==2.11.0

$ wget https://storage.googleapis.com/intel-optimized-

tensorflow/models/v2_5_0/dien_bf16_pretrained_opt_model.pb

For RHEL 8.x guest image, please upgrade python to python 3.8 first and

then run the following command in guest image:

$ pip3 install intel-tensorflow-avx512==2.11.0

$ wget https://storage.googleapis.com/intel-optimized-

tensorflow/models/v2_5_0/dien_bf16_pretrained_opt_model.pb

5.3.3 Setup Environment

1. Install required packages:

If your host distro is RHEL 8.x:

$ sudo dnf install python3-virtualenv python3-libvirt libguestfs-devel libvirt-

devel python3-devel gcc gcc-c++

If your host distro is Ubuntu 22.04:

$ sudo apt install python3-virtualenv python3-libvirt libguestfs-dev libvirt-dev

python3-dev net-tools

64 Document Number: 355388-001

2. Make sure libvirt service is started. If not, start libvirt service. If your host is

Ubuntu 22.04 and AppArmor is enabled, please set security_driver =

"none" in /etc/libvirt/qemu.conf and restart the libvirt service.

$ sudo systemctl status libvirtd

$ sudo systemctl start libvirtd

3. Setup environment. Run below command to setup the python environment.

$ cd tdx-tools/tests/

$ source setupenv.sh

4. Generate artifacts.yaml

Please refer to tdx-tools/tests/artifacts.yaml.template and generate tdx-

tools/tests/artifacts.yaml. Update source and sha256sum to indicate the

location of guest image and guest kernel.

5. Generate keys

Generate a pair of keys that will be used in test running.

$ ssh-keygen

The keys should be named "vm_ssh_test_key" and "vm_ssh_test_key.pub"

and located under tdx-tools/tests/tests/

5.3.4 Run Tests

1. Run all tests:

$ sudo ./run.sh -s all

NOTE: “sudo” is required since some tests need root permission. And the user

needs to be added into libvirt group. e.g., for user "root", please run `sudo usermod -

aG libvirt root`.

2. Run some case modules:
$./run.sh -c <test_module1> -c <test_module2>

For example, run whole test module “test_tdvm_lifecycle.py”

$./run.sh -c tests/test_tdvm_lifecycle.py

3. Run specific test cases:
$./run.sh -c <test_module1> -c <test_module1>::<test_name>

65 Document Number: 355388-001

For example, run test case “test_tdvm_lifecycle_virsh_start_shutdown” in

“tests/test_tdvm_lifecycle.py”

$./run.sh -c tests/test_tdvm_lifecycle.py::

test_tdvm_lifecycle_virsh_start_shutdown

4. User can specify guest image OS type with “-g”. Currently it supports “rhel”,

and “ubuntu”. RHEL 8.x guest image will be used by default if “-g” is not

specified.

For example, run all tests using Ubuntu 22.04 guest image.

$ sudo ./run.sh -g ubuntu -s all

66 Document Number: 355388-001

6 Develop & Debug

6.1 Override the Intel TDX SEAM module

Secure arbitration mode (SEAM) is an extension to the virtual machines extension

(VMX) architecture to define a new, VMX root operation called SEAM VMX root

and a new VMX non-root operation called SEAM VMX non-root. Collectively, the

SEAM VMX root and SEAM VMX non-root execution modes are called operations

in SEAM. SEAM VMX root operation is designed to host a CPU-attested, software

module called the Intel® Trust-Domain Extensions (Intel® TDX) module to manage

virtual machine (VM) guests called Trust Domains (TD). Currently, the Intel TDX

Module is the only SEAM module that the Intel P-SEAMLDR installs [1].

By default, BIOS loads the built-in version of SEAMLDR and TDX module from the

IFWI during the server booting. For development or debugging purpose, a new or

debug version SEAMLDR and TDX module could be placed into the ESP partition.

The BIOS loads the new or debug version from ESP on the next boot.

Figure 26 BIOS Search TDX Module from ESP

The naming rule is:

• <ESP>/EFI/TDX/TDX-SEAM_SEAMLDR.bin

67 Document Number: 355388-001

• <ESP>/EFI/TDX/TDX-SEAM.so

• <ESP>/EFI/TDX/TDX-SEAM.so.sigstruct

Check the updated TDX module information

$ sudo cat /sys/firmware/tdx/tdx_module/*

68 Document Number: 355388-001

6.2 Off-TD Debug via GDB from the Host

QEMU supports working with gdb via gdb’s remote-connection facility (the

“gdbstub”). This allows you to debug guest code in the same way that you might do

with a low-level debug facility like JTAG on real hardware. You can stop and start the

virtual machine, examine states like registers and memory, and set breakpoints and

watchpoints. Refer to https://www.qemu.org/docs/master/system/gdb.html for

detail gdb usage.

To support gdb use, Intel TDX module exposes APIs:

• TDH.VP.RD/WR to allow QEMU emulator to read/write guest’s CPU states.

• TDH.MEM.RD/WR to allow QEMU emulator to read/write guest memory.

Figure 27 Off-TD Debug via GDB

Steps to debug TD guest are as follows:

• Step 1: Start TD guest in debug mode

o Append “debug=on” to “-object”. For example:

-object tdx-guest,id=tdx,debug=on

o Add -s -S parameter to qemu-kvm. For example:

$ qemu-kvm -s –S

o Disable kernel address randomization by append “nokaslr”

https://www.qemu.org/docs/master/system/gdb.html

69 Document Number: 355388-001

• Step 2: Install guest kernel’s debug symbol into host. For example:

$ sudo dnf install intel-mvp-tdx-guest-kernel-debuginfo

• Step 3: Run the script start_gdb.sh with following content

#!/bin/bash

GDB=gdb

MOD_DIR=/usr/lib/debug/usr/lib/modules/<guest kernel>/

$GDB \

-ex "add-auto-load-safe-path $MOD_DIR" \

-ex "file $MOD_DIR/vmlinux" \

-ex "set arch i386:x86-64:intel" \

-ex "set remotetimeout 360" \

-ex "target remote 127.0.0.1:1234“

• Step 4: In the GDB console, use command “hb” to set the first break point. For

example

gdb> hb start_kernel

The software breakpoint is available after the kernel is loaded into GPA space by

QEMU.

70 Document Number: 355388-001

6.3 Check Memory Encryption

There are lots of approaches to check whether TDX memory is encrypted or not.

This section introduces how to do this check via GDB debug approach.

1. Install kernel development package on the host for debug symbol (using

RHEL distro as example):

$ sudo dnf install intel-mvp-tdx-kernel-devel

2. Get GVA (guest virtual address) of the .text code section of guest kernel

$ # Extract the guest kernel binary

$ /usr/src/kernels/$(uname -r)/scripts/extract-vmlinux <path-to-guest-kernel-

file > vmlinux

$ objdump -d vmlinux > disassembled-vmlinux.asm && head -n 20 disassembled-

vmlinux.asm

...

ffffffff81000000 <.text>:

ffffffff81000000: 48 8d 25 51 3f c0 01 lea 0x1c03f51(%rip),%rsp

ffffffff81000007: 48 8d 3d f2 ff ff ff lea -0xe(%rip),%rdi

ffffffff8100000e: 56 push %rsi

ffffffff8100000f: e8 dc 06 00 00 callq 0xffffffff810006f0

...

 The result shows that the virtual address of .text section start from

0xffffffff81000000.

3. Verify the instructions/memory at guest physical address of .text code

section in non-confidential VM guest

➢ Launch a non-confidential guest, nokaslr should be appended for kernel

command like below

-append "root=/dev/vda1 console=hvc0 nokaslr"

➢ Enter QEMU monitor shell

If using start-qemu.sh, just “telnet 127.0.0.1 9001”

➢ Disassemble the virtual address of .text section

(qemu) stop

(qemu) x /10i 0xffffffff81000000

0x01000000: 48 8d 25 51 3f c0 01 leaq 0x1c03f51(%rip), %rsp

0x01000007: 48 8d 3d f2 ff ff ff leaq -0xe(%rip), %rdi

0x0100000e: 56 pushq %rsi

0x0100000f: e8 dc 06 00 00 callq 0x10006f0

4. Verify the instructions/memory at guest physical address of .text code

section in TD guest

➢ Launch a TD guest

71 Document Number: 355388-001

o debug=on should be append for QEMU command line

-object tdx-guest,id=tdx,debug=on

o nokaslr should be appended for kernel command line

-append "root=/dev/vda1 console=hvc0 nokaslr"

➢ Enter QEMU monitor shell

If using start-qemu.sh, just “telnet 127.0.0.1 9001”

➢ Disassemble the virtual address of .text section

(qemu) stop

(qemu) x /10i 0xffffffff81000000

0xffffffff81000000: 98 cwtl

0xffffffff81000001: f8 clc

0xffffffff81000002: 49 5e popq %r14

0xffffffff81000004: 5a popq %rdx

0xffffffff81000005: 55 pushq %rbp

...

The disassembled instructions should be different from non-confidential,

meaningless since the memory is encrypted.

6.4 Run Intel AMX workload within TDX Guest

Intel AMX is a new built-in accelerator that improves the performance of deep-

learning training and inference on the CPU. This is ideal for workloads like natural-

language processing, recommendation systems, and image recognition.11 It is

available on the 4th Gen Intel® Xeon® Scalable processors. Use the following

approach to check its capability on the host server and TD guest:

$ grep -o amx /proc/cpuinfo

Expect to see output of several "amx". Empty results mean Intel AMX is not enabled.

This section introduces how to run AI workload boosted by Intel AMX within Intel

TDX guest:

• Install the Intel® Optimization for TensorFlow* version 2.8.0 via pip. Python

versions supported are 3.7, 3.8, 3.9, 3.10. For TensorFlow versions 1.13, 1.14

and 1.15 with pip > 20.0, if you get an “invalid wheel error”, try to downgrade

the pip version to < 20.0

$ dnf install python3.8

$ pip3.8 install intel-tensorflow-avx512==2.8.0

11 Intel® Advanced Matrix Extensions Overview

https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/advanced-matrix-extensions/overview.html

72 Document Number: 355388-001

• Download pre-trained model

$ wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_8/

mobilenet_v1_1.0_224_frozen.pb

• Clone the intelai/models repo and then navigate to the benchmark’s directory

$ dnf install git

$ git clone https://github.com/IntelAI/models.git cd models/benchmarks

• Set environment variables

$ export DNNL_MAX_CPU_ISA=AVX512_CORE_AMX

$ export OMP_NUM_THREADS=16

$ export KMP_AFFINITY=granularity=fine,verbose,compact

• Run online inference. Replace <PATH> to the absolute path where pre-

trained model is located

$ python3.8 launch_benchmark.py \

--benchmark-only --framework tensorflow --model-name mobilenet_v1 \

--mode inference --precision bfloat16 --batch-size 1 \

--in-graph /opt/mobilenet_v1_1.0_224_frozen.pb \

--num-intra-threads 16 --num-inter-threads 1 --verbose --\ input_height=224

input_width=224 warmup_steps=20 steps=20 \ input_layer='input'

output_layer='MobilenetV1/Predictions/Reshape_1'

• The expect result should like below:

[Running warmup steps...]

steps = 10, 360.33539518900346 images/sec steps = 20, 349.292471685543 images/sec

[Running benchmark steps...]

steps = 10, 364.1521097412745 images/sec steps = 20, 369.8028566390407 images/sec

Average Throughput: 364.37 images/s on 20 iterations

If running same workload without “export

DNNL_MAX_CPU_ISA=AVX512_CORE_AMX”, the result will be smaller

(images/sec) without AMX boost.

NOTE: If you fail to run above commands and see a message like "If you cannot

immediately regenerate your protos, some other possible workarounds are: 1.

Downgrade the protobuf package to 3.20.x or lower. 2. Set

PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use

pure-Python parsing and will be much slower)." you can either upgrade protobuf

version to 3.20.0 as following:

$ pip3.8 install --upgrade protobuf==3.20.0

or set environment variable as following

$ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python

Then re-run above online inference command.

73 Document Number: 355388-001

74 Document Number: 355388-001

7 Disclaimer

The released components of the Linux Reference Stack for Intel TDX: Virtual

Firmware (edk2/TDVF), bootloader (grub2), and the Linux kernel, are fully enabled

to be run from within the Linux-based Intel TDX Guest VM to take advantage of the

Intel TDX security technology for cryptographically isolating Trusted VMs from the

rest of the system.

While Intel TDX removes the need for a Guest VM to trust the host and virtual

machine manager (VMM), it cannot by itself protect the guest VM from host/VMM

attacks that leverage existing paravirt-based communication interfaces between

the host/VMM and the guest (such as MMIO, portIO, etc.). To achieve the full

protection against such attacks, the Guest VM SW stack needs to be hardened to

securely handle a untrusted and potentially malicious input from a host/VMM via the

above-mentioned interfaces. This hardening effort is not specific to Intel TDX as a

technology, but common for all confidential cloud computing solutions and the

components of the VM guest SW stack. It should be an industry-wide effort

together with the open source maintainers to perform the security analysis and

hardening of these components for the confidential computing threat model.

The Linux Reference Stack for Intel TDX team has invested a significant effort in

hardening the Linux kernel that is released as part of the Linux Reference Stack for

Intel TDX, Thethreat model for the Linux guest kernel, as well as the implemented

mitigation mechanisms are explained in the Intel TDE Linux guest kernel security

specification. The overall hardening methodology, as well as documentation on the

tools that have been used can be found in Intel TDE guest Linux kernel hardening

strategy. As a result, the Linux Reference Stack for Intel TDX kernel tree contains

numerous patches that either implement these hardening mechanisms or fix the

security issues that were discovered during the hardening process. It is strongly

recommended that all these patches are manually carried forward to the intended

production kernels, until they are merged into the mainline Linux kernel and will

become part of the upstream base kernel tree. In particular, the following two

patches that are critical for the security of the Intel TDX Linux guest kernel must be

included in any production guest kernel:

Commit ID:

• c942fc241d4e6c215731b6f03740b1a8bfc42018 (Patch No. 0421) from

patches-tdx-kernelMVP-KERNEL-5.19-v2.4.tar.gz

75 Document Number: 355388-001

• Commit ID: c289330c56c61508a1008d74fc65b7bc24a4a7d5 (Patch No.

0422) from patches-tdx-kernelMVP-KERNEL-5.19-v2.4.tar.gz

It is important to note that the hardening of the Linux guest kernel has not been

finalized for this release and other components, such as virtual firmware

(edk2/TDVF) and the bootloader (grub2), still need more attention. In particular,

the existing interfaces that edk2/TDVF or grub2 expose towards the host/VMM

have not yet been analyzed for potential security implications against the

confidential cloud computing threat model. It is strongly recommended that this

analysis be done, and any issues uncovered are mitigated before these components

are used in production.

76 Document Number: 355388-001

8 References

[1] Intel, "Intel® TDX White Papers," February 2023. [Online]. Available:

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-

trust-domain-extensions.html.

[2] Intel, "TDX Guest Hardening," [Online]. Available: https://intel.github.io/ccc-

linux-guest-hardening-docs/tdx-guest-hardening.html.

[3] Confidential Computing Consortium, "A Technical Analysis of Confidential

Computing," 2022.

[4] Trust Computing Group, TCG Guidance on Integrity Measurements and Event

Log, 2021.

	1 Introduction
	1.1 Overview
	1.2 Terminology

	2 Install
	2.1 Hardware
	2.2 BIOS
	2.3 Components
	2.4 Building Stacks
	2.4.1 Build Packages
	2.4.2 Create Guest Image

	2.5 Install IaaS Host
	2.5.1 Install Packages
	2.5.2 Configure Grub
	2.5.3 Set Default Kernel
	2.5.4 Reboot with the Intel TDX kernel

	3 Manage the TD guest
	3.1 Overview
	3.2 Boot TD Guest
	3.2.1 Launch via QEMU
	3.2.2 Launch via Libvirt

	3.3 Use VirtIO Device
	3.4 Secure Boot
	3.5 Full Disk Encryption
	3.5.1 Workflow
	3.5.2 Prepare Encryption Image

	4 Measurement & Attestation
	4.1 TEE, TCB, Quote
	4.2 TDX Measurement
	4.2.1 TD Report
	4.2.2 MRTD and RTMR
	4.2.3 Pre-Boot Measurement
	4.2.4 PyTdxMeasure Tool
	4.2.5 Linux Runtime Measurement

	4.3 Attestation
	4.3.1 Overview
	4.3.2 Set Up DCAP Repo
	4.3.3 Set Up PCCS
	4.3.4 Set Up DCAP on Host
	4.3.5 Generate Quote
	4.3.5.1 Launch TD with Quote Generation Support
	4.3.5.2 Generate Quote within Intel TDX Guest

	4.3.6 Verify Quote

	4.4 Use Intel Project Amber
	4.4.1 Overview
	4.4.2 Installation
	4.4.3 Example Usage

	5 Validation
	5.1 Overview
	5.2 PyCloudStack
	5.2.1 Overview
	5.2.2 Installation
	5.2.3 Example

	5.3 Intel TDX Tests
	5.3.1 Overview
	5.3.2 Prerequisite
	5.3.3 Setup Environment
	5.3.4 Run Tests

	6 Develop & Debug
	6.1 Override the Intel TDX SEAM module
	6.2 Off-TD Debug via GDB from the Host
	6.3 Check Memory Encryption
	6.4 Run Intel AMX workload within TDX Guest

	7 Disclaimer
	8 References

