intel.

Linux™ Stacks for Intel® Trust Domain
Extension 1.0

v0.9
May 2023

Document Number: 355388-001

Copyright © 2023 Intel Corporation. All rights reserved.

Contents
T INTrOAUCTION .t 8
1.1 L@ A =T YT PP 8
L2 =Y 0 11 0o Lo T YOO 1
2 INSEAIL e e e 12
2.0 HAIAWAIE .ttt 12
2.2 BlOS bbb 13
PG T O 0'a] oo o =Y o | 4= OO 15
2.4 BUIIAING STACKS .ottt 16
241 BUIld PACKAGES ..ottt 17
2.4.2 Create GUEST IMAGE.. ..ot 17
2.5 INStAll 1aAS HOSt ..ot 19
P T B (013 =YL = V] Y T PO 19
2.5.2 CONFIGUIE GrUb ...ttt 20
2.5.3 SetDefault Kernel ...t 20
2.5.4 Rebootwiththe Intel TDX Kernel ... 21
3 ManNage the TD QUEST ..ottt 23
G T B O V=T VT TSP 23
3.2 BOOt TD GUEST ...ttt 26
3.2.1 Launch Via QEMU ...t sne s s s sseseneans 26
3.2.2 LauNCh Via LIDVirt ..t 28
3.3 USE ViIrtlIO DeVICE ..t se e 29
B4 SECUIE BOOT ..ttt 30
3.5 FUll DiSk ENCrYPtioN et sssse s ssssssssesesssssssssnsssssanans 33
.57 WOTKFIOW ettt 34
3.5.2 Prepare ENcryption IMage ... sesesens 35
4 Measurement & AtteSTatioN ... 37
4] TEE, TCB, QUOLE ..ottt sseess st 37

2 Document Number: 355388-001

4.2 TDXMEASUIrEMENT ..ot 38
V4522 IR I 0 B =Y oY) o OSSR 38
4.2.2 MRTD aNAd RTIMR ..ottt seeas 38
4.2.3 Pre-Boot MeasuremMent... .. sssssseens 39
4.2 4 PyTAXMEASUIE TOO ..t sesesssasesssasssssasss s sssnsnns 40
4.2.5 Linux Runtime Measurement........ s 41

4.3 ATEESTATION .ot 42
.31 OVEIVIEW ettt sttt 43
4.3.2 SEtUP DCAP REPO..iiieciririreeeeeisesestes s sesesss s sss e sssssssssseens 44
4.3.3 SEEUP PCCS ...t 45
4.3.4 SetUP DCAP ON HOST. .ot 47
4.3.5 Generate QUOTE ...t 48
4.3.6 Verify QUOLE ...ttt 51

4.4 Use INtel ProjeCt AmMDEr ... et 52
A4 OVEIVIEW ceerieieecerirerieee et e et b et e st s bbb e an s s et eas 52
A.4.2 INSTAIBTION .ot 52
A4.4.3 EXaMPIE USAQE .ttt 53
W AlIATION oot 55

BT OVEIVIEBW ettt 55

5.2 PYCIOUASTACK .ttt 56
5.2.1 OVEIVIEW ettt s e n s 56
5.2.2 INSTAIATION coeeeeee et 58
5.2.3 EXAMPIE ettt 59

TG T (o8 =T I I 0) G I =Y TP 60
S TR T B O AV 7T o VYOO 60
5.3.2 Prer@QUISITE. ettt 62
5.3.3 Setup ENVIrONMENT ... e 63
D.3:4 RUN T SES e 64
DL V2T Lo T o 3/ I 1= o U S 66

Document Number: 355388-001

6.1 Override the Intel TDX SEAM MOAUIE ... 66
6.2 Off-TD Debug via GDB from the HOSt ... 68
6.3 CheckMemory ENCryptioN .. 70
6.4 RunIntel AMX workload within TDX GUEST ..ot 71
2 O 1Yo - 10/ 1Y o oo 74
8 REFEIENCES ...t 76

4 Document Number: 355388-001

Figures

FIGURE L INTEL® TDX .ttiiitteeeeiutieeeettesesttteeesutteeeensteeesssaaeassssaeeasssaseassaasesssseeaanssseesanssaeesnsseseassseseanssaseanseeseansseesanssneesnssens 8
FIGURE 2 INTEL TDX COMPONENT INTERFACES .11ttt eeutvrrreeesesasensrneeeesesasasssneessssssassssseeesssssssssssseesesssssssssessesssnssssssnssessssnssssseeees 9
FIGURE 3 LINUX STACK FOR INTEL TDX .t iuttttieete e e ieiittteee e e e seitttteeeeeeseinataeeeesesesantaneeesesssassssnaeesesssassnssnnesesssnssnsssnneesssensnnnns 10
FIGURE 4 8+0 DIMM POPULATION FOR INTEL TDX ...uuuttiieeeeeeieiiitieetessseiitteeeeesesesistaneeesesesassssaeesssssassnssnnesesssnssnsssnseesssessnnnns 12
FIGURE 5 16+0 DIMM POPULATION FOR INTEL TDX ...utttteeieieieitiiieeteeeseiitteeeesesesintaneeesesssesssanneesesssesnsssnesessssssnsssnesesssessnnnns 13
FIGURE 6 BIOS SETTINGS FOR INTELTDX 1.ciiieieieieiee ettt ettt ettt ettt e aeeee s 14
FIGURE 7 END-TO-END HOST AND GUEST STACK FOR LINUX AND INTEL TDX ...uvvieieeeieiiiiiieeeeeeeceiinreeeeeeeeecnnreeeeeeseesnnsasseeessessnnns 16
FIGURE 8 BUILD PROCESS FOR INTEL TDX PACKAGES ..ceeeeeieieieieieieieieieeeieieeeieeeieeeeeseeeeeeeseseeeeesesesesesesesesesesesesesesesssssesessssssessaenes 17
FIGURE O CREATE INTEL TDX GUEST IMAGE ...uvvveeeeeeeieutrreeeeeeeeeaisreeeeeeesesisssasssesesesasssssseesesssasssssssssesssesssssssssesssessnssssssesseensnnnns 18
FIGURE 10 TD GUEST BOOT PROCESSecuuvvitrteeeeeeiiiitreeeeeeeseittteeeeesesessetaneeesesessnsssssesssssssssssssessssssnsssssnssesssassssenesesssensnnnns 23
FIGURE 11 THE DETAIL BOOT FLOW FOR DIFFERENT TD BOOT......uuuuuiieeieeeieiiutiineeeeeseiinttnreesesssssssssnessesssessssssssesssassssssssesssessnnnns 25
FIGURE 12 TDX GUEST ATTACK SURFACE ...uuvtvrreeeeeeieiutureeeeesesesssseessessssiasssnseesssassnssssseesssssssssssssssssssssssssssssesssssssssssssesssessnnnns 29
FIGURE 13 ENABLE SECURE BOOT ..ueitiiiiiiiiiiiiteeeeeeieitttteeeeeeseittttaeeeeeesesanstaneeeeesesassssaseesesssasssssesssssssssssssesseessnssssenssesssennnnnns 30
FIGURE 14 FULL DISK ENCRYPTION IN TDX GUESTuutttireeeeeeieiutreeeeeeeseiuersneeesesesansssnseesesssssssssssssssssnssssssssesssnssnssssssesssessannes 34
FIGURE 15 MEASUREMENT AND ATTESTATION FOR TEEcciieeeeee e, 37
FIGURE 16 TD IMEASUREMENT PROCESS . .ceieieieieiiieieieieieieeeeeeeeeie e e eeee e e e e e e e e e e e e e e e e e e ee e e e e e e aeaaeaaeaaeeaeaeeaaeeeeeaaaeeeeeaeaaeeeaeesaaaeeeaaeeeens 40
FIGURE 17 ENABLE IMA EXTEND HASH TO RTIMIR ettt ettt ettt e e e e e s ttae e e e e e e e e atntaeeeeeesenaansaeeeeeeeesnnntanaeeeeeenannnns 41
FIGURE 18 INTEL TDX ATTESTATION FLOW ...utvviieeeeeieiirteeeeeeeeeiitteeeeeeeeesuaraeeeaeeeesaassasseeeeeesassssssesseessesssssessaeseesassasssesseennnnses 43
FIGURE 19 SET UP DCAP SOFTWARE ON THE TDX HOST .. iiiiiiiiiiiiieieeeeeee ettt ettt e e e e e e n e e e e e e e e e e e e e e e e e e 47
FIGURE 20 APPROACHES TO GENERATE INTEL TDX QUOTE ..ieiiiiiiieieeeeeeeeee ettt a e e e e e e e e e e e e e e e 50
FIGURE 21 VERIFY QUOTE cciiiiieiiieiiieieieeeieieseieseseseeesetesesesesesesesesasesasesesesesesssesssesesssssesesssssssesssesessssseseessssessessesssseeseessesseseenns 51
FIGURE 22 INTEL TDX E2E FULL STACK VALIDATION ...ccettteteieetieieieieteeeieieee e e ee e e ee e e e e e e s e e e aeaeaeaeaeaeeesaaeaaeeaaaeaaaaaeeaaeaaaaaeaesaaaeasaaanaens 55
FIGURE 23 PYCLOUDSTACK FRAMEWORK 1.tieieieieieieieieieieieieieieeeeeeeiete e e se e e s e s e e e e e e e s e aeseeaaeaaeaaeaaaeaeaetaaaeaaetaaaaaaeaaaeaaaaaeaasaeaneeaaeeaes 56
FIGURE 24 SCENARIOS FOR VIMIIMI AND LIBVIRT 1.eieieieieieieieieeeeeieieeeeeeeseeeeeseeeeeseseeeseseeeeeseaesesesesesesasesesesasasesesssesasasesesenesasssenenns 57
FIGURE 25 ABSTRACT COMMON OPERATIONS FOR CLOUD STACK..ceeteteieieieieiiieieieieieieeeeeeeeeeeeeeeeeeeeeneeeeeseseeeeesesesesasasasesasasesasanenns 57
FIGURE 26 BIOS SEARCH TDX IMODULE FROM ESP ... e e e e e e e e e e e 66
FIGURE 27 OFF-TD DEBUG VIA GDB ... iiiiiteee ettt ettt e sttt e e e e s e st e e e e s s sssbatteaeeeesassantaaaeeessasnssanaeasssensnnnns 68

5 Document Number: 355388-001

TABLES

TABLE 1 INTEL TDX BIOS CONFIGURATIONS ..vvvveeteeeeesuerureeesssasanersreeesssssassssssessssssasssssseesessssssssssssesssssssssssssesssessssssssesssessnsens 14
TABLE 2 LINUX STACK FOR INTEL TDX COMPONENTS ...uuvvvtreteeeeeiuerrreeesesesastsseessesssassssseessessssssssssssesssssssssssssesssessssssssesssessnsnns 15
TABLE 3 BOOT TYPE FOR TD GUEST vevtetieeeieuuuereeeeessessuerereeesesesansssreeesssssansssssessessssssssssessessssssssssssessssssssssessessssssnssssesesssessnsnns 23
TABLE 4 START-QEMUL.SH PARAMETERS....ettttttititititetieeeiteteteteeeeeeeeeteeeeeeeeeeeeeetaetaeaaeteeeeeteaeaeeeaeeeeeteseseeeeeeeeeseseneeeeeseseeeeeeeneeeeenes 26
TABLE 5 RTIMIR DEFINITIONS ... cuutvttteeeeeeseuuereeeeesseasoussaeseesssasanssaseeesssssansssssessssssassssssessessssssssssnssessssssssssessesssessnssssseeessessnsnns 39
TABLE 6 LINUX STACK FOR INTEL TDX VALIDATIONS....ce it ieeeeeeeeeeeeee ettt et e aaaaeas 55
TABLE 7 T DK STACK TESTS i iiiiiiiiiiiie ettt e aaaaaeaaaaaens 60

6 Document Number: 355388-001

intel

Revision History

Revision Description Date

Number

0.8 Initial Release 1**May 2023
0.9 e Add the reference tool of check-tdx-host.sh 27t May 2023

e Add chapter 4.2.5 Linux Runtime Measurement
via IMA (Linux Integrity Measurement
Architecture)

e Add chapter 3.5 Full Disk Encryption

e Add chapter 4.4 Use Intel Project Amber

e Complete the incomplete steps for Secure boot

e Add chapter 6.3 Check Memory Encryption

7 Document Number: 355388-001

intel.

1 Introduction

1.1 Overview

Intel® Trust Domain Extension (Intel® TDX) refers to an Intel technology that
extends virtual machine extensions (VMX) and Intel® Total Memory Encryption —
Multi-Key (Intel® TME-MK) with a new kind of virtual machine guest called a trust
domain (TD). A TD runs in a CPU mode that is designed to protect the
confidentiality of its memory contents and its CPU state from any other software,
including the hosting virtual machine monitor (VMM) [1]

Intel ® TDX Guest
R:Iying Private Memory
arty Remote Shared Code Data
Attestation Memo ry
Page Table

_________________ —

Secure Extended
Page Table

VM Control
Structure

Virtual APIC Page

State Save Area

SEAMCALL SEAMRR
—_—
VMM TDX (SEAM) Module
SEAMRET '
Bare Metal SEAM Loader (ACM)

Figure 1Intel® TDX

The white paper or specifications for Intel TDX can be found at Intel® Trust Domain
Extensions, the major components’interfaces are defined in the specifications in
Figure 2 Intel TDX Component Interfaces.

8 Document Number: 355388-001

https://github.com/intel/tdx-tools/wiki/API-&-Specifications
https://github.com/intel/tdx-tools/wiki/API-&-Specifications

Specification: Intel® TDX Virtual Firmware

Design Guide
Whitepaper: Linux* Stacks for
(Intel® Trust Domain Extension 1.0 []
Non-
Confidential
v
T
| S p pungp
Kernel KVVM Documentation
VMEXIT l T VMENTER
K I KVM
Stne TDEXIT TDENTER
SEPT, VMCS,
XSAVE, vAPIC
Firmware SEAMCALL l I SEAMRET
e { TDH(SEAMCal) | | TDG(TDCal) | Intel TDX
e H
\ SEARU s ! Host i Gust | SEAMModule
l PCONFIG
Specification :Intel® TDX Loader Interface v
emory
soc Y Controller UELiUrY
MK-TMEi protected memory
RAM D I I |:| Components Intel TDX TCB

Figure 2 Intel TDX Component Interfaces

intel.

Specification: Intel? TDX Guest-Hypervisor
Communication Interface

TDG.VP.VMCALLAPI

TDG.VP.VMCALL<MAPGPA>

TDG.VP.VMCALL<GETQUOTE>

TDG.VP.VMCALL<REPORTFATALERROR> |

TDG.VPVMCALL<SETUPEVENTNOTIFYIN
TERRUPT=>

TDG.VP.VMCALL<INSTRUCTION.{HLT/1O/
RDMSR/WRMSR/PCONFIG}>

SEAMCALLAPI

TDH.MNG.{CREATE/INIT/KEY3.*

TDH.MEM.{PAGE/SEPT/RD}.*

TDH.PHYMEM{PAGE/CACHE}*

TDH.VP{RD/WR/CREATE/ENTER} *

TDCALLAPI

TDG.MR.{REPORT/RTMRY."

TDG.VM.IRD/WD}

TDG.VP.{CPUIDVE/INFO/VEINFO3.*

TDG.VP.VMCALL<*>* —

Specification: Intel ® TDX Module

Linux* Stacks for Intel® TDX is an end-to-end hypervisor cloud stack including the

Infrastructure as a Service (laaS) and Platform as a Service (PaaS) components to

produce the following minimal use cases:

e Launch Intel® TDX guest VM to run general computing workloads

¢ Do launch-time measurement within the Intel® TDX quest VM

e Do runtime attestation with the quote generated by Intel® Software Guard
Extensions (Intel® SGX)-based quote generation service (QGS) on the laaS

host

Document Number: 355388-001

intel

Intel TDX Guest VM

Bare Metal
Host

I 2y

i ¢ T B r-—»- =)

ESP (EFI System Partition)

Figure 3 Linux Stack for Intel TDX
The open-source code for Linux Stack for Intel TDX can be found at
https.//github.com/intel/tdx-tools.

NOTE: tdx-tools has multiples release tags. Please make sure to use the correct tag

which matches the release version. Release tag and kernel version mapping can be
found in tdx-tools wiki.

This document introduces:

e The deployment, cloud stack test, and other common uses for those who
want to validate confidential workloads or tune performance.

e The debugand development methods for those who want to integrate stack
for their laaS/Paa$S framework.

10 Document Number: 355388-001

https://github.com/intel/tdx-tools
https://github.com/intel/tdx-tools/tags
https://github.com/intel/tdx-tools/wiki#1-overview

1.2 Terminology

TERM
ACM
CFV
CMR
CPLD
CRB
DCAP
DIMM
ECC

ESP
GVA
HVC

IBV

Intel SGX
Intel TDX
LIV server

LUKS
MRTD
OVMF
PCS

PCCS
OMP
RTMR
SBX server

SEAM
SVN
TCB
TDVF
TDVM
TEE

11

intel.

DESCRIPTION

Authenticated Code Module
Configuration Firmware V olume
Convertible Memory Ranges

Complex Programmable Logic Device
Customer Reference Board

Data Center Attestation Primitives

Dual In-line Memory Module

Error Correction Code memory

EFI System Partition

Guest Virtual Address

Hypervisor Virtual Console

Independent BIOS Vendor

Intel® Software Guard Extensions (Intel® SGX)
Intel® Trust Domain Extension (Intel® TDX)
Live serveris used for attestation with
production CPU SKUs

Linux Unified Key Setup

Measurement of Trust Domain Firmware
Opensource Virtual Machine Firmware
Provisioning Certification Service
Provisioning Certificate Caching Service
QEMU Monitor Protocol

Runtime Measurement Register
Sandbox server is used for attestation with pre-
production CPU SKUs

Secure Arbitration Mode

Security Version Number
Trusted-Computing Base

Trusted Domain Virtual Firmware

ATD guest VM

Trusted Execution Environment

Document Number: 355388-001

intel.
2 Install

2.1 Hardware

Linux Stack for Intel TDX needs the following hardware support that enables Intel
TDX:

e CPU Processor SKU. Contact Intel sales rep for details.

e Board configurations via hardware jumper or CPLD (complex programmable
logic device). Contact your ODM/OEM vendor.

e DDRS5 DIMM with the type of 10 x 4 ECC (error correction code memory)

e DDR5 RDIMMs with integrity protection.

e DIMM (Dual in-line memory module) population. We recommend that all
channel O slots be populated (8 DIMMs per socket) at least. DIMM population
must be symmetric across IMCs (integrated memory controller).

iMC #3 iMC #2 iMC #0 iMC #1
A A AL A

I's N N 4 hAYd Y
o dleq e -lel - @ -H ® - ® Ao
ETE T T Tt T I FE I I IE I A
PP PP P PP el el el Rl
o O O o o o O O o O 0 O O O o0 o
B I . = = E] S
w nvnunn oo g9 gmmmmmmmm
- O H® H © -He O ©@@-dd © ® - =
T+ O I I I T+ O % ® E H
B = SN S B = PR e s e e s s e
@ 0 OO0 O O Oa = v OV O U OV O
b= === =l 1=l 1= 1=1
==l 2= E PEL == CPU #1 =l = 1= PE = =
@ @© ® @ @ @ @ ® @ © @ @ @ @ @ ©
=) c sl c (ISl c BEl o c sl c =) c|i=] c |IE
- s e e e e e ' U U e - . e .- . .- .
Mm M mmn N NN S @©0© 9 Hddd
E T N N N) 2 3 o3 W W W T W W
O VLV L vy — O LU U ULV O
= = === = == = === = ===
r Uil — e ‘o ' ‘- B ' ‘r ‘r ‘r ‘r

Figure 4 8+0 DIMM Population for Intel TDX

Intel TDX also supports the full DIMM population 16+0 as the follows:
12 Document Number: 355388-001

intel

iMC #3 iMC #2 iMC #0 iMC #1
A A AL A
4 N A} r Y4 N
““““ : ““““

Figure 5 16+0 DIMM Population for Intel TDX

IMC #2
iMC #0

IMC #3
iMC #1

2.2 BIOS

BIOS configurations are needed to support Intel TDX. Contact an Intel sales
representee or IBV (independent BIOS vendor) for details. The following settings
are examples for reference:

13 Document Number: 355388-001

intel.

Socket Configuration —[: Memory Configuration Memory Map —p Volatile Memory —p LM
. . Intel TME, Intel TME-MT, Total Memory Encryption
Processor Configuration =) Intel TDX — (Intel TME) — Enable
Total Memory Encryption
f——— —
(Intel TME) Bypass A
Total Memory Encryption
e Mullti-Tenant (Intel TME- =% Enable
MT)
[r—- Memory Integrity —p Disable
EEEEEEEEE——— Intel TDX —_— Enable
el Intel TDX Key Split —l Non-zero Value
Software Guard Enable

Extension

Figure 6 BIOS settings for Intel TDX

Please see the explanations in below table

Table 1intel TDX BIOS Configurations

BIOS Setting Notes

Volatile Memory =1LM Intel TDX and CMR (Convertible Memory Ranges) logical
integrity, isolation, and cryptographic integrity are only
available with directly attached DDR5 memory.

Total Memory Encryption Intel TDX technology depends on Intel® Total Memory
(Intel TME) = Enable Encryption (Intel® TME).

Total Memory Encryption 4th generation Intel Xeon Scalable processors introduce
(Intel TME) Bypass = an Intel TME bypass mode to allow memory outside of
Auto Intel TME multi-tenant virtual machines, Intel SGX

enclaves, and Intel TDX trust domains to be unencrypted
to improve the performance of nonconfidential software.
Total Memory Encryption 128 Intel TME — Multi-Tenant encryption keys.
Multi-Tenant (TME-MT) =
Enable
Memory Integrity =Disable = 4th generation Intel Xeon Scalable processor E-stepping
does not support Intel TDX-CI, but only supports Intel
TDX-LI.
Intel TDX = Enable Intel TDX should be enabled.
TDXKey Split=<Non-zero Keys split between Intel TME multi-tenant and Intel TDX.
Value)
Software Guard Extension = | Intel TDX depends on Intel SGX technology for hardware
Enable TCB and remote attestation.

Note: The configuration or the menus might be different on your BIOS. Contact the
IBV or OEM/ODM for the correct settings.

14 Document Number: 355388-001

2.3 Components

intel.

Linux Stack for Intel TDXis a vertical end-to-end stack including a series of
components, which are listed in Table 2 Linux Stack for Intel TDX Components.

Components

Intel TDXSEAM An attested software module
running in SEAM Root Mode.
A SEAM module intended
toinstall an Intel TDX
module into SEAM range.
The host kernel with Intel TDX
patches being upstreamed.
QEMU with Intel TDX patches
being upstreamed.

Libvirt with Intel TDX patches
being upstreamed.

Virtual firmware (aka OVMF)
with Intel TDX features already

Module
SEAM Loader

Intel TDX Host
Kernel
Intel TDX Qemu

Intel TDX Libvirt

TDVF

DCAP

QGS

Intel TDX Guest
Kernel

Grub2

Shim

15

Table 2 Linux Stack for Intel TDX Components

Description

upstreamed.

Intel SGX-based DCAP (data
center attestation primitives)
for the platform certificate

after registration.

QGS provides the functionality
of Intel TDX quote generation
within an Intel SGX-based
quote enclave. Itis part of the
DCAP running on the laa$S host

orlegacy VM.

The guest kernel with Intel
TDX patches being

upstreamed.

The bootloader grub2 with
Intel TDX patches already

upstreamed.

The bootloader shim with Intel
TDX patches already

upstreamed.

Source
Intel T - inE :

Intel T O inE :

httos://qithul intel/shimotd

Document Number: 355388-001

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://github.com/intel/tdx/tree/kvm
https://github.com/intel/tdx/tree/kvm
https://github.com/intel/qemu-tdx
https://github.com/intel/libvirt-tdx/tree/for_qemu_upstream
https://github.com/intel/libvirt-tdx/tree/for_qemu_upstream
https://github.com/tianocore/edk2
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/tdx/tree/guest-upstream
https://github.com/intel/tdx/tree/guest-upstream
https://github.com/intel/grub-tdx/tree/2.06-upstream-v4
https://github.com/intel/grub-tdx/tree/2.06-upstream-v4
https://github.com/intel/shim-tdx

Intel TDX
Attestation
Agent

PyTdxMeasure

intel

A sample Intel TDX attestation = https://github.com/intel/SGXDataC
agent to call ' imiti
TDVMCALL.getQuote(). Itis

part of DCAP.

A Python measurementlibrary = https://qgithub.com/intel/tdx-tools
that dumps RTMR, the CCEL

ACPI table, and verifies the
RTMR viareplaying the TD
eventlog.

NOTE: Some of the components have completed patch upstreaming such as Grub,
Shim, and TDVF, while others are still in progress.

2.4 Building Stacks

For an end-to-end stack setup and validation, tdx-tools provides downstream

patches and a build tool to construct the whole stack in a few simple steps.

Note: Please make sure to use the correct tag which matches the release version so
that the tools can work with different Intel TDX kernel and Intel TDX QEMU

versions.

The supported distros’ versions are as follows for both host and guest packages:

e RHEL 8.x (will uses the latest RHEL 8.x version)
e Ubuntu22.04

PaaS Package Repo
PaaS Intel TDX Kernel Intel TDX Guest Kernel
Source (.rpm/.deb)
grub2
Shim Grub2
shim e e L L LR R R (.rpm/.deb) (.rpm/.deb)
| ' @ RedHat
| Config Patches Spec || Ubuntu Enterprise Linux
! 1
! |
laaS Intel TDX Kernel 1aaS Package repo
Source Intel TDX Host Intel TDX Qemu

Intel TDX Qemu

=

TDVF

Intel TDX Libvirt

Kernel (.rpm/.deb) (.rpm/.deb)

Intel TDX Libvirt TDVF
(.rpm/.deb) (.rpm/.deb)

U bUntUG) ‘gﬁgaﬂ?r‘l:se Linux

Figure 7 End-to-End Host and Guest Stack for Linux and Intel TDX

The end-to-end stack building includes two steps:

16

Document Number: 355388-001

https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/tdx-tools

intel.

e Step 1: Build packages
e Step 2: Create guestimage

2.4.1 Build Packages

A build.sh scriptis provided by tdx-tools to download upstream source, apply Intel
TDX patches from the directory <build>/common, and do package building via OS
packaging tool (such as rpmbuild for RHEL) and Debian for Ubuntu.

Note: When obtaining tdx-tools, please make sure to use the correct tag which
matches the release version.

ithub.com/intel/tdx-tools

@ patch-kernel
s —5 {B
common @ patch-gemu
Intel-mvp-tdx-kernel ittt
! Intel TDX Host
I
@E}ﬁw Intel-mvp-tdx-gemu-kvm ! Getupstream i @ @ @ » Provisioning
i I
Intel-mvp-tdx-libvirt | . + H HostRepo
@ » ! build.sh ’ Patching !
I
buntu 1 4 |

Intel-mvp-tdx-guest-grub2 !
!]
Intel-mvp-tdx-guest-shim \ rpmbuild/debuild H @ @ @
|]
Intel-mvp-tdx-oymf T TTTTTTTTTTTIToTomommmooe
Guest Repo
»
Guest Intel TDX
. Guest Image
image tool

Figure 8 Build process for Intel TDX packages

The kernel config is provided in the kernel package directory with Intel TDX
configurations, such as build/rhel-8/intel-mvp-tdx-kernel/tdx-kernel.spec for the
RHEL-8 distro. All kernel configurations have been optimized for performance.

After the packages have been built successfully, two repositories are generated.
One s the host repository, which includes the Intel TDX host kernel, Intel TDX
Qemu, Intel TDX Libvirt,and TDVF. The other repository is the guest repository
with the Intel TDX guest kernel, grub2, and shim.

2.4.2 Create Guest Image

As with non-confidential virtual machines, the Intel TDX virtual machine requires
guestimages with the Intel TDX guest kernel. Also, the grub2 and shim packages
are required for grub boot and secure boot.

17 Document Number: 355388-001

intel

The Intel TDX virtual machine needs an EFl guest image to be booted by EFIBIOS
TDVF (aka Intel TDX enabled OVMF).

e Somedistros provide EFl enabled guest/cloud images, such as https://cloud-
images.ubuntu.com/ for Ubuntu, so you just need to install the guest kernel
and bootloaders (shim/grub) into the existing Ubuntu cloud image.

e If the default distro cloud image does not support an EFl schema, tdx-tools
provides the tool, such as using build/rhel-8/guest-image/create-efi-img.sh
to create the RHEL EFI guest image via the kickstart' tool.

NOTE: When obtaining tdx-tools, please make sure to use the correct tag which
matches the release version.

Based on the EFI guestimage downloaded from the distro portal or created by
create-efi-guest.sh, use tdx-guest-stack.sh to install the binary packages for Intel
TDX guest kernel and bootloaders (shim and grub) into the guestimage.

EFl GuestImage Guest Packages Intel TDX Enabled
Repository EFl GuestImage

create-efi-img.sh B @] @ @ B

1 ‘ ROOTFS

Intel TDX
create-efi-guest.sh - ROOTES - tdx-guest-stack.sh ‘ bootloaders
Intel TDX guest
kernel
SWAP SWAP
L

Figure 9 Create Intel TDX guestimage
The example steps are shown as below:
e ForRHELS8.x
Prerequiste: build the RHEL packages via build-repo.sh
cd build/rhel-8/guest-image

Create the EFI guest image from via kickstart scripts
./create-efi-img.sh

Install additional packages into guest -image

18 Document Number: 355388-001

https://cloud-images.ubuntu.com/
https://cloud-images.ubuntu.com/
https://linuxhint.com/beginners-kickstart/

intel

$./tdx-guest-stack.sh

e ForUbuntu

$ # Prerequiste: build the Ubuntu packages via build-repo.sh

$
$ cd build/ubuntu-22.04/guest-image

$
$ # Install additional packages into guest image

$./tdx-guest-stack.sh

2.5Install laaS Host

Perform the following steps to deploy the packages on laaS host.

NOTE: Please disable Intel TDX in the BIOS to install Intel TDX packages. Because
before installing Intel TDX host kernel, the distro default kernel may unintentionally
cleanup MTRR (memory type range register) for Intel TDX memory range, which
causes an MCHECK error. After Intel TDX packages have been installed and please
set the Intel TDX kernel as the default one in grub boot menu, and reboot into B/IOS
to enable Intel TDX again.

2.5.1 Install Packages

For RHEL 8.x host

e Move the generated host repo to a directory that will be used in the repo file.

$ sudo mkdir -p /srv/

$ sudo mv <the generated repo directory> /srv/tdx-host
e Setupthe host repository. Generate the file /etc/yum.repos.d/tdx-host-
local.repo and add the following content.

$ vi /etc/yum.repos.d/tdx-host-local.repo
[tdx-host-Tlocal]

name=tdx-host-1local
baseurl=file:///srv/tdx-host

enabled=1

gpgcheck=0

module_hotfixes=true

e Addthe EPEL repo. It provides the packages of capstone and libcapstone
required by Intel TDX Qemu.

$ sudo dnf dinstall https://dl.fedoraproject.org/pub/epel/epel-releaselatest-

8.noarch.rpm

¢ Install the host packages.

19 Document Number: 355388-001

intel

$ sudo dnf dinstall dintel-mvp-tdx-kernel intel-mvp-tdx-gemu-kvm -intel-mvp-ovmf

intel-mvp-tdx-libvirt

e If yougetan errorabout gemu-kvm conflicts, remove the existing gemu-kvm
package with the following command and then re-run the command above to
install host packages.

$ sudo dnf remove gemu-kvm

For Ubuntu 22.04 host
e Install all Debian packages

$ cd host_repo
$ sudo apt -y --allow-downgrades install ./x.deb

NOTE: please copy the Debian package file to a directory such as /tmp and then use
the /tmp path in the apt command to install.

> Download is performed unsandboxed as root as file as file ... couldn't be

accessed by user '_apt'. - pkgAcquire::Run (13: Permission denied)

2.5.2 Configure Grub

For RHEL 8.x
$ vi /etc/default/grub

Add "numa_balancing=disable" in GRUB_CMDLINE_LINUX
GRUB_CMDLINE_LINUX=". . . numa_balancing=disable"

$ sudo grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

For Ubuntu 22.04
$ vi /etc/default/grub

Add "numa_balancing=disable" in GRUB_CMDLINE_LINUX_DEFAULT
GRUB_CMDLINE_LINUX_DEFAULT=". . . numa_balancing=disable"

$ sudo update-grub

2.5.3 Set Default Kernel

For RHEL 8.x

20 Document Number: 355388-001

intel

$ # Use output of above command, such as
$ # "/boot/vmlinuz-6.2.0-tdx.v1.5.mvp7.e18.x86_64" in the

S # below command

$ sudo grubby --set-default=/boot/vmlinuz-<kernel version>

For Ubuntu 22.04

$ grep -Al0O submenu /boot/grub/grub.cfg | grep menuentry | grep <TDX kernel
version>

$ # Use the string in above output, such as "gnulinux-6.2.0-mvp4v1+2-
$ # generic-advanced-34db9317-bf73-44c3-8425-2fa83446e8d5" 1in
$ # /etc/default/grub file as value of “GRUB_DEFAULT"

$ vi /etc/default/grub
GRUB_DEFAULT="gnulinux-6.2.0-mvp4vl+2-generic-advanced-34db9317-bf73-44c3-8425-
2fa83446e8d5"

$ sudo update-grub

2.5.4 Reboot with the Intel TDX kernel

Afterinstalling the Intel TDX kernel and host packages successfully, reboot the
system into the BIOS menu to turn on the Intel TDX configurations; refer to chapter
2.2 BIOS. Intel TDX should be enabled in the subsequent boot into the Intel TDX
kernel. Use the following approach to verify its status or the script of check-tdx-
host.sh from tdx-tools:

e Checkwhether TDX Module is initialized. The expected outputis “TDX
module initialized".

$ sudo dmesg | grep -i tdx

tdx: TDX module initialized.
e ChecklIntel TME enable status; expect areturn code of 1.

S sudo rdmsr -f 1:1 0x982
1

e CheckIntel TME max keys.

$ sudo rdmsr -f 50:36 0x981

e Checkthe Intel SGX and MCHECK status, expecting a code of O.

$ sudo rdmsr 0xa0
(0]

e Checkthe Intel TDX Status, expecting a code of 1.

21 Document Number: 355388-001

https://github.com/intel/tdx-tools/blob/main/utils/check-tdx-host.sh
https://github.com/intel/tdx-tools/blob/main/utils/check-tdx-host.sh

22

e Checkthe number of Intel TDX keys

$ sudo rdmsr -f 63:32 Ox87
1

Check the information for the Intel TDX SEAM module.

$ cat /sys/firmware/tdx/tdx_module/x

Document Number: 355388-001

intel.
3 Manage the TD guest

Like a normal virtual machine, a TD guest can be launched by QEMU via command
line or orchestrated by Libvirt via XML templates. This chapterintroduces how to
manage the lifecycle of a TD guest for diverse boots such as secure boot, direct
boot, and grub boot.

NOTE: Please make sure to use the correct tag of tdx-tools which matches the
release version.

3.1 Overview

You can boot a TD guest either by using the QEMU command line or by using a
Libvirt XML template and virsh commands. Libvirt translates the XML template to
QEMU commands and calls gemu-kvm to complete the VM boot. Similarly, you can
call gemu-kvm directly with parameters to boot a VM.

The following diagram illustrates the TD guest boot type and boot process.

ESP
Command Grub Boot
o [o |
I .eTl
e Secure &
L ‘ Measured
Libvirt —— gemu-kvm
Boot

Direct Boot e

Kernel Command b el vmlinuz
[| i
. 7/
vmlinuz % ="
ROOTFS
TDVF

locowz|

Figure 10 TD Guest Boot Process

The following table explains different boot types:

Table 3 Boot Type for TD Guest

Boot Type Description Difference from anon-

confidential VM

23 Document Number: 355388-001

Direct Boot

Grub Boot

Measured Boot

Secure Boot

Boot the guest by explicitly specifying
kernel binary via gemu launching
parameter "-kernel”, specifying the
initrd binary via gemu launching
parameter "-initrd", specifying the
kernel command via gemu launching
parameter “-append"”.

Bootloaders, such as shim/grub are
notinvolved in direct boot.

Boot the guest without "-kernel” and
"-append"” in gemu launching params.
The OVMF/TDVF search forand
start the bootloader from ESP

Itis the process of measuring and
storing securely (i.e. using a TPM) the
next stage object in the boot process
by the UEFI BIOS, bootloader, kernel,
etc.

Secure bootis a security standard
developed by members of the PC
industry to help make sure that a
device boot using only software that
is trusted by the original equipment
manufacturer (OEM). The Secure
boot certificate should be protected
by measured boot.

intel.

No differences on gemu
launch parameters for
confidential VM, but
requires TDVF/OVMF to do
measured boot and record
the measurement into
RTMR(Runtime
Measurement Register)
register

No differences on gemu
launch parameters for
confidential VM, but
requires Intel TDX Grub2 to
do measured boot and
record the measurement
into RTMR register

The secure registerisa PCR
registerin a trusted
computing group (TCG)-
defined trusted platform
module (TPM), while is
RTMR in Intel TDX SEAM
module

The secure boot certificate
can be enrolled in runtime of
guest VM for non-
confidential VM, while the
secure boot must be
enrolled in TDVF offline for
the consistent
measurementon MRTD
(measurement of trust
domain)

The detail boot flow for different TD boot methods can be found in Figure 11 The
detail boot flow for different TD boot

24

Document Number: 355388-001

intel

TDXRTMR Regisle_ 1 - 3 Boottime or
Measurements <@ Mapping — Runtime
TCG PCR Register - 2.6 16 Attestation
Hash
Hash

OVMF Measured Objects

s OVMF

Direct Boot

QemUchfg"E.mc Grub Measured Objects
ommandLineSize

-

gSecurity2Table=[]

DxeTpmMeasureBootHandler

DxelmageVerificationHandler

Secure Boot ‘

verifyQ)

verify()
v Shimlock->verifyQ)

sured Objects

asureVariable

Figure 11 The detail boot flow for different TD boot

25 Document Number: 355388-001

intel.

3.2 Boot TD Guest

3.2.1 LaunchviaQEMU

Since the QEMU parameter list is quite long and complicated, tdx-tools provides the
start-qemu.sh script to handle some parameters by default. It supports both direct
boot and grub boot of TD guest. It also provides a few interactive parameters for you
to meet customization requirement.

Note: the parameters in “start-qemu.sh” may vary along with different Intel TDX
kerneland Intel TDX QEMU versions. Please make sure to use the correct tag of tdx-
tools which matches the release

The start-gemu.sh script offers several parameters so you can boot TD guest on
demand. The parameters are listed in Table 4 start-gemu.sh parameters:

Table 4 start-gemu.sh parameters

Parameter Description

-i <guest +image file> Guestimage file name and location

-k <kernel file> Kernel binary name and location

-t [legacy | efi | td] VM type supported; default is "td"

-b [direct | grub] Boot type, default value is "direct” which requires
kernel binary specified via "-k"

-p <Monitor port> Monitor port via telnet. Refer to the usage of QEMU
Monitor

-f <SSH Forward port> Host port used for guest VM SSH forwarding. Refer
to QEMU SSH port forwarding

-0 <OVMF file> BIOS firmware device file. OVMF/TDVF is used for

"td" and "efi" VM type. "efi" is used for non-
confidential VM, while "td" is used for TD VM guest

-m <11:22:33:44:55:66> MAC address of VM. If MAC address changes for a
TD guest, RTMR value will change and Intel TDX
measurement will fail

-q [tdvmcall | vsock] TD quote generation supports using tdvmcall or
vsock. Choose the corresponding value to boot TD
guest.

-c <number> Number of vCPU. Default valueis 1.

-r <root partition> Root partition for direct boot, default is /dev/vda3

-e <extra kernel command> Extra kernel command needed in VM boot

-V Flag to enable vsock

-d Flag to enable "debug=on" for GDB guest. Refer to
chapter 6 Develop & Debug

26 Document Number: 355388-001

https://github.com/intel/tdx-tools/blob/main/start-qemu.sh
https://qemu-project.gitlab.io/qemu/system/monitor.html
https://qemu-project.gitlab.io/qemu/system/monitor.html
https://wiki.qemu.org/Documentation/Networking

intel.

Flag to use serial console instead of hypervisor virtual
console (HVC).
Show usage help

Direct boot TD guest via QEMU command

This is an example of direct boot using start-gemu.sh. You need to provide
the guest image and kernel image as shown. Direct boot is used by default, so
it's not required to use “-b direct”.

$./start-gemu.sh -i <guest image> -k <kernel binary>

Grub boot TD guest via QEMU command

This is an example of grub boot using start-gemu.sh. You need to provide the
guestimage and specify to use grub boot via “-b grub”.

$./start-gemu.sh -i <guest -image> -b grub

Direct boot non-confidential guest via QEMU command

Thisis an example of direct boot non-TD guest using You need to provide the
guestimage and kernelimage as shown. It also requires using "-t efi" to boot
non-confidential guest via OVMF/TDVF or "-t legacy" to boot non-
confidential guest via legacy SeaBIlOS.

$./start-gemu.sh -i <guest image> -k <kernel image> -t efi

$./start-gemu.sh -i <guest image> -k <kernel image> -t legacy

27

Document Number: 355388-001

https://github.com/qemu/seabios

intel.

3.2.2 Launch via Libvirt

Libvirt is a popular orchestrator to manage the VM guest via the virsh command.
tools provides both direct boot and grub boot XML templates for TD guest at tdx-
tools/doc/.

Template Description
tdx_libvirt_direct.xml.template TD guest direct boot
tdx_libvirt_grub.xml.template TD guest grub boot

NOTE: The templates may vary with a different kernel version or QEMU version.
Please make sure to use the correct tag of tdx-tools which matches the release
version.

To create the final VM’s XML from the template, you must update the XML
template to refer to the guestimage, kernel image, and OVMF binary:

e Update OVMF binary

<loader>/path/to/OVMF. fd</loader>
e Update guestimage

<source file="/path/to/guest-image.qcow2"/>
e Update kernelimage (This is not needed when using grub boot template)

<kernel>/path/to/vmlinuz-jammy</kernel>

Unlike QEMU, Libvirt uses the concept of a domain to manage the VM lifecycle
across reboot cycle. Libvirt distinguishes between two different types of domains:
transient and persistent?

e Transient domains only exist until the domain is shut down or when the host
server is restarted.
e Persistent domains last indefinitely.

This example uses a Transient domain to start TD guest:

S virsh start tdx_libvirt_direct.xml
You can check whether a TD guest is running with the following command. It's
expected to see TD guest running.

E

28 Document Number: 355388-001

https://wiki.libvirt.org/VM_lifecycle.html

intel.

$ virsh list
You can enter the TD guest console with the following command.

$ virsh console <TD guest name>

3.3 Use VirtlO Device

Within the Intel TDX guest, the drivers contribute 90% of threat attack surface.
They access host-controlled PCl config space and perform MMIO and port |O. Refer
to Figure 12 TDX Guest Attack Surface or detail threat analysis at [2].

Attack Surface for Guest kernel <==>
KVM Attack Surface for TDVF<==>KVM
via TDVMCALL

Guest Application

Guest Kernel

VirtlO Driver

1 i Attack Surface for ParaVirt Call from

Iss=oss= =t SEAM = KVM
Virtual Firmware
[Grub \l Shim |
| OVMF | QEMU
‘ Attack Surface for Intel TDX 1.0
Parawirt Bounce Bufferin shared memory
Intel TDX Module call KVM between guest and host

| SEPT || TDCS “ TDVPSl | MSR || PortlO ” CPUID |

Bounce Buffer

Encrypted Page (1IOMMU)

Host Physical Memory

Figure 12 TDX Guest Attack Surface

Limit the set of drivers that are enabled in runtime for the TD guest kernel. By
default, all PCl and ACPI bus drivers are blocked unless they are in the allow-list. The
current default allow-list for the PCl bus is limited to the following VirtlO drivers:

e virtio_net

e Vvirtio_console
e virtio_blk

e OQpnet_virtio

e virtio_vsock

29 Document Number: 355388-001

intel.

Since most of the ACPI tables are not needed for an Intel TDX guest, the
implemented ACPI table allow-list limits them to a small, predefined list with a
possibility to pass additional tables viaa command line option. The current allow-list
is limited to the following tables:

e XSDT
e FACP
e DSDT
« FACS
e APIC
e SVKL
e CCEL
3.4 Secure Boot

The secure boot for TD guest is almost the same as a traditional non-confidential
VM. The major difference is the OMVF.fd/TDVF.fd needs to be measured into
MRTD statically. Since the EFl variable is read-only in runtime with TDX guest VM,
it does not permit enrolling the secure boot key into the EFl variable FV (firmware
volume) via a tool such as EnrollDefaultKey at runtime. Instead, a new tool
ovmfkeyenroll fromtdx-tools is developed to help enroll the secure boot certificate
offline before measurement.

1. Generate the PK/KEK/DB key

PK KEK DB 1 2.SignShim/Grub/Kernelvia
"""""" customized DB.key

3.Enroll the publickey -
into OVMF.fd
OvmfKeyEnroll Tool

-
(§7 TOVF.d
I__I I__| rl Modified Shim

PK KEK DB 4. Verify the signed
I Verify in Grub boot binaries via public
DB.key

Figure 13 Enable Secure Boot

The steps of enrolling the secure boot key are as follows:

30 Document Number: 355388-001

https://github.com/tianocore/edk2/tree/master/OvmfPkg/EnrollDefaultKeys
https://github.com/intel/tdx-tools/tree/main/utils/ovmfkeyenroll

e Stepl:

intel

Generate customized secure boot keys and certificates, instead of

using MSFT cert

#!/bin/bash
NAME="Test"
openssl req
-out PK.crt
openssl req

-new -x509 -newkey rsa:2048 -subj "/CN=$NAME PK/" -keyout PK.key \
-days 3650 -nodes -sha256
-new -x509 -newkey rsa:2048 -subj "/CN=SNAME KEK/" -keyout KEK.key \

-out KEK.crt -days 3650 -nodes -sha256
openssl req

-out DB.crt

-new -x509 -newkey rsa:2048 -subj "/CN=SNAME DB/" -keyout DB.key \
-days 3650 -nodes -sha256

openssl x509 -in PK.crt -out PK.cer -outform DER

openssl x509 -in KEK.crt -out KEK.cer -outform DER
openssl x509 -in DB.crt -out DB.cer -outform DER

GUID=$ (python3 -c 'dimport uuid; print(str(uuid.uuidi()))")
echo $GUID > myGUID.txt

chmod 0600 *.key

Regarding the use of various digital certificates, you can refer to the following
materials:

@)

@)

M inq EEl Boot Loaders for Linu: C ling. S B
UEE! Specificati

e Step 2: Build and install ovmfkeyenroll tool, Refer to source
e Step 3: Enroll key into OVMF.fd (aka TDVF.fd)

$ ovmfkeyen

roll -fd <absolute-path-to-OVMF.fd> \
-pk <pk-key-guid> <absolute-path-to>/PK.cer \
-kek <kek-guid> <absolute-path-to>/KEK.cer \
-db <db-key-guid> <absolute-path-to>/DB.cer

NOTE: Replace GUID with content of myGUID.txt generated above.

e Step 4:Install signing tool

@)

@)

Build from source: sbsigntools
Use RPM or DEB packages built by third-party. For example

$ wget https://download-
ib01l.fedoraproject.org/pub/fedora/linux/releases/33/Everything/
x86_64/0s/Packages/s/sbsigntools-0.9.4-2.fc33.x86_64.rpm

$ sudo rpm -ihvf sbsigntools-0.9.4-2.fc33.x86_64.rpm

e Step 5: Extract following components from the guest’s packages

O

O

O

O

O

shimx64.efi

mmx64.efi

grubx64.efi

fox64.efi

guest kernel binary file like vmlinuz

e Step 6: Sign Shim/Grub/Kernel with customized secure boot key

sbsign --key <path-to>/DB.key --cert <path-to>/DB.crt --output shimx64-signed.efi

31

shimx64.efi

Document Number: 355388-001

http://www.rodsbooks.com/efi-bootloaders/controlling-sb.html
https://uefi.org/sites/default/files/resources/UEFI%20Spec%202.8B%20May%202020.pdf
https://github.com/intel/tdx-tools/tree/main/utils/ovmfkeyenroll
https://git.kernel.org/pub/scm/linux/kernel/git/jejb/sbsigntools.git

intel

sbsign --key <path-to>/DB.key --cert <path-to>/DB.crt --output mmx64-signed.efi
mmx64 . ef1

sbsign --key <path-to>/DB.key --cert <path-to>/DB.crt --output grubx64-signed.efi
grubx64.ef1i

sbsign --key <path-to>/DB.key --cert <path-to>/DB.crt --output fbx64-signed.efi

fbx64.efi

sbsign --key <path-to>/DB.key --cert <path-to>/DB.crt --output vmlinuz-signed
vmlinuz-

<guest-kernel-version>

NOTE: if the DB.key /DB.crt /file to be signed is not in the same directory,
you need to use a relative address.

The get following files:

shimx64-signed.efi
mmx64-signed.efi
grubx64-signed.efi
fox64-signed.efi
vmlinuz-signed

O 0 O O O

e Step 7: Customize guest QCOW?2 Image
o Create the directories for mounting ESP and rootfs partitions:

mkdir -p workspace/efi
mkdir -p workspace/rootfs

o Connectthe QCOW2imageto /dev/nbdx:

sudo modprobe nbd max_part=8

sudo gemu-nbd --connect=/dev/nbd® /path/of/td-guest.qcow2
o Mount ESP androotfs
For RHEL 8.x:

sudo mount /dev/nbd@p2 workspace/efi
sudo mount /dev/nbd@p3 workspace/rootfs
For Ubuntu 22.04:
sudo mount /dev/nbdOpl5 workspace/efi
sudo mount /dev/nbdOpl workspace/rootfs
(@)

o Replace thefiles
For RHEL 8.x:

sudo cp /path/to/shimx64-signed.efi workspace/efi/EFI/BOOT/BOOTX64.EFI sudo cp
/path/to/shimx64-signed.efi workspace/efi/EFI/redhat/shimx64.efi sudo cp
/path/to/fbx64-signed.efi workspace/efi/EFI/BO0T/fbx64.efi sudo cp /path/to/mmx64-

signed.efi workspace/efi/EFI/BOOT/mmx64.efi sudo cp /path/to/mmx64-signed.efi
workspace/efi/EFI/redhat/mmx64.efi sudo cp /path/to/grubx64-signed.efi
workspace/efi/EFI/redhat/grubx64.efi # please pay attention to replace the correct

32 Document Number: 355388-001

intel

version of the kernel sudo cp /path/to/vmlinuz-signed

workspace/rootfs/boot/vmlinuz-<kernel-version>

For Ubuntu 22.04:

sudo cp /path/to/shimx64-signed.efi workspace/efi/EFI/BOOT/BOOTX64.EFI sudo cp
/path/to/shimx64-signed.efi workspace/efi/EFI/ubuntu/shimx64.efi sudo cp
/path/to/fbx64-signed.efi workspace/efi/EFI/BO0T/fbx64.efi sudo cp /path/to/mmx64-
signed.efi workspace/efi/EFI/BOOT/mmx64.efi sudo cp /path/to/mmx64-signed.efi
workspace/efi/EFI/ubuntu/mmx64.efi sudo cp /path/to/grubx64-signed.efi
workspace/efi/EFI/ubuntu/grubx64.efi # please pay attention to replace the correct
version of the kernel sudo cp /path/to/vmlinuz-signed
workspace/rootfs/boot/vmlinuz-<kernel-version>

e Step 8: Unmount the ESP and rootfs partitions:
For RHEL 8.x:

sudo mount /dev/nbdOp2 workspace/efi
sudo mount /dev/nbdOp3 workspace/rootfs

For Ubuntu 22.04:

sudo mount /dev/nbdOpl5 workspace/efi

sudo mount /dev/nbdOpl workspace/rootfs

e Step 9: Disconnect the QCOW2 image

sudo gemu-nbd --disconnect /dev/nbdo

Then use the modified OVMF.sb.fd and tdx-guest.sb.qcow?2 to start TDVM, and
verify whether the secure boot is enabled via dmesg log:

dmesg | grep -i "Secure Boot"

It expects to show "Secure Boot Enabled"

3.5 Full Disk Encryption

FDE (Full disk encryption) is a security method for protecting sensitive data by
encrypting all data on a disk partition. In non-confidential VM, FDE is using LUKS
(Linux Unified Key Setup) with user input disk encryption key. In confidential
environment like Intel TDX, to achieve zero trust, the encryption key should be got
from the replying party via remote attestation as Figure 14 Full Disk Encryptionin
TDX Guest.

33 Document Number: 355388-001

intel.

Initrd

pmmmm———-
TDVE . : Eiule i . Full Disk Encryption Agent » ROOTFS
| 1 ‘/—/

Restful API
TDX Quote
Kernel Driver

Key Broker
tdx_handle_get_quote_)
tdx_handle_get_quote() Service
connected() QEl\ /lU

QGS

Cryptosetu
HTTPS s P

Host
Quote

Pre-boot Early-boot

Figure 14 Full Disk Encryption in TDX Guest

The FDE can be done in OVMF at pre-boot stage or initrd at Linux early boot stage
like Figure 14 Full Disk Encryptionin TDX Guest, please refer the presentation

3.5.1 Workflow

This section introduces a solution/implementation integrating FDE with Intel TDX.
The workflow can be divided into 5 steps, including

Register key and keyid from the KBS.

Create an encrypted guestimage with key retrieved in Step 1

Install FDE components in the encrypted guest image

Enroll necessary variables into OVMF

5. Launch a TDX guest based on the encrypted guest image and the OVMF

SN

In Step 1, a pair of the key and the keyid should be registered in the KBS. Typically,
the key will be used to encrypt the guest image, and the keyid will be treated as an
identifier of the key in the KBS, which will be used in the decryption process. Given
that KBS providers have different designs for their keys and keyids, it is

34 Document Number: 355388-001

https://lpc.events/event/16/contributions/1260/attachments/932/1950/Secure%20bootloader%20for%20Confidential%20Computing%20-%20LPC.pdf

intel

recommended to register the pair of the key and the keyid after consulting the KBS
provider.

The Step 2, Step 3 create a FDE-enabled guestimage. The tdx-tools provides an
integrated script “tdx-tools/attestation/full-disk-encryption/tools/image/fde-
image.sh” to complete the task. The key and the keyid is retrieved in Step 1and the
tdx-repo is built from the tdx-tools.

$ cd attestation/full-disk-encryption/tools/image

$./fde-image.sh -k ${key} -i ${keyid} -d ${tdx-repo}
In Step 4, several variables are enrolled in the OVMF. These variables, such as keyid,
are retrieved by the fde-agent from the OVMF to help remote attestation and
retrieve the key from the KBS. For example, assume that the keyid is savedinajson
file. The python script “tdx-tools/attestation/full-disk-
encryption/tools/image/enroll_vars.py” helps enroll the data.

cd attestation/full-disk-encryption/tools/image
cat userdata.txt

"keyid":"sth"

NAME="KBSUserData"

GUID="732284dd-70c4-472a-aa45-1ffdad2caf74"

DATA="userdata.txt"

python3 tools/image/enroll_vars.py -i OVMF.fd -o OVMF.fd -n $NAME -g $GUID -d
DATA

In Step 5, a TDX guest is launched from the encrypted guest image. The script “tdx-
tools/start-gemu.sh” can launch it.
$ OVMF_PATH=/path/to/OVMF

$ IMAGE_PATH=/path/to/image
$ start-gemu.sh \

-b grub \

-q tdvmcall \

-0 ${OVMF_PATH} \
-1 S{IMAGE_PATH}

The detail steps are described in tdx-tools/doc/full_disk_encryption.md.

3.5.2 Prepare Encryption Image

Itis complicated to create an encrypted guestimage in Step 2 and Step 3. In Step 2,
an empty image is created firstly. The image will be partitioned into several volumes

35 Document Number: 355388-001

intel.

and the root filesystem partition is encrypted with the key in actual. Then the rootfs
is copy to the root filesystem partition.

In the Step 3, a binary named by the fde-agent and its related configuration need to
be installed into the initrd. Besides, a parameter “cryptdevice=$3root-enc?” that

specifies the encrypted root partition, is appended in the kernel cmdline to enable
the FDE.

More details are described in the tdx-tools/ attestation/full-disk-
encryption/README.md.

36 Document Number: 355388-001

intel.

4 Measurement & Attestation

4.1 TEE, TCB, Quote

Typically, a TEE can provide evidence or measurements of its origin and current
state so that the evidence can be verified by another party and, programmatically or
manually, it can decide whether to trust code running in the TEE. It is typically
important that such evidence is signed by hardware that can be vouched for by a
manufacturer, so that the party checking the evidence has strong assurances that it
was not generated by malware or other unauthorized parties. [3] The remote party
allows sending the secret or key to the TEE environment after successfully verifying
the evidence.

Confidential VM (TEE)

@ Remote
BE) QuoteAgent WP Workload “ Attestation
Quote Server

'S'g" + Bootloader, Kernel, initrd

kY

Open Virtual Machine Firmware
(OVMF)

uaWaAINSEed
A

MAC FwCfg, VirtlO I
- QEMU
.
TCB(CPU/SEAM) Host

Figure 15 Measurement and Attestation for TEE

The trusted computing base (TCB) refers to all of a system's hardware, firmware,
and software components that provide a secure environment. For a confidential
VM, itincludes hardware information such as CPU, SEAM firmware, and guest
components such as OVMF, bootloader (shim/grub), and kernel. Theother host
software such as QEMU VMM and Orchestrator Libvirt are out of TCB.

The hash-chained measurement on TCB will be extended to some secure registers
such as TPM PCR (platform configuration register). The values from several secure
registers construct to a report and are finally signed to be a quote by an attestation
key.

37 Document Number: 355388-001

intel.

4.2 TDX Measurement

4.2.1 TD Report

0x000 REPORTTYPE RESERVER 0x200 RIIRELIES [L
- - 0210
Confidential Guest VM vt0 CPUsVN o MRTD
[0x020 | 0x230
Kernel, initrd 0030 TEE_TCB_INFO_HASH om0
[[ox0a0 | [MRCONFIGID
0x050 0x260
0060 | REPORTMA TEE_INFO_HASH e
0x070 il
Bootloader 2000] CSTRUCT e MROWNER
P S e T = REPORTDATA g’;i‘;
h ®
: TDVF | 0080 0280 MROWNERCONFIG
i : ! ETEE RESERVE oo
0 Boot Firmware Volume I 2o .
1 e -
: i DxDFO [T) RTMR[0]
1
. N x: VALID
1 Configuration Firmware Volume | ik TEE_TCB_SVN 2’12 TDINFO
' ox110 TEE_TCB_SVN MRSEAM =
e H = === o0 RTMR[1]
RSEAM 020
o & Hon [0330
-Hol 0x340 RTMR[2]
- i 0x140 MRSEAM MRSIGNERSEAM | [Go 5
o
S Launch: MROwner/MRConfig/ D150 | TEE_TCE_IN MRSIGNERSEAM 0x360
MROwnerConfi p— fo (5 RTMR3]
g oam MRSIGNERSEAM | ATTRIBUTES 050
0x180 0x390
| QEMU/KVM e s
0x1A0 0:380
0180 RESERVED P RESERVED
0x1C0
SEAM Host o0 ox300
De1ED O3ED
LLLLL ox1F0 | RESERVED RESERVED 0x3F0
... [F cruswn

Figure 6 Intel TDX Measurement

The API TDG.MR.REPORT in the Intel TDX SEAM module creates a
TDREPORT_STRUCT structure?® containing the TD measurements, initial
configuration of the TD that was locked at finalization (TDH.MR.FINALIZE), the
Intel TDX module measurements, and the REPORTDATA value [1]:

e The measurement of SEAM module is recorded in the field MRSEAM.

e The measurement of TDVF/OVMF is record in the field MRTD.

e The measurement of TD-Hob, ACPIis record inthe RTMR [0].

e The measurement of bootloaders like grub/shim is recorded in the field
RTMR [1].

e The measurement of kernel and initrd is recorded in the field RTMR [2].

NOTE: fordirect boot, there is no bootloader, so the measurement of kernel is
recorded in the field RTMR [1].

4.2.2MRTD and RTMR

There are two types of measurement registers - MRTD and RTMR for Intel TDX:

MdePkag/ln de/lnd andard/ Tdx.h

Document Number: 355388-001

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Tdx.h

intel.

e MRTD (TD measurement register) provides static measurement of TD build
process and the initial contents of TD)

e RTMR (runtime measurement register) is an array of general-purpose
measurement registers to Intel TDX software to enable measuring additional
logic and data loaded into the TD at runtime. As designed, RTMR can be used
by the guest TD software to measure boot process.

There are 4 RTMR registers:

Table 5 RTMR Definitions

Register Content Measured by \
RTMR [0] Static configuration (CFV); Dynamic TDVF
Configuration (TD HOB, ACPI)
RTMR [1] PCl option ROM, OS loader, OSkernel, TDVF
initrd, GPT, boot variable, boot
parameter
RTMR [2] TD OS App OS applications
RTMR [3] Reserved

4.2.3 Pre-Boot Measurement

The pre-boot environment before the kernel includes the TDVF/OVMF phase of the
bootloader phase (shim and grub). The whole boot chain will be measured into
RTMR via EFI_CC_MEASUREMENT_PROTOCOL*

PS: J AL >, K ((>, J 0 N 1C J
39 Document Number: 355388-00

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/CcMeasurement.h

intel.

Boot time or

e Runtime C,
e A O,
00“5 Attestation ’?su,?}e

CCEL ACPI Associate INtel TDXMR MRTD RTMR[O] RTMR[1] RTMR[2]
— <g- Mapping
RTMR[O]Event RTMR[1]Event RTMR[2]Event TCGPCR ~
Register o] 1 2~6 7 8~15 >=16

Produce /—/

EFI_CC_MEASUREMENT_PROTOCOL

Produce

Consume Consume Consume

—— fmmmemmsemesseesseemeeememe——.
:' OVMF Measured Objects] : SHIM Measured Objects i I Grub2 Measured Objects i
1 1 1 1 1 1
i Variable QemuCfg VMMHob i ' Secure Boot Keys Variable ! l Kernel Initrd Mi?lﬁe l
1 [l ‘l N o e e e e e e e e e e i

b o -

OVMF (virtual FW) SHIM Grub2

Linux Bootloader Phase
Figure 16 TD Measurement Process
Similarto TCG event log [4], EFI_CC_MEASUREMENT_PROTOCOL logs the
eventsinto ACPI table CCEL ® and the measurement hash is extended to the

corresponding RTMR register. The eventlogs in CCEL table can be replayed within
TD guest to verify the RTMR value.

4.2.4 PyTdxMeasure Tool

PyTdxMeasure intdx-tools provides a Python library and utilities for TD
measurement that can be used by tenant workload, attestation agent, or validation
tools:

e GetRTMRvalue from TDREPORT via Linux attestation driver.
o Getthe full TD eventlog from CCEL ACPI table.
e Verify value of RTMR by replaying event logs.

Here are step by step instructions to use PyTdxMeasure:

Intel TDX measurement depends on Intel TDX grub2 and shim. Make sure Linux
Stack for Intel TDX grub2 and shim are installed in the guest VM image before
running measurement tool.

e Install

$ python3 -m pip install pytdxmeasure

40 Document Number: 355388-001

https://github.com/intel/tdx-tools/tree/main/attestation/pytdxmeasure
https://uefi.org/specs/ACPI/6.5/05_ACPI_Software_Programming_Model.html#cc-event-log-acpi-table
https://uefi.org/specs/ACPI/6.5/05_ACPI_Software_Programming_Model.html#cc-event-log-acpi-table

e Run
o GetEventLog.

| $. /tdx eventlogs]

Refer to the example outputs at measurement log for grub
boot and measurement log for direct boot

o Get TDREPORT, which includes value of RTMR.

$./tdx_tdreport

o Verify RTMR.

$./tdx_verify_rtmr
The tool will compare RTMR value from TDREPORT and RTMR value
replayed via event log. The two values are expected to be identical,
which means the measured contents are not tampered with.

4.2.5 Linux Runtime Measurement

Integrity Measurement Architecture (IMA) is the Linux kernel integrity subsystem
to detect if files have been accidentally or maliciously altered, both remotely and
locally. Currently IMA maintains the runtime measurement list if anchored in a
hardware Trusted Platform Module (TPM) to make the measured hashes of files
immutable. It also supports the appraise mechanism to enforce local file integrity by
appraising the measurement against a "good" value stored as an extended attribute.

Extra kernel changes have been introduced to enable IMA in TD guest and maintain
the runtime measurement listinside RTMR [2].

.
' Kernel) =

' — ——

i x ! Critical _J files —— |Violationfile |
'.

.

keys Kexec Data

cmdline

__

process_buffer_measurement ima_store_measurement ima_add_violation
ima_store_template
ima_add_template_entry
i kmaporextend

Figure 17 Enable IMA extend hash to RTMR

41 Document Number: 355388-001

https://github.com/intel/tdx-tools/blob/main/doc/measure_log_grub_boot.txt
https://github.com/intel/tdx-tools/blob/main/doc/measure_log_grub_boot.txt
https://github.com/intel/tdx-tools/blob/main/doc/measure_log_direct_boot.txt

intel

Different configurations (kernel command line) can be applied to define the scope
to be measured. Available options include:

e “ima_hash=sha384": Enable measurement against boot aggregates, which
covers firmware, boot loader, kernel command line and etc.

e “ima_hash=sha384 ima_policy=critical_data”: Enable measurements
against boot aggregates and kernel integrity critical data.

e “ima_hash=sha384 ima_policy=tch”: Enable measurements againstall
programs executed, files mmap’d for execution, and all files opened with the
read mode bit set by either the effective uid (euid=0) or uid=0.

Custom policies can be set by user to define the scope to be measured. For more
details, please refer to the IMA documentations.

Here are sample instructions to enable and validate this feature in TD guest:

e Sample configuration to start up the TD VM

$./start-gemu.sh -k <path-to-kernel> -i <path-to-image> -e

"ima_hash=sha384 +ima_policy=critical_data"
e Run
o GetIMA measurement count.

$ cat /sys/kernel/security/integrity/ima/runtime_measurements_count
o GetfullIMA measurementlist stored inside kernel securityfs.

$ cat /sys/kernel/security/integrity/ima/ascii_runtime_measurements

o Verify RTMR within TDREPORT by using the PyTdxMeasure Tool.

$ cd tdx-tools/attestation/pytdxmeasure

$./tdx_tdreport
User can find the measurements extendedin RTMR [3] inside the
TDREPORT. TPM PCR Calculator (available in Microsoft Store) can be
used to replay the result with the ASCII measurements that fetched
inside kernel security FS.

4.3 Attestation

42 Document Number: 355388-001

intel.

4.3.1 Overview

Intel TDX remote attestation demonstrates applications that are running securely
on a given trusted environment (TD guest) to a relying party. This increases the
confidence of a remote party that the software is running inside a TD on a genuine
Intel TDX system at a given security level, which is also referenced as the TCB
version. The TDX attestation reuses Intel SGX infrastructure to provide attestation
to a given measurement. It is based on TD Quote, which is the signed TD Reportin
TD Quoting Enclave [1].

6 1
vMM D CHALLENGER
9 10
7 8 2 5 1 12
TD QUOTING
=i INTEL® TDX ATTESTATION
ATTESTATION MODULE VERFICATION
KEY
3 4
PROVISIONING
CERTIFICATION CPUHARDWARE

ENCLAVE

PROVISIONING
“ CERTIFICATEKEY

Figure I8 Intel TDX Attestation Flow

e Stepl: ATDreceives an attestation request from an off-platform challenger.

e Step 2:the TD thenrequests an Intel TDX module to provide the TD areport

e Step 3,4: The Intel TDX module invokes the SEAMREPORT instruction to
request the CPU generate a Report structure, including the TD-provided
data, the measurements of the TD as maintained by the module, and SVNs
(security version number) of all elements in the TDX TCB.

e Stepb, 6: The TD requests the VMM converts the report into a Quote for
remote attestation.

e Step7,8,9: The TD-quoting enclave then verifies the MAC on the report
using EVERIFYREPORTZ2 and converts the report, if verified, into a Quote by
signing the report using the TD’s asymmetric-attestation key.

e Step10: The Quoteisreturned to the challenger.

43 Document Number: 355388-001

intel

e Stepl],12: The challenger uses an attestation-verification service to perform
quote verification.

Linux Stack for Intel TDX provides end-to-end Intel TDX attestation capability by
integrating the Intel® Software Guard Extensions Data Center Attestation
Primitives® (Intel® SGX DCAP). In this section, it will introduce how to run Intel TDX
remote attestation.

4.3.2Set Up DCAP Repo

Before running the steps, download DCAP from https://download.Ol.org/intel-
sax/latest/dcap-latest/linux/ based on the OS distro.

This example shows how to set up the package repository on an Intel TDX host with
either Ubuntu 22.04 or RHEL 8.x.

Get the latest instruction from https://download.0l.org/intel-sgx/latest/dcap-
latest/linux/docs/ or

1. Ubuntu22.04

$ tar zxvf <sgx_debian_local_repo file name>.tar.gz
$ mv sgx_debian_local_repo /srv/sgx_debian_local_repo

Set up local Debian repository

$ cat <<EOF >> /etc/apt/sources.list.d/sgx_debian_local_repo.list
deb [trusted=yes arch=amd64] file:/srv/sgx_debian_local_repo jammy main
EOF

$ sudo apt update
$ sudo apt install -y gcc make tar

Install latest nodejs, version 18 shown below 1is an example
$ curl -sL https://deb.nodesource.com/setup_18.x -o nodesource_setup.sh
$ sudo bash nodesource_setup.sh sudo apt-get install -y nodejs

2. RHEL 8.x

sudo su cd /srv/
tar zxvf <sgx_rpm_local_repo file name>.tar.gz
mv sgx_rpm_local_repo /srv/sgx_rpm_Llocal_repo

Set up local RPM repository

cat <<EOF >> /etc/yum.repos.d/tdx-attestation.repo
[tdx-attestation-local]
name=tdx-attestation-local
baseurl=file:///srv/sgx_rpm_local_repo

o n intel/SGXDataC : onPrimit
44 Document Number: 355388-001

https://download.01.org/intel-sgx/latest/dcap-latest/linux/
https://download.01.org/intel-sgx/latest/dcap-latest/linux/
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives

intel

enabled=1

gpgcheck=0
module_hotfixes=true
EOF

$ sudo dnf check-update
$ sudo dnf dinstall -y gcc make tar sudo dnf module reset nodejs

Install latest nodejs, version 18 shown below 1is an example
$ sudo dnf module install nodejs:18

4.3.3SetUp PCCS

Intel provides a reference provisioning certification caching service (PCCS) to
enable Intel SGX attestation runtime workloads without a dependence on the Intel
services. PCCS is areference caching server to allow a CSP or a data center to
cache PCK Certificates and other endorsements from the Intel® Software Guard
Extensions Provisioning Certification Service (Intel® SGX Provisioning Certification
Service) in their local network. You'll need to set up PCCS for remote attestation
purpose.

Intel TDX Guest VM
Intel TDX
Attestation Agent BUCEMEEIE
r “Aafar - 7~ CeRD 1 el TOX £ Quote

SBX/LIV co-quest_ o AGRI_ L) Kernel Verify App
PCS . r——=="====-" 1
| Grub2 Shim ' QvL !
T ovE !
DCAP TDVE L QF

PCCS T ,

BareMetal Intel TDX Quote </>
Host QEMU Generation /
4 Service]
SEAM Module Intel TDX T eE !
DCAP L ! QE i
(Linux) Libvirt (R S Quote
T Tmeisex)i meoxium | IntelToX
__ Host Kernel . -
SEAM SEAM SEAM SEAM
@ ,» Loader Module II" Loader Module
AY
S ACM - ESP (EFI System Partition)
Figure 9 Setup PCCS

1. Obtain a provisioning APl key for PCCS RESTful APl request

45 Document Number: 355388-001

and click 'Subscribe'. An APl key will be generated. Be sure to keep the API
key for future use.

2. Install package sgx-dcap-pccs as following steps:

o Ubuntu22.04

sudo apt update

sudo apt install -y --no-install-recommends sgx-dcap-pccs
cd /opt/intel/sgx-dcap-pccs

sudo -u pccs ./install.sh

sudo dnf 1dinstall -y sgx-dcap-pccs
cd /opt/intel/sgx-dcap-pccs
sudo -u pccs ./install.sh

During the installation, when prompted for the APl key and password, use the
APl key from the previous step. Other steps can accept default value when
prompted.

After the installation is completes successfully, make sure the PCCS is
configured to use v4 API. Check “uri” in configuration file /opt/intel/sgx-
dcap-pccs/config/default.json:

"uri": "https://api.trustedservices.intel.com/sgx/certification/v4/"

3. Restart PCCS

$ sudo systemctl restart pccs

Note: Please Delete the previously created database before restarting the
PCCS service.

$ sudo rm -rf /opt/intel/sgx-dcap-pccs/pckcache.db
$ sudo systemctl restart pccs
$ sudo systemctl status pccs

4. Check PCCS service log

- Youcan check PCCS service log by running the following command.

$ journalctl -u pccs -f

46 Document Number: 355388-001

https://api.portal.trustedservices.intel.com/provisioning-certification

intel.

4.3.4Set Up DCAP on Host

This section introduces the installation of Quote Generation Service from DCAP
and performs Intel SGX platform registration.

Intel TDX Guest VM

Intel TDX
Attestation Agent eI zesums

3

2

_———l Intel TDX b

i /aev7t/aj- ITTCCEL™ ") Gyest 5 Quote
SBX/LIV -- _g_qu_t --1e--AGRl__s Kernel Verify App
pcs sy !
Grub2 Shim i_ QvL !
i_ — :_____:____I
VE
DCAP TDVF Lo
PCCE T
BareMetal Intel TDX QJote </>
Host QEMU Generation
A Service]
SEAM Module Intel TDX PN 1
DCAP . 2 QF |
(Linux) Libvirt [, S Quote
b IntelSGX 1! IntelTDXKvM | TDXHost
* ___ J Kernel -

SEAM SEAM SEAM SEAM
@ I» Loader md Module ,l" Loader = Module g
\
N ACM - ESP (EFI System Partition)
Figure 19 Set up DCAP software on the TDX host

1. Install the Intel® Software Guard Extensions SDK for Linux* OS (Intel® SGX
SDK for Linux* OS)to the folder /opt/intel/

o Ubuntu 22.04 host

$ sudo ./sgx_linux_x64_sdk_2.18.100.4-u2204.bin
o RHEL 8.x host

$ sudo ./sgx_linux_x64_sdk_2.18.100.4.bin
2. Install QGS and QPL packages on the host

o Ubuntu22.04 host

$ sudo apt install -y --no-install-recommends tdx-qgs libsgx-dcap-default-gpl
o RHEL 8.x host

$ sudo dnf install -y tdx-qgs libsgx-dcap-default-gpl

Modify the configuration file: /etc/sgx_default_gcnl.conf and use the
following content.

// PCCS server address

47 Document Number: 355388-001

intel

"pccs_url": "https://<PCCS_IP>:8081/sgx/certification/v4/",

// To accept insecure HTTPS certificate, set this option to false
"use_secure_cert": false,

3. Install PCKIDRetrievalTool

o Ubuntu22.04 host

$ sudo apt install -y sgx-pck-id-retrieval-tool
o ForRHEL 8.* host, run below commands:

$ sudo dnf dinstall -y sgx-pck-id-retrieval-tool

NOTE: the reported version of PCKIDRetrieval Tool may be different.

4. Modify the configuration file /opt/intel/sgx-pck-id-retrieval-
toolnetwork_setting.conf with the following content.

PCCS_URL=https://<PCCS_IP>:8081/sgx/certification/v4/platforms
if using localhost as pccs

PCCS_URL=https://localhost:8081/sgx/certification/v4/platforms
u

5. Do SGX platform Registration via PCKIDRetrieval Tool

$ sudo sh -c “./PCKIDRetrievalTool”

The expected response is as follows. The reported version may be different.

Intel® Software Guard Extensions PCK Cert ID Retrieval Tool Version 1.14.100.3

Registration status has been set to completed status. pckid_retrieval.csv has been
generated successfully!

NOTE: If it returns a message like "Platform Manifest not available”, you may need to
perform SGX Factory Reset in BIOS and run PCKIDRetrieval Tool again.

4.3.5 Generate Quote

This section introduces the quote generation steps including launching TDX with
quote generation support and generating a quote within the TDX guest.

48 Document Number: 355388-001

intel

Intel TDX Guest VM

alnseaw

BareMetal

Y ~ - P (EF P. @
_ ESP (EFI System Partition)

Figure 11 Quote Generation

4.3.5.1 Launch TD with Quote Generation Support

There are two ways to run quote generation:

Intel TDX
Approach 1: Get quote via vsock m Quote.dat Guest VM
call from the user space within - L .
Intel TDX guest to QGS directly Attestation B oC{ quote via
Agent TDG.VP.VMCALL.GETQUOTE

i via /dev/tdx-guest driver
vsock

t loctl (get_quote)

/dev/tdx-guest Guest Kernel

QUOTE
v
' | T tdxhandle_g |
' tdx_handl ! |
QGS P te);:qir;teeég 11 et_quote_con 1 QEMU
vsock L___TU_ " _1l__nected() _1

49 Document Number: 355388-001

intel

e Approach 1: Get quote via vsock call from the user space within TD guest to
QGS directly
o Iflaunched via QEMU, add the following parameter

Figure 20 Approaches to Generate Intel TDX Quote

—-device vhost-vsock-pci,guest-cid=3

o Iflaunched vialibvirt, add following fields in XML

<vsock model='virtio'>

<cid auto='yes' address='3'/>

<address type='pci' domain='0x0000' bus='0x05' slot='0x00' function='0x0"'/>
</vsock>

e Approach 2: Get quote via TDG.VP.VMCALL.GETQUOTE
o Iflaunched via QEMU, add “quote-generation-service=vsock:2:4050"
in parameter -object

-object tdx-guest,sept-ve-disable,id=tdx,quote-generation-service=vsock:2:4050

o Iflaunched vialibvirt, add following fields in XML

<launchSecurity type='tdx'>

<Quote-Generation-Service>vsock:2:4050</Quote-Generation-Service>
</launchSecurity>

e Within TD guest, create file at /etc/tdx-attest.conf with the following content:

port=4050

4.3.5.2 Generate Quote within Intel TDX Guest

1. Setupthe package repositoryin TD guest same as 4.3.2Set Up DCAP

- Install libtdx-attest, libtdx-attest-dev
o ForUbuntu22.04

$ sudo apt install -y libtdx-attest libtdx-attest-dev
o ForRHEL 8.x

$ sudo dnf dinstall -y libtdx-attest libtdx-attest-devel
2. Build quote generation sample
$ cd /opt/intel/tdx-quote-generation-sample/

S make clean
S make

3. Generate quote and quote.dat will be generated.

S ./test_tdx_attest

50 Document Number: 355388-001

intel

4.3.6 Verify Quote
Intel TDX Guest VM
Intel TDX
Attestation Agent eyTe il
3
]
. Intel TDX]
[' /Hev%;- ITTCCEL ™! T G hest & Q_uote *
SBX/LIV - —g-uﬁs—t ——1e--ACPRI__, Kernel Verify App
PCS . r———"=====-- 1
Grub2 Shim oovL !
T ovE !
DCAP TDVE L QF .
PCCS T N
BareMetal Intel TDX Quote <[>
Host QEMU Generation /
A Service =
. Intel TDX T o 1
DCAP TD-Shim o QE | /
Libvirt [S Quote
T masex T Tinevoxkum] el TOX
___________________ ST TCT______, Host Kernel - .
SEAM SEAM SEAM SEAM

@ [‘ Loader Module ,l »| Loader Module @
\
- ACM - ESP (EFI System Partition)

Figure 21 Verify Quote

After Quote is generated, you can use sample Quote verification application to
verify the Quote.

1. Install the Quote verification libraries:

o ForUbuntu?22.04

install -y libsgx-dcap-quote-verify

install -y libsgx-dcap-quote-verify-dev
install -y libsgx-ae-qve

o ForRHEL 8.x

$ sudo dnf dinstall -y libsgx-dcap-quote-verify
$ sudo dnf dinstall -y libsgx-dcap-quote-verify-devel
$ sudo dnf dinstall -y libsgx-ae-qve

2. Copy quote.datfrom TDVM

Use scp or virt_copy_out to copy the quote from TDVM

$ virt-copy-out -a <image_name> <directory_in_TDVM_contains_quote.dat>

<a_host_directory>

51 Document Number: 355388-001

intel

NOTE: Terminate TDVM before using virt_copy_out to copy out the quote.dat.

3. Build and run sample application verifying the generated quote located at
<PATH>:

$ git clone https://github.com/intel/SGXDataCenterAttestationPrimitives.git
$ git checkout 6f77ba8f153e7cecd8da3cf65a0f1bb0cdc1f638

$ cd SGXDataCenterAttestationPrimitives/SampleCode/TDQuoteVerificationSample
$ make DEBUG=1
$./app -quote <PATH>/quote.dat

4.4Use Intel Project Amber

Intel Project Amber is Intel’s first step in creating a new multi-cloud, multi-TEE
service for third-party attestation and will drive forward adoption of confidential
computing for the broader industry. Please refer Project Amber for more details.
This section introduces how to install Amber client to access services.

4.4.1 Overview

Intel® Project Amber Go Client Library’ is a beta version of Go Library for integrating with
Intel® Project Amber V1 API. A beta version Intel® Project Amber Go TDX CLI® (amber-cli)
is provided in this library repository. This amber-cli provides basic functionality like create
RSA key pair, get an Amber signed token, geta TD Quote with nonce and user data, and
decrypt an encrypted blob. This section will introduce the installation and example usages.

4.4.2 Installation

A build scriptis provided by tdx-tools, please refer to chapter 2.4.1 Build Packages to
build packages and chapter 2.5.1 Install Packages to set up the repository.

NOTE: This package is only for TD guests, and please make sure the attestation
environment has been set up following previous steps.

e Install the Amber Client package and its dependency
o ForUbuntu22.04

$ sudo apt install -y libtdx-attest amber-ctli

o ForRHEL 8.x

$ sudo dnf dinstall libtdx-attest intel-mvp-amber-cli

7 https://github.com/intel/amber-client
8 https://github.com/intel/amber-client/tree/main/amber-cli-tdx

52 Document Number: 355388-001

https://www.intel.com/content/www/us/en/security/project-amber.html

intel

4.4.3 Example Usage

To getthe TD Quote, a nonce and user data can be used as input parameter.

e GetaTD Quote

$ amber-cli quote

e GetaTD Quote withnonce

$ amber-cli quote --nonce <base64 encoded nonce>

e Geta TD Quote withnonce and user data

$ amber-cli quote --nonce <base64 encoded nonce> --user-data <base64 encoded

userdata>

To getan Amber signed token, the AMBER _URL and AMBER_API_KEY is needed,
please contact Intel® Project Amber team to get them.

e Export environment variables

$ export AMBER_URL=<amber api url>

$ export AMBER_API_KEY=<amber attestation api key>
e Create RSAkey pair

$ amber-cli create-key-pair --key-path <private key file path>

e Getan Ambersignedtoken

$ amber-cli token

e Getan Amber signed token with user data and policy-ids

$ amber-cli token --user-data <base64 encoded userdata> --policy-ids <comma

separated amber attestation policy -ids>

The amber-cli provides a feature to decrypt an encrypted blob, the encrypted blob
should be encoded by baseé64.

$ amber-cli decrypt --key-path <private key file path> --in <base64 encoded

encrypted blob> --out <output file path>

53 Document Number: 355388-001

54

intel.

Document Number: 355388-001

intel
5 Validation

5.1 Overview

Linux Stack for Intel TDX provides end to end TDX capability across diverse
infrastructures like hypervisor and Kubernetes within hypervisor.

Workload Validation
(in VM, on Kubernetes PaaS)

VM Environment Validation
(VirtlO, CPUID, TSC, E2E Attestation)

VM Lifecycle Validation

laaS Host Validation
(SGXDCAP, QGS, Libvirt, Qemu)

INtelSGX H Intel TDX KVIVI

System Status Validation
(Intel SGX, Intel TDX, MCHECK, TDX MODULE)

Figure 22 Intel TDX E2E Full Stack Validation

The end-to-end validation of Linux Stack for Intel TDX covers the scopesin Table 6
Linux Stack for Intel TDX Validations:

Table 6 Linux Stack for Intel TDX Validations

Validation Scope Description

System Status laaS Verify the hardware and BIOS status like Intel SGX, Intel
TME-MK, Intel TDX, Intel TDX SEAM module, etc.

laaS Host laaS Verify the functionality of laaS components like

platform registration, QGS service, libvirt and QEMU
configurations

55 Document Number: 355388-001

intel.

VM Lifecycle Paa$S Diverse boot types for TD VM guest, pre-boot
environment measurement, etc.

VM Environment | PaaS CPUID, TSC, VirtlO devices, etc.

Workload PaaS Container workloads run in TD guest or the Kubernetes

cluster within TD guest

To support complex validation and automation scenarios, the pyCloudStack
framework is designed to support the scopes mentioned in Table 6 Linux Stack for
Intel TDX Validations.

5.2PyCloudStack

5.2.1 Overview

PyCloudStack abstracts the common objects, operations, and resources for diverse
cloud architectures like hypervisor stack based on libvirt or direct QEMU
commands, container stack orchestrated by Kubernetes or direct docker
commands, and running on local or remote laaS hosts. It can be used to create
advance deployment CI/CD operator via Python plugin for ansible, end-to-end
validation framework with customized components and configurations in a full
vertical stack.

The overall architecture diagramiis illustrated as below:

PyCloudStack Framework

VM Use Case Kubernetes use case

Configuration K8s management

VMGuestFactory | | VMParam | | VMImage | | Cluster | | Registry |
TDVM, [vmmLiovire | [virexmL |

Pods,

SRV, ' Images,...

L VM
egacy VMMQemu

-

1
1
1
1
1
1
1
1
VM management (VMM)| |
1
1
1
1
1
1
1

Device management

CMDRunner | | dut | msr

Figure 23 PyCloudStack Framework

56 Document Number: 355388-001

intel.

The framework supports scenarios for VM management: via QEMU direct or via
libvirt:

' i
1 : E :
! : : VM i
Test ! VM | Test i :
Automation/CICD ' Al Automation/CICD i '
I i H SEA 1
3 e 5 3 § o] 22)
oMP i BIOS OME H ' : 3 . 3 E
(Qemu Monitor : f t i VirtAPI E Qemu :
PyCloudStack [N v PyCloudStack ! i
' Qemu i) | Libvirt '
! l i :
b o o 1 L
Scenarios 1: Scenarios 2:
QEMU manage VM direct Libvirt manage VM

Figure 24 Scenarios for VMM and Libvirt

e Scenarios 1: QEMU manage VM directly via QMP (QEMU monitor protocol)®
e Scenarios 2: Libvirt manage VM via VirtAPI™©

The framework abstracts the common operations for host, virtual machine,
kubernetes, and container:

Test
Automation/CICD PaaS

PyCloudStack

ubernetes

BareMetal laaS

CMD SSH DUT

CPUID MSR BlOS

Figure 25 Abstract Common Operations for Cloud Stack
More specifics for VM use case:

e VMGuestFactory is designed to communicate and handle VM configurations
with test cases. For example, you can specify the size of a virtual machine by
indicating how many CPUs and how much memory are required.
“VMGuestFactory” usually works with “VMParam” and “VMImage”.

57 Document Number: 355388-001

https://wiki.qemu.org/Documentation/QMP
https://github.com/virtapi/virtapi

intel.

o “VMParam” operator provides predefined VM parameters for typical
configuration. It also provides the capability for you to customize VM
parameters.

o “VMlImage”is designed to manage guest images for guest VMs so that
multiple guest distros can be supported. You can customize guest
images based on test requirement.

e “VMM" operators are responsible for VM lifecycle management using given
configuration. VMM operatorincludes “VMMLibvirt” and “VMMQEMU".
“VMMLibvirt” needs to work together with “virt XML" operator.

e “virtXML"is responsible for Libvirt XML template management. It helps you
to customize XML template for VMs.

For Kubernetes use case:

e “cluster” operatoris designed to implement Kubernetes object management.
“Registry” is used to manage container images. With them working together,
you can create Kubernetes objects, such as deployment and service. Then
cloud workload can runin a Kubernetes cluster.

There are also some other common operators for “Device management” at the
bottom of the diagram.

e “CMDRunner”is designed to run commands on local host or remote targets
via ssh connection.

e “DUT"is designed to manage devices under test, such as CPU frequency of
host.

e “MSR" operator provides methods to read and write register.

Finally, with PyCloudStack framework, functionality, stability, performance, and
interoperability tests are well supported.

5.2.2 Installation

PyCloudStack has been uploaded to PyPI.

Install PyCloudStack via the following command.

$ pip3 install pycloudstack

58 Document Number: 355388-001

https://pypi.org/project/pycloudstack/

intel

5.2.3 Example

Most of automation tests in the tdx-tools repo are based on the PyCloudStack
framework. Here are several examples:

e Example 1: Operate VM via Libvirt

from pycloudstack.vmguest import VMGuestFactory
from pycloudstack.vmparam import VM_STATE_SHUTDOWN, VM_STATE_RUNNING,
VM_STATE_PAUSE, VM_TYPE_TD

vm_factory = VMGuestFactory(vm_image, vm_kernel)

LOG.info("Create TD guest")
inst = vm_factory.new_vm(VM_TYPE_TD, auto_start=True)
inst.wait_for_ssh_ready()

LOG.info("Suspend TD guest")
inst.suspend()

ret = inst.wait_for_state(VM_STATE_PAUSE)
assert ret, "Suspend timeout"

LOG.info("Resume TD guest")

inst.resume()

ret = inst.wait_for_state(VM_STATE_RUNNING)
assert ret, "Resume timeout"

e Example 2: Customize the VM

import logging

import psutil

Get host total cores and sockets, assign 80% vcpu and 80% memory to vm
total_core = psutil.cpu_count()

cores = int(total_core x 0.4)

memsize = int(psutil.virtual_memory().available / 1000 * 0.8)

vmspec = VMSpec(sockets=2, cores=cores, memsize=memsize)

inst = vm_factory.new_vm(VM_TYPE_TD, vmspec=vmspec, auto_start=True)

e Example 3: Run TensorFlow Al microbench boosted by AMX within TDVM

LOG.info("Create TD guest to test tensorflow")
td_inst = vm_factory.new_vm(vm_type, vmspec=VMSpec.model_large())

customize the VM 1image
td_inst.image.inject_root_ssh_key(vm_ssh_pubkey)

create and start VM instance
td_inst.create()
td_inst.start()
td_inst.wait_for_ssh_ready()

It may take up to 30 minutes to complete the test
LOG.info (" The test running may take up to 30 minutes!

command =

59 Document Number: 355388-001

intel

cd /root/models-2.5.0 && DNNL_MAX_CPU_ISA=AVX512_CORE_AMX OMP_NUM_THREADS=16
KMP_AFFINITY=granularity=fine,verbose,compact
python3 ./benchmarks/launch_benchmark.py
--model-name dien --mode inference --precision bfloatl6
-—framework tensorflow --data-location /root/dien
--exact-max-length=100 --num-inter-threads 1 --num-intra-threads 16
--batch-size 8 --graph-type=static
-—in-graph /root/dien_fp32_static_rnn_graph.pb
--benchmark-only --verbose --
T
runner = td_inst.ssh_run(command.split(), vm_ssh_key)
assert runner.retcode == 0, "Failed to execute remote command"

throughput should not be 0

patt_ok = r'Approximate accelerator performance in recommendations/second -is
(\dx.\d*)"'

match = re.search(patt_ok, '\n'.join(runner.stdout))

assert match is not None

images_per_s = match.group(1)
LOG.info('Throughput: %s recommendations/s', images_per_s)
assert float(images_per_s) > 0

5.3 Intel TDX Tests

Intel TDX tests from tdx-tools are designed to cover basic acceptance tests,
functionality, workload, and environment tests for Intel TDX. It also provides
interoperability tests by using AMXin Intel TDX guest VM.

NOTE: The tests implementation depends on PyCloudStack framework. The tests
execution must be on an Intel TDX-enabled Linux platform with an Intel TDX-
enabled kernel, QEMU, Libvirt installed.

NOTE: Please make sure to use the correct tag of tdx-tools which matches the
release version so that the tests can work with different Intel TDX kernel and Intel
TDX QEMU versions.

5.3.1 Overview

The tests can be classified into 4 categories — Lifecycle, Environment, Workload and
Interoperability. Please check tests list in below table. Some of the tests requires to
customize guest image before running tests. Please refer to corresponding itemiin
“Chapter 5.3.2 Prerequisite”

Table 7 TDX Stack Tests

Test case Category Description Prerequisite \

60 Document Number: 355388-001

test_tdvm_lifecycle
Py

test_multiple_tdvm

S.py
test_vm_coexists.p

y
test_max_cpu.py

test_vm_shutdown
_mode.py
test_acpi_reboot.p

Yy
test_acpi_shutdow

n.py
test_vm_shutdown

—dga.py
test_vm_reboot_qg

a.py
test_tdvm_tsc.py

test_tdx_guest_sta
tus.py
test_tdx_host_stat

us.py
test_tdvm_network
Py

test_workload_redi

S.py
test_workload_ngin

X.py
test_amx_docker_t

f.py

test_amx_vm_tf.py

Lifecycle

Lifecycle
Lifecycle
Lifecycle
Lifecycle
Lifecycle
Lifecycle
Lifecycle
Lifecycle
Environme
nt
Environme
nt
Environme
nt
Environme
nt
Workload
Workload

Interopera
bility

Interopera
bility

Use virsh to
create/start/shutdown/suspend a
VM guestincluding non-
confidential VM and TD VM.
Co-existence of multiple TD guest
VMs

Check TDVM and legacy VM co-
existence

Check TDVM boot with 80% host
CPU utilization

Check TDVM shutdown mode via
Libvirt

Check ACPIlrebootin TDVM

Check ACPI shutdown in TDVM

Check VM shutdown via QEMU
guest agent

Check VM reboot via QEMU guest
agent

Check TDX guest TSC clock
source and frequency

Check TDX initializationin TD
guest

Check Intel TME-MK, Intel TDX,
Intel SGX, SEAMRR in host
Check network functionsin TDVM

Redis workload runningin TDVM
Nginx workload runningin TDVM

Run Al model mobilenetvi_bflé
with AMX acceleration in docker
containeron TDVM

Run Al model dien_bf16 with AMX
accelerationin TDVM

A full example for a workload test case —redis is as follows.

def test_tdvm_redis(vm_factory, vm_ssh_pubkey, vm_ssh_key):

Run redis benchmark test
Ref: https://redis.io/topics/benchmarks

61

intel

N/A
N/A
N/A
N/A
N/A
N/A
#1

#1
N/A
N/A
N/A
N/A
#2,#3
#2,#3

#2, #4

#5

Document Number: 355388-001

intel

Use official docker images redis:latest

Test Steps:

1. start VM

2. Run remote command "systemctl status docker" to check docker service's
status

3. Run remote command "systemctl start docker" to force start docker service

4. Run remote command "/root/bat-script/redis-bench.sh"

to launch redis container and benchmark testing

mmn

LOG.info("Create TD guest to run redis benchmark")

td_inst = vm_factory.new_vm(VM_TYPE_TD)

customize the VM -qimage
td_inst.image.inject_root_ssh_key(vm_ssh_pubkey)
td_inst.image.copy_in(

os.path.join(CURR_DIR, "redis-bench.sh"), "/root/")

create and start VM instance
td_inst.create()
td_inst.start()
td_inst.wait_for_ssh_ready()

command_Tlist = [
'systemctl start docker',
'/root/redis-bench.sh -t get,set’

cmd in command_list:

LOG.debug(cmd)

runner = td_inst.ssh_run(cmd.split(), vm_ssh_key)

assert runner.retcode == 0, "Failed to execute remote command"

5.3.2 Prerequisite

Guestimage is required for all the tests. Please refer to “Chapter 2.4.2 Create Guest
Image” to generate basic guestimage. Additional prerequisite is required for some
of the tests. Please check prerequisite of each test and take corresponding action as
follows. Please start a VM using your guest image and go through corresponding
items required by tests. Then shutdown the VM and use the guest image for further
tests.

1. Install Qemu guest agent in guest image.
For Ubuntu 22.04 guest image:

$ sudo apt-get install gemu-guest-agent

For RHEL 8.x guestimage:

$ sudo dnf dinstall gemu-guest-agent

62 Document Number: 355388-001

intel

2. Install dockerin guestimage.
For Ubuntu 22.04 guest image:

$ sudo apt-get install docker.io

For RHEL 8.x guestimage:

$ sudo dnf dinstall docker

3. Forworkload tests, make sure the latest dockerimage is in guestimage. It
needs dockerimage “nginx:latest” and “redis:latest”.

$ docker pull nginx:latest

$ docker pull redis:latest

4. Install intel-tensorflow-avx512 in guest image. Download DIEN_bf16 model
and put it under /rootin guest image.

For ubuntu 22.04 guest image:

$ pip3 install intel-tensorflow-avx512==2.11.0

$ wget https://storage.googleapis.com/intel-optimized-
tensorflow/models/v2_5_0/dien_bfl6_pretrained_opt_model.pb

For RHEL 8.x guestimage, please upgrade python to python 3.8 first and
then run the following command in guest image:

$ pip3 dinstall intel-tensorflow-avx512==2.11.0

$ wget https://storage.googleapis.com/intel-optimized-
tensorflow/models/v2_5_0/dien_bfl6_pretrained_opt_model.pb

5.3.3 Setup Environment

1. Install required packages:

If your host distro is RHEL 8.x:

$ sudo dnf dinstall python3-virtualenv python3-libvirt libguestfs-devel libvirt-

devel python3-devel gcc gcc-c++

If your host distro is Ubuntu 22.04:

$ sudo apt install python3-virtualenv python3-libvirt libguestfs-dev libvirt-dev

python3-dev net-tools
63 Document Number: 355388-001

intel

2. Make sure libvirt service is started. If not, start libvirt service. If your host is
Ubuntu 22.04 and AppArmoris enabled, please set security_driver =
"none' in [etc/libvirt/gemu.conf and restart the libvirt service.

$ sudo systemctl status libvirtd

$ sudo systemctl start libvirtd

3. Setup environment. Run below command to setup the python environment.

$ cd tdx-tools/tests/
$ source setupenv.sh

4. Generate artifacts.yaml

Please refer to tdx-tools/tests/artifacts.yaml.template and generate tdx-
tools/tests/artifacts.yaml. Update source and sha256sum to indicate the
location of guest image and guest kernel.

5. Generate keys
Generate a pair of keys that will be used in test running.

$ ssh-keygen

The keys should be named "vm_ssh_test_key" and "vm_ssh_test_key.pub”
and located under tdx-tools/tests/tests/

5.3.4 Run Tests

1. Runall tests:

$ sudo ./run.sh -s all
NOTE: “sudo”is required since some tests need root permission. And the user
needs to be added into libvirt group. e.q., for user "root”, please run “sudo usermod -
aG libvirt root".

2. Runsome case modules:

S ./run.sh -c <test_modulel> -c <test_module2>

For example, run whole test module “test_tdvm_lifecycle.py”

$./run.sh -c tests/test_tdvm_lifecycle.py

3. Runspecific test cases:

$./run.sh -c <test_modulel> -c <test_modulel>::<test_name>

64 Document Number: 355388-001

intel

For example, run test case “test_tdvm_lifecycle_virsh_start_shutdown” in
“tests/test_tdvm_lifecycle.py”

$./run.sh -c tests/test_tdvm_lifecycle.py::

test_tdvm_lifecycle_virsh_start_shutdown

4. User can specify guestimage OS type with “-g”. Currently it supports “rhel”,
and “ubuntu”. RHEL 8.x guestimage will be used by default if “-g” is not

specified.

For example, run all tests using Ubuntu 22.04 guest image.

$ sudo ./run.sh -g ubuntu -s all

65 Document Number: 355388-001

intel.
6 Develop & Debug

6.1 Override the Intel TDX SEAM module

Secure arbitration mode (SEAM) is an extension to the virtual machines extension
(VMX) architecture to define a new, VMX root operation called SEAM VMX root
and a new VMX non-root operation called SEAM VMX non-root. Collectively, the
SEAM VMX root and SEAM VMX non-root execution modes are called operations
in SEAM. SEAM VMX root operation is designed to host a CPU-attested, software
module called the Intel® Trust-Domain Extensions (Intel® TDX) module to manage
virtual machine (VM) guests called Trust Domains (TD). Currently, the Intel TDX
Module is the only SEAM module that the Intel P-SEAMLDR installs [1].

By default, BIOS loads the built-in version of SEAMLDR and TDX module from the
IFWI during the server booting. For development or debugging purpose, a new or
debug version SEAMLDR and TDX module could be placed into the ESP partition.
The BIOS loads the new or debug version from ESP on the next boot.

IFWI
|

Check SEAMLDR +Intel
TDX Module exist in
NO ESP? YES

Case 2: SEAMLDR and Intel TDX
Module in ESP partition

Case 1: SEAMLDR and Intel
TDX Module in IFWI

RootFS RootFS

/boot
TDX-SEAM.s0

TDX-SEAM.so.sigstruct
ESP « !
TDX-SEAM_SEAMLDR bin

ESP

-
@4 SEAMLDR.efi = Libtdx.so

—_— e e e e e e e — ——— = S

|
1
|
1
1
|
1
1
|
: /boot
|
|
|
|
1
1
1
1

Figure 26 BIOS Search TDX Module from ESP
The naming ruleis:

e <ESP>/EFI/TDX/TDX-SEAM_SEAMLDR.bin
66 Document Number: 355388-001

intel

e <ESP>/EFI/TDX/TDX-SEAM.so
e <ESP>/EFI/TDX/TDX-SEAM.so.sigstruct

Check the updated TDX module information

$ sudo cat /sys/firmware/tdx/tdx_module/*

67 Document Number: 355388-001

intel.

6.2 Off-TD Debug via GDB from the Host

QEMU supports working with gdb via gdb’s remote-connection facility (the
“gdbstub”). This allows you to debug guest code in the same way that you might do
with a low-level debug facility like JTAG on real hardware. You can stop and start the
virtual machine, examine states like registers and memory, and set breakpoints and

watchpoints. Refer to https://www.gemu.org/docs/master/system/gdb.html for

detail gdb usage.
To support gdb use, Intel TDX module exposes APls:

e TDH.VP.RD/WR to allow QEMU emulator to read/write guest’s CPU states.
e TDH.MEM.RD/WR to allow QEMU emulator to read/write guest memory.

Intel TDX Guest VM
(1111
- -
pa|CPU|S
- L] ¢
[T1T] Guest
Kernel
Symbols
QEMU Emulator S
debug mode
V| —) GDB Stub Server ¢@'m) cDBClent 4 |)_
./start-qemu.sh ...-d oMP ./start_gdb.sh
¥
gemu-kvm —object _--m____ ____B_ ___ ,
debug=on 1 TDH.VPRD/WR 1 1 TDH.MEM.RD/WR e
I °YCS | Intel TDX

—LEEE | Module

Figure 27 Off-TD Debug via GDB
Steps to debug TD guest are as follows:

e Stepl:Start TD guestin debug mode
o Append“debug=on”to “-object”. For example:

e

o Add-s-S parameter to gemu-kvm. For example:
o Disable kernel address randomization by append “nokasl|r”
68 Document Number: 355388-001

https://www.qemu.org/docs/master/system/gdb.html

intel

Step 2: Install guest kernel’s debug symbol into host. For example:

$ sudo dnf dinstall intel-mvp-tdx-guest-kernel-debuginfo

Step 3: Run the script start_gdb.sh with following content

#!/bin/bash
GDB=gdb

MOD_

DIR=/usr/1lib/debug/usr/lib/modules/<guest kernel>/

$GDB \

—-ex
—-ex
—-ex
—-ex
—-ex

"add-auto-load-safe-path $MOD_DIR" \
"file SMOD_DIR/vmlinux" \

"'set arch i1386:x86-64:1intel" \

"'set remotetimeout 360" \

"target remote 127.0.0.1:1234¢

Step 4:In the GDB console, use command “hb” to set the first break point. For
example

gdb> hb start_kernel
The software breakpoint is available after the kernel is loaded into GPA space by
QEMU.

69

Document Number: 355388-001

intel

6.3 Check Memory Encryption

There are lots of approaches to check whether TDX memory is encrypted or not.
This section introduces how to do this check via GDB debug approach.

1. Install kernel development package on the host for debug symbol (using
RHEL distro as example):

$ sudo dnf dinstall intel-mvp-tdx-kernel-devel

2. Get GVA (guest virtual address) of the . text code section of guest kernel

$ # Extract the guest kernel binary

$ Jusr/src/kernels/$(uname -r)/scripts/extract-vmlinux <path-to-guest-kernel-
file > vmlinux

$ objdump -d vmlinux > disassembled-vmlinux.asm && head -n 20 disassembled-
vmlinux.asm

ffffffff81000000 <.text>:

ffffffff81000000: 48 8d 25 51 3f cO 01 lea Ox1cO3f51(%rip) ,%rsp
ffffffff81000007: 48 8d 3d f2 ff ff ff lea -0Oxe (%rip) ,%rd1i
ffffffff8100000e: 56 push %rsi
ffffffff8100000f: e8 dc 06 00 00 callg Oxffffffff810006f0

The result shows that the virtual address of . text section start from
OXTffffffff81000000.

3. Verify the instructions/memory at guest physical address of .text code
section in non-confidential VM guest
» Launch anon-confidential guest, nokaslr should be appended for kernel
command like below

—append "root=/dev/vdal console=hvcO nokaslr"

» Enter QEMU monitor shell
If using start-gemu.sh, just “telnet 127.0.0.19001”

» Disassemble the virtual address of .text section

(gemu) stop
(gemu) x /101 Oxffffffff81000000
0x01000000: 48 8d 25 51 3f cO 01 Ox1cO3f51(%rip), %rsp

0x01000007: 48 8d 3d f2 ff ff ff -0xe(%rip), %rdi
0x0100000e: 56 %rsi
Ox0100000f: e8 dc 06 00 6O 0x10006f0

4. Verify the instructions/memory at guest physical address of .text code
sectionin TD guest

» LaunchaTD guest
70 Document Number: 355388-001

intel

o debug=on should be append for QEMU command line

-object tdx-guest,id=tdx,debug=on

o nokaslr should be appended for kernel command line

—append "root=/dev/vdal console=hvcO nokaslr"

» Enter QEMU monitor shell
If using start-gemu.sh, just “telnet 127.0.0.19001”

> Disassemble the virtual address of .text section

(gemu) stop
(gemu) x /101 Oxffffffff81000000
oxffffffff81000000: 98 cwtl

oxffffffff81000001: f8 clc

oxffffffff81000002: 49 5e popq %rl4
Oxffffffff81000004: 5a popq %rdx
Oxffffffff81000005: 55 pushq %rbp

The disassembled instructions should be different from non-confidential,
meaningless since the memory is encrypted.

6.4Run Intel AMX workload within TDX Guest

Intel AMXis a new built-in accelerator that improves the performance of deep-
learning training and inference on the CPU. This is ideal for workloads like natural-
language processing, recommendation systems, and image recognition.” It is
available on the 4th Gen Intel® Xeon® Scalable processors. Use the following
approach to check its capability on the host server and TD guest:

$ grep -o amx /proc/cpuinfo

Expect to see output of several "amx". Empty results mean Intel AMX is not enabled.

This section introduces how to run Al workload boosted by Intel AMX within Intel
TDX guest:

e Install the Intel® Optimization for TensorFlow* version 2.8.0 via pip. Python
versions supported are 3.7, 3.8, 3.9, 3.10. For TensorFlow versions 1.13, 1.14
and 1.15 with pip > 20.0, if you get an “invalid wheel error”, try to downgrade
the pip versionto < 20.0

$ dnf install python3.8

$ pip3.8 install intel-tensorflow-avx512==2.8.0

mn ®

71 Document Number: 355388-001

https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/advanced-matrix-extensions/overview.html

intel

$ wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_8/

e Download pre-trained model

mobilenet_v1l_1.0_224_frozen.pb
e Clone theintelai/models repo and then navigate to the benchmark’s directory

$ dnf install git
$ git clone https://github.com/IntelAI/models.git cd models/benchmarks

e Setenvironment variables

$ export DNNL_MAX_CPU_ISA=AVX512_CORE_AMX
$ export OMP_NUM_THREADS=16
$ export KMP_AFFINITY=granularity=fine,verbose,compact

e Runonlineinference. Replace <PATH> to the absolute path where pre-
trained modelis located

$ python3.8 launch_benchmark.py \

--benchmark-only --framework tensorflow --model-name mobilenet_v1 \

--mode inference --precision bfloatl6 --batch-size 1 \

-—in-graph /opt/mobilenet_v1_1.0_224_frozen.pb \

--num-intra-threads 16 --num-inter-threads 1 --verbose --\ 1input_height=224
input_width=224 warmup_steps=20 steps=20 \ input_layer="input'
output_layer="MobilenetVl/Predictions/Reshape_1'

e The expectresult should like below:

[Running warmup steps...]
steps = 10, 360.33539518900346 images/sec steps = 20, 349.292471685543 -images/sec

[Running benchmark steps...]
steps = 10, 364.1521097412745 images/sec steps = 20, 369.8028566390407 images/sec
Average Throughput: 364.37 images/s on 20 iterations

If running same workload without “export
DNNL_MAX_CPU_ISA=AVX512_CORE_AMX", the result will be smaller
(images/sec) without AMX boost.

NOTE: If you fail to run above command's and see a message like "If you cannot
immediately regenerate your protos, some other possible workarounds are: I.
Downgrade the protobuf package to 3.20.x or lower. 2. Set
PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use
pure-Python parsing and will be much slower).” you can either upgrade protobuf
version to 3.20.0 as following:

$ pip3.8 install --upgrade protobuf==3.20.0

or set environment variable as following

$ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python

Then re-run above online inference command.

72 Document Number: 355388-001

73

intel.

Document Number: 355388-001

intel.

7 Disclaimer

The released components of the Linux Reference Stack for Intel TDX: Virtual
Firmware (edk2/TDVF), bootloader (grub?2), and the Linux kernel, are fully enabled
to be run from within the Linux-based Intel TDX Guest VM to take advantage of the
Intel TDX security technology for cryptographically isolating Trusted VMs from the
rest of the system.

While Intel TDX removes the need fora Guest VM to trust the host and virtual
machine manager (VMM), it cannot by itself protect the guest VM from host/VMM
attacks that leverage existing paravirt-based communication interfaces between
the host/VMM and the guest (such as MMIO, portlO, etc.). To achieve the full
protection against such attacks, the Guest VM SW stack needs to be hardened to
securely handle a untrusted and potentially malicious input from a host/VMM via the
above-mentioned interfaces. This hardening effort is not specific to Intel TDX as a
technology, but common for all confidential cloud computing solutions and the
components of the VM guest SW stack. It should be an industry-wide effort
together with the open source maintainers to perform the security analysis and
hardening of these components for the confidential computing threat model.

The Linux Reference Stack for Intel TDX team has invested a significant effortin
hardening the Linux kernel that is released as part of the Linux Reference Stack for
Intel TDX, Thethreat model for the Linux guest kernel, as well as the implemented
mitigation mechanisms are explained in the Intel TDE Linux guest kernel security
specification. The overall hardening methodology, as well as documentation on the
tools that have been used can be foundin Intel TDE guest Linux kernel hardening
strategy. As aresult, the Linux Reference Stack for Intel TDX kernel tree contains
numerous patches that either implement these hardening mechanisms or fix the
security issues that were discovered during the hardening process. It is strongly
recommended that all these patches are manually carried forward to the intended
production kernels, until they are merged into the mainline Linux kernel and will
become part of the upstream base kernel tree. In particular, the following two
patches that are critical for the security of the Intel TDX Linux guest kernel must be
included in any production guest kernel:

Commit ID:

o c942fc241d4e6c215731b6f03740b1a8bfc42018 (Patch No. 0421) from
patches-tdx-kernelIMVP-KERNEL-5.19-v2.4 tar.gz
74 Document Number: 355388-001

intel.

e CommitlID: c289330c56c61508a1008d74fc65b7bc24a4a7d5 (Patch No.
0422) from patches-tdx-kernelMVP-KERNEL-5.19-v2.4.tar.gz

Itis important to note that the hardening of the Linux guest kernel has not been
finalized for this release and other components, such as virtual firmware
(edk2/TDVF) and the bootloader (grub?2), still need more attention. In particular,
the existing interfaces that edk2/TDVF or grub2 expose towards the host/VMM
have not yet been analyzed for potential security implications against the
confidential cloud computing threat model. It is strongly recommended that this
analysis be done, and any issues uncovered are mitigated before these components
are used in production.

75 Document Number: 355388-001

intel.

8 References

[1] Intel,"Intel® TDX White Papers," February 2023. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-
trust-domain-extensions.html.

[2] Intel, "TDX Guest Hardening," [Online]. Available: https://intel.github.io/ccc-
linux-guest-hardening-docs/tdx-guest-hardening.html.

[3] Confidential Computing Consortium, "A Technical Analysis of Confidential
Computing," 2022.

[4] Trust Computing Group, TCG Guidance on Integrity Measurements and Event
Log, 2021.

76 Document Number: 355388-001

	1 Introduction
	1.1 Overview
	1.2 Terminology

	2 Install
	2.1 Hardware
	2.2 BIOS
	2.3 Components
	2.4 Building Stacks
	2.4.1 Build Packages
	2.4.2 Create Guest Image

	2.5 Install IaaS Host
	2.5.1 Install Packages
	2.5.2 Configure Grub
	2.5.3 Set Default Kernel
	2.5.4 Reboot with the Intel TDX kernel

	3 Manage the TD guest
	3.1 Overview
	3.2 Boot TD Guest
	3.2.1 Launch via QEMU
	3.2.2 Launch via Libvirt

	3.3 Use VirtIO Device
	3.4 Secure Boot
	3.5 Full Disk Encryption
	3.5.1 Workflow
	3.5.2 Prepare Encryption Image

	4 Measurement & Attestation
	4.1 TEE, TCB, Quote
	4.2 TDX Measurement
	4.2.1 TD Report
	4.2.2 MRTD and RTMR
	4.2.3 Pre-Boot Measurement
	4.2.4 PyTdxMeasure Tool
	4.2.5 Linux Runtime Measurement

	4.3 Attestation
	4.3.1 Overview
	4.3.2 Set Up DCAP Repo
	4.3.3 Set Up PCCS
	4.3.4 Set Up DCAP on Host
	4.3.5 Generate Quote
	4.3.5.1 Launch TD with Quote Generation Support
	4.3.5.2 Generate Quote within Intel TDX Guest

	4.3.6 Verify Quote

	4.4 Use Intel Project Amber
	4.4.1 Overview
	4.4.2 Installation
	4.4.3 Example Usage

	5 Validation
	5.1 Overview
	5.2 PyCloudStack
	5.2.1 Overview
	5.2.2 Installation
	5.2.3 Example

	5.3 Intel TDX Tests
	5.3.1 Overview
	5.3.2 Prerequisite
	5.3.3 Setup Environment
	5.3.4 Run Tests

	6 Develop & Debug
	6.1 Override the Intel TDX SEAM module
	6.2 Off-TD Debug via GDB from the Host
	6.3 Check Memory Encryption
	6.4 Run Intel AMX workload within TDX Guest

	7 Disclaimer
	8 References

