
Intel® oneAPI Collective
Communications Library Developer
Guide and Reference

Contents

Chapter 1: Intel® oneAPI Collective Communications Library
Release Notes ...4
Installation Guide ..4
Sample Application ..5
Use oneCCL package from CMake ..5
Programming Model...6

Sample Application..6
Sample Application..6
Limitations ...6

General Configuration ..6
Execution of Communication Operations...6
Transport Selection..7

Advanced Configuration..7
Selection of Collective Algorithms ..7
Low-precision Datatypes ..7
Caching of Communication Operations ...8
Prioritization of Communication Operations...8
Fusion of Communication Operations ...8
Enabling OFI/verbs/dmabuf Support ..9

oneCCL API ..9
Initialization ... 10
oneCCL Concepts .. 10

Communicator.. 10
Context ... 12
Device... 12
Event .. 12
Key-value Store .. 13
Stream.. 13

Communication Operations... 13
Datatypes .. 14
Collective Operations... 14
Point-To-Point Operations ... 28

Environment Variables ... 31
oneCCL Benchmark User Guide ... 45
Notices and Disclaimers.. 49

Intel® oneAPI Collective Communications Library Developer Guide and Reference

2

Intel® oneAPI Collective
Communications Library 1
Intel® oneAPI Collective Communications Library (oneCCL) provides an efficient implementation of
communication patterns used in deep learning.

oneCCL features include:

• Built on top of lower-level communication middleware – Intel® MPI Library and libfabrics.
• Optimized to drive scalability of communication patterns by allowing to easily trade off compute for

communication performance.
• Works across various interconnects: InfiniBand*, Cornelis Networks*, and Ethernet.
• Provides common API sufficient to support communication workflows within Deep Learning / distributed

frameworks (such as PyTorch*, Horovod*).

oneCCL package comprises the oneCCL Software Development Kit (SDK) and the Intel® MPI Library Runtime
components.

Get Started

• Release Notes
• Installation Guide

• System Requirements
• Installation using Command Line Interface
• Find More

• Sample Application

• Build details
• Run the sample

• Use oneCCL package from CMake

• oneCCLConfig files generation

Developer Guide

• Programming Model

• Host Communication
• Device Communication
• Limitations

• General Configuration

• Execution of Communication Operations
• Transport Selection

• Advanced Configuration

• Selection of Collective Algorithms
• Low-precision Datatypes
• Caching of Communication Operations
• Prioritization of Communication Operations
• Fusion of Communication Operations
• Enabling OFI/verbs/dmabuf Support

Developer Reference

• oneCCL API

• Initialization
• oneCCL Concepts
• Communication Operations
• Generic workflow
• Error Handling

Intel® oneAPI Collective Communications Library 1

3

https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://github.com/ofiwg/libfabric
https://github.com/pytorch/pytorch
https://github.com/horovod/horovod

• Environment Variables

• Collective Algorithms Selection
• Workers
• ATL
• Multi-NIC
• Low-precision datatypes
• CCL_LOG_LEVEL
• CCL_ITT_LEVEL
• Fusion
• CCL_PRIORITY
• CCL_MAX_SHORT_SIZE
• CCL_SYCL_OUTPUT_EVENT
• CCL_ZE_LIBRARY_PATH
• CCL_RECV
• CCL_SEND

Benchmark User Guide

• oneCCL Benchmark User Guide

• Build oneCCL Benchmark
• Run oneCCL Benchmark
• Example

Release Notes
Refer to Intel® oneAPI Collective Communications Library Release Notes.

Installation Guide
This page explains how to install and configure the Intel® oneAPI Collective Communications Library
(oneCCL). oneCCL supports different installation scenarios using command line interface.

System Requirements
Visit Intel® oneAPI Collective Communications Library System Requirements to learn about hardware and
software requirements for oneCCL.

Installation using Command Line Interface
To install oneCCL using command line interface (CLI), follow these steps:

1. Go to the ccl folder:

cd ccl
2. Create a new folder:

mkdir build
3. Go to the folder created:

cd build
4. Launch CMake:

cmake ..
5. Install the product:

make -j install
In order to have a clear build, create a new build directory and invoke cmake within the directory.

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

4

https://www.intel.com/content/www/us/en/developer/articles/release-notes/oneapi-collective-communication-library-ccl-release-notes.html
https://www.intel.com/content/www/us/en/developer/articles/system-requirements/oneapi-collective-communication-library-system-requirements.html

Custom Installation

You can customize CLI-based installation (for example, specify directory, compiler, and build type):

• To specify installation directory, modify the cmake command:

cmake .. -DCMAKE_INSTALL_PREFIX=</path/to/installation/directory>
If no -DCMAKE_INSTALL_PREFIX is specified, oneCCL is installed into the _install subdirectory of the
current build directory. For example, ccl/build/_install.

• To specify compiler, modify the cmake command:

cmake .. -DCMAKE_C_COMPILER=<c_compiler> -DCMAKE_CXX_COMPILER=<cxx_compiler>
• To enable SYCL devices communication support, specify SYCL compiler (only Intel® oneAPI DPC++/C++

Compiler is supported):

cmake .. -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DCOMPUTE_BACKEND=dpcpp
• To specify the build type, modify the cmake command:

cmake .. -DCMAKE_BUILD_TYPE=[Debug|Release]
• To enable make verbose output to see all parameters used by make during compilation and linkage, modify

the make command as follows:

make -j VERBOSE=1 install

Find More
• oneCCL Get Started Guide
• oneCCL GitHub Source Code Repository
• oneCCL Documentation

Object Missing
This object is not available in the repository.

Use oneCCL package from CMake
oneCCLConfig.cmake and oneCCLConfigVersion.cmake are included into oneCCL distribution.

With these files, you can integrate oneCCL into a user project with the find_package command. Successful
invocation of find_package(oneCCL <options>) creates imported target oneCCL that can be passed to
the target_link_libraries command.

For example:

project(Foo)
add_executable(foo foo.cpp)

Search for oneCCL
find_package(oneCCL REQUIRED)

Connect oneCCL to foo
target_link_libraries(foo oneCCL)

Intel® oneAPI Collective Communications Library 1

5

https://www.intel.com/content/www/us/en/docs/oneccl/get-started-guide/2021-11/overview.html
https://github.com/oneapi-src/oneCCL
https://oneapi-src.github.io/oneCCL/??#
https://cmake.org/cmake/help/latest/command/find_package.html
https://cmake.org/cmake/help/latest/command/target_link_libraries.html

oneCCLConfig files generation
To generate oneCCLConfig files for oneCCL package, use the provided cmake/scripts/
config_generation.cmake file:

cmake [-DOUTPUT_DIR=<output_dir>] -P cmake/script/config_generation.cmake

Programming Model
• Host Communication
• Device Communication
• Limitations

NOTE Check out oneCCL specification that oneCCL is based on.

Object Missing
This object is not available in the repository.

Object Missing
This object is not available in the repository.

Limitations

The list of scenarios not yet supported by oneCCL:

• Creation of multiple ranks within single process

General Configuration
• Execution of Communication Operations
• Transport Selection

Execution of Communication Operations

Communication operations are executed by CCL worker threads (workers). The number of workers is
controlled by the CCL_WORKER_COUNT environment variable.

Workers affinity is controlled by CCL_WORKER_AFFINITY.

By setting workers affinity you can specify which CPU cores are used by CCL workers. The general rule of
thumb is to use different CPU cores for compute (e.g. by specifying KMP_AFFINITY) and for CCL
communication.

There are two ways to set workers affinity: automatic and explicit.

Automatic setup
To set affinity automatically, set CCL_WORKER_AFFINITY to auto.

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

6

https://spec.oneapi.com/versions/latest/elements/oneCCL/source/index.html

Example

In the example below, oneCCL creates four workers per process and pins them to the last four cores
available for the process (available if mpirun launcher from oneCCL package is used, the exact IDs of CPU
cores depend on the parameters passed to mpirun) or to the last four cores on the node.

export CCL_WORKER_COUNT=4
export CCL_WORKER_AFFINITY=auto

Explicit setup
To set affinity explicitly for all local workers, pass ID of the cores to the CCL_WORKER_AFFINITY environment
variable.

Example

In the example below, oneCCL creates 4 workers per process and pins them to cores with numbers 3, 4, 5,
and 6, respectively:

export CCL_WORKER_COUNT=4
export CCL_WORKER_AFFINITY=3,4,5,6

Transport Selection

oneCCL supports two transports for inter-process communication: Intel® MPI Library and libfabric*.

The transport selection is controlled by CCL_ATL_TRANSPORT.

In case of MPI over libfabric implementation (for example, Intel® MPI Library 2021) or in case of direct
libfabric transport, the selection of specific libfabric provider is controlled by the FI_PROVIDER environment
variable.

Advanced Configuration
• Selection of Collective Algorithms
• Low-precision Datatypes
• Caching of Communication Operations
• Prioritization of Communication Operations
• Fusion of Communication Operations
• Enabling OFI/verbs/dmabuf Support

Selection of Collective Algorithms

oneCCL supports manual selection of collective algorithms for different message size ranges.

Refer to Collective Algorithms Selection section for details.

Low-precision Datatypes

oneCCL provides support for collective operations on low-precision (LP) datatypes (bfloat16 and float16).

Reduction of LP buffers (for example as phase in ccl::allreduce) includes conversion from LP to FP32
format, reduction of FP32 values and conversion from FP32 to LP format.

oneCCL utilizes CPU vector instructions for FP32 <-> LP conversion.

Intel® oneAPI Collective Communications Library 1

7

https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://github.com/ofiwg/libfabric
https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
https://en.wikipedia.org/wiki/Half-precision_floating-point_format

For BF16 <-> FP32 conversion oneCCL provides AVX512F and AVX512_BF16-based implementations.
AVX512F-based implementation requires GCC 4.9 or higher. AVX512_BF16-based implementation requires
GCC 10.0 or higher and GNU binutils 2.33 or higher. AVX512_BF16-based implementation may provide less
accuracy loss after multiple up-down conversions.

For FP16 <-> FP32 conversion oneCCL provides F16C and AVX512F-based implementations. Both
implementations require GCC 4.9 or higher.

Refer to Low-precision datatypes for details about relevant environment variables.

Caching of Communication Operations

Communication operations may have expensive initialization phase (for example, allocation of internal
structures and buffers, registration of memory buffers, handshake with peers, and so on). oneCCL amortizes
these overheads by caching operation internal representations and reusing them on the subsequent calls.

To control this, use operation attribute and set true value for to_cache field and unique string (for example,
tensor name) for match_id field.

Note that:

• match_id should be the same for a specific communication operation across all ranks.
• If the same tensor is a part of different communication operations, match_id should have different values

for each of these operations.

Prioritization of Communication Operations

oneCCL supports prioritization of communication operations that controls the order in which individual
communication operations are executed. This allows to postpone execution of non-urgent operations to
complete urgent operations earlier, which may be beneficial for many use cases.

The communication prioritization is controlled by priority value. Note that the priority must be a non-negative
number with a higher number standing for a higher priority.

There are the following prioritization modes:

• None - default mode when all communication operations have the same priority.
• Direct - you explicitly specify priority using priority field in operation attribute.
• LIFO (Last In, First Out) - priority is implicitly increased on each operation call. In this case, you do not

have to specify priority.

The prioritization mode is controlled by CCL_PRIORITY.

Fusion of Communication Operations

In some cases, it may be beneficial to postpone execution of communication operations and execute them all
together as a single operation in a batch mode. This can reduce operation setup overhead and improve
interconnect saturation.

oneCCL provides several knobs to enable and control such optimization:

• The fusion is enabled by CCL_FUSION.
• The advanced configuration is controlled by:

• CCL_FUSION_BYTES_THRESHOLD
• CCL_FUSION_COUNT_THRESHOLD
• CCL_FUSION_CYCLE_MS

NOTE For now, this functionality is supported for allreduce operations only.

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

8

Enabling OFI/verbs/dmabuf Support

oneCCL provides experimental support for data transfers between Intel GPU memory and NIC using Linux
dmabuf, which is exposed through OFI API for verbs provider.

Requirements
• Linux kernel version >= 5.12
• RDMA core version >= 34.0
• level-zero-devel package

Usage
oneCCL, OFI and OFI/verbs from Intel® oneAPI Base Toolkit support device memory transfers. Refer to Run
instructions for usage.

If you want to build software components from sources, refer to Build instructions.

Build instructions

OFI

git clone --single-branch --branch v1.13.2 https://github.com/ofiwg/libfabric.git
cd libfabric
./autogen.sh
./configure --prefix=<ofi_install_dir> --enable-verbs=<rdma_core_install_dir> --with-
ze=<level_zero_install_dir> --enable-ze-dlopen=yes
make -j install

NOTE You may also get OFI release package directly from here. No need to run autogen.sh if using
the release package.

oneCCL

cmake -DCMAKE_INSTALL_PREFIX=<ccl_install_dir> -DLIBFABRIC_DIR=<ofi_install_dir> -
DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DCOMPUTE_BACKEND=dpcpp -DENABLE_OFI_HMEM=1 ..
make -j install

Run instructions
1. Set the environment. See Get Started Guide.
2. Run allreduce test with ring algorithm and SYCL USM device buffers:

export CCL_ATL_TRANSPORT=ofi
export CCL_ATL_HMEM=1
export CCL_ALLREDUCE=ring
export FI_PROVIDER=verbs
mpiexec -n 2 <ccl_install_dir>/examples/sycl/sycl_allreduce_usm_test gpu device

oneCCL API
• Initialization
• oneCCL Concepts

Intel® oneAPI Collective Communications Library 1

9

https://github.com/ofiwg/libfabric/releases/tag/v1.13.2
https://www.intel.com/content/www/us/en/docs/oneccl/get-started-guide/2021-10/overview.html

• Communicator
• Context
• Device
• Event
• Key-value Store
• Stream

• Communication Operations

• Datatypes
• Collective Operations
• Point-To-Point Operations

Generic workflow
Refer to oneCCL specification for more details about generic workflow with oneCCL API.

Error Handling
Refer to oneCCL specification for more details about error handling.

Initialization

template<class... attr_val_type> init_attr CCL_API create_init_attr (attr_val_type &&... avs)

Creates an attribute object that may be used to control the init operation.

Returns an attribute object

void CCL_API init (const init_attr &attr=default_init_attr)

Initializes the library. Optional for invocation.

Parameters attr – optional init attributes

library_version CCL_API get_library_version ()

Retrieves the library version.

oneCCL Concepts

Refer to oneCCL specification for more details about oneCCL main concepts.

• Communicator
• Context
• Device
• Event
• Key-value Store
• Stream

Communicator

template<class... attr_val_type> comm_attr CCL_API create_comm_attr (attr_val_type &&...
avs)

Creates an attribute object that may be used to control the create_communicator operation.

Returns an attribute object

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

10

https://spec.oneapi.com/versions/latest/elements/oneCCL/source/spec/generic_workflow.html
https://spec.oneapi.com/versions/latest/elements/oneCCL/source/spec/error_handling.html

template<class... attr_val_type> comm_split_attr CCL_API create_comm_split_attr
(attr_val_type &&... avs)

Creates an attribute object that may be used to control the split_communicator operation.

Returns an attribute object

template<class DeviceType, class ContextType> vector_class< communicator > CCL_API
create_communicators (int size, const vector_class< pair_class< int, DeviceType >> &devices,
const ContextType &context, shared_ptr_class< kvs_interface > kvs, const comm_attr
&attr=default_comm_attr)

Creates new communicators with user supplied size, ranks, local device-rank mapping and kvs.

Parameters • size – user-supplied total number of ranks
• rank – user-supplied rank
• device – local device
• devices – user-supplied mapping of local ranks on devices
• context – context containing the devices
• kvs – key-value store for ranks wire-up
• attr – optional communicator attributes

Returns vector of communicators / communicator

template<class DeviceType, class ContextType> vector_class< communicator > CCL_API
create_communicators (int size, const map_class< int, DeviceType > &devices, const
ContextType &context, shared_ptr_class< kvs_interface > kvs, const comm_attr
&attr=default_comm_attr)

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

template<class DeviceType, class ContextType> communicator CCL_API create_communicator
(int size, int rank, DeviceType &device, const ContextType &context, shared_ptr_class<
kvs_interface > kvs, const comm_attr &attr=default_comm_attr)

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

communicator CCL_API create_communicator (int size, int rank, shared_ptr_class< kvs_interface
> kvs, const comm_attr &attr=default_comm_attr)

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

template<class DeviceType, class ContextType> vector_class< communicator > CCL_API
create_communicators (int size, const vector_class< DeviceType > &devices, const ContextType
&context, shared_ptr_class< kvs_interface > kvs, const comm_attr &attr=default_comm_attr)

Creates a new communicators with user supplied size, local devices and kvs. Ranks will be assigned
automatically.

Parameters • size – user-supplied total number of ranks
• devices – user-supplied device objects for local ranks
• context – context containing the devices
• kvs – key-value store for ranks wire-up
• attr – optional communicator attributes

Returns vector of communicators / communicator

communicator CCL_API create_communicator (int size, shared_ptr_class< kvs_interface > kvs,
const comm_attr &attr=default_comm_attr)

Intel® oneAPI Collective Communications Library 1

11

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

communicator CCL_API create_communicator (const comm_attr &attr=default_comm_attr)

Creates a new communicator with externally provided size, rank and kvs. Implementation is platform specific
and non portable.

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Parameters attr – optional communicator attributes

Returns communicator

vector_class< communicator > CCL_API split_communicators (const vector_class< pair_class<
communicator, comm_split_attr >> &attrs)

Splits communicators according to attributes.

Parameters attrs – split attributes for local communicators

Returns vector of communicators

Context

template<class native_context_type, class = typename
std::enable_if<is_context_supported<native_context_type>()>::type> context CCL_API
create_context (native_context_type &&native_context)

Creates a new context from @native_contex_type.

Parameters native_context – the existing handle of context

Returns context object

context CCL_API create_context ()

Device

template<class native_device_type, class = typename
std::enable_if<is_device_supported<native_device_type>()>::type> device CCL_API
create_device (native_device_type &&native_device)

Creates a new device from @native_device_type.

Parameters native_device – the existing handle of device

Returns device object

device CCL_API create_device ()

Event

template<class event_type, class = typename
std::enable_if<is_event_supported<event_type>()>::type> event CCL_API create_event
(event_type &native_event)

Creates a new event from @native_event_type.

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

12

Parameters native_event – the existing event

Returns event object

Key-value Store

template<class... attr_val_type> kvs_attr CCL_API create_kvs_attr (attr_val_type &&... avs)

shared_ptr_class< kvs > CCL_API create_main_kvs (const kvs_attr &attr=default_kvs_attr)

Creates a main key-value store. Its address should be distributed using out of band communication
mechanism and be used to create key-value stores on other processes.

Parameters attr – optional kvs attributes

Returns kvs object

shared_ptr_class< kvs > CCL_API create_kvs (const kvs::address_type &addr, const kvs_attr
&attr=default_kvs_attr)

Creates a new key-value store from main kvs address.

Parameters • addr – address of main kvs
• attr – optional kvs attributes

Returns kvs object

Stream

template<class native_stream_type, class = typename
std::enable_if<is_stream_supported<native_stream_type>()>::type> stream CCL_API
create_stream (native_stream_type &native_stream)

Creates a new stream from @native_stream_type.

Parameters native_stream – the existing handle of stream

Returns stream object

stream CCL_API create_stream ()

Communication Operations

Refer to oneCCL specification for more details about communication operations.

• Datatypes
• Collective Operations

• Allgatherv
• Allreduce
• Alltoall
• Alltoallv
• Barrier
• Broadcast
• Reduce
• ReduceScatter
• Operation Attributes

• Point-To-Point Operations

Intel® oneAPI Collective Communications Library 1

13

• send
• recv

Datatypes

template<class... attr_val_type> datatype_attr CCL_API create_datatype_attr (attr_val_type
&&... avs)

Creates an attribute object that may be used to register custom datatype.

Returns an attribute object

datatype CCL_API register_datatype (const datatype_attr &attr)

Registers custom datatype to be used in communication operations.

Parameters attr – datatype attributes

Returns datatype handle

void CCL_API deregister_datatype (datatype dtype)

Deregisters custom datatype.

Parameters dtype – custom datatype handle

size_t CCL_API get_datatype_size (datatype dtype)

Retrieves a datatype size in bytes.

Parameters dtype – datatype handle

Returns datatype size

Collective Operations

• Allgatherv
• Allreduce
• Alltoall
• Alltoallv
• Barrier
• Broadcast
• Reduce
• ReduceScatter

Operation Attributes

template<class coll_attribute_type, class... attr_val_type> coll_attribute_type CCL_API
create_operation_attr (attr_val_type &&... avs)

Creates an attribute object that may be used to customize communication operation.

Returns an attribute object

Allgatherv

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

14

event CCL_API allgatherv (const void *send_buf, size_t send_count, void *recv_buf, const
vector_class< size_t > &recv_counts, datatype dtype, const communicator &comm, const stream
&stream, const allgatherv_attr &attr=default_allgatherv_attr, const vector_class< event >
&deps={})

Allgatherv is a collective communication operation that collects data from all the ranks within a
communicator into a single buffer. Different ranks may contribute segments of different sizes. The resulting
data in the output buffer is the same for each rank.

Parameters • send_buf – the buffer with send_count elements of dtype that stores local
data to be gathered

• send_count – the number of elements of type dtype in send_buf
• recv_buf – [out] the buffer to store gathered result of dtype, must be large

enough to hold values from all ranks, i.e. size should be equal to dtype size in
bytes * sum of all values in recv_counts

• recv_counts – array with the number of elements of type dtype to be
received from each rank

• dtype – the datatype of elements in send_buf and recv_buf
• comm – the communicator for which the operation will be performed
• stream – abstraction over a device queue constructed via ccl::create_stream
• attr – optional attributes to customize operation
• deps – an optional vector of the events that the operation should depend on

Returns ccl::event an object to track the progress of the operation

event CCL_API allgatherv (const void *send_buf, size_t send_count, void *recv_buf, const
vector_class< size_t > &recv_counts, datatype dtype, const communicator &comm, const
allgatherv_attr &attr=default_allgatherv_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

event CCL_API allgatherv (const void *send_buf, size_t send_count, const vector_class< void * >
&recv_bufs, const vector_class< size_t > &recv_counts, datatype dtype, const communicator
&comm, const stream &stream, const allgatherv_attr &attr=default_allgatherv_attr, const
vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

This overloaded function takes separate receive buffer per rank.

Parameters recv_bufs – [out] array of buffers to store gathered result, one buffer per rank;
each buffer must be large enough to keep the corresponding recv_counts
elements of dtype size

event CCL_API allgatherv (const void *send_buf, size_t send_count, const vector_class< void * >
&recv_bufs, const vector_class< size_t > &recv_counts, datatype dtype, const communicator
&comm, const allgatherv_attr &attr=default_allgatherv_attr, const vector_class< event >
&deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

This overloaded function takes separate receive buffer per rank.

Parameters recv_bufs – [out] array of buffers to store gathered result, one buffer per rank;
each buffer must be large enough to keep the corresponding recv_counts
elements of dtype size

Intel® oneAPI Collective Communications Library 1

15

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API
allgatherv (const BufferType *send_buf, size_t send_count, BufferType *recv_buf, const
vector_class< size_t > &recv_counts, const communicator &comm, const stream &stream, const
allgatherv_attr &attr=default_allgatherv_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Parameters • send_buf – the buffer with send_count elements of BufferType that stores
local data to be gathered

• recv_buf – [out] the buffer to store gathered result of BufferType, must be
large enough to hold values from all ranks, i.e. size should be equal to
BufferType size in bytes * sum of all values in recv_counts

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API
allgatherv (const BufferType *send_buf, size_t send_count, BufferType *recv_buf, const
vector_class< size_t > &recv_counts, const communicator &comm, const allgatherv_attr
&attr=default_allgatherv_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Parameters • send_buf – the buffer with send_count elements of BufferType that stores
local data to be gathered

• recv_buf – [out] the buffer to store gathered result of BufferType, must be
large enough to hold values from all ranks, i.e. size should be equal to
BufferType size in bytes * sum of all values in recv_counts

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API
allgatherv (const BufferType *send_buf, size_t send_count, vector_class< BufferType * >
&recv_bufs, const vector_class< size_t > &recv_counts, const communicator &comm, const
stream &stream, const allgatherv_attr &attr=default_allgatherv_attr, const vector_class< event
> &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Parameters • send_buf – the buffer with send_count elements of BufferType that stores
local data to be gathered

• recv_bufs – [out] array of buffers to store gathered result, one buffer per
rank; each buffer must be large enough to keep the corresponding
recv_counts elements of BufferType size

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API
allgatherv (const BufferType *send_buf, size_t send_count, vector_class< BufferType * >
&recv_bufs, const vector_class< size_t > &recv_counts, const communicator &comm, const
allgatherv_attr &attr=default_allgatherv_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

16

Parameters • send_buf – the buffer with send_count elements of BufferType that stores
local data to be gathered

• recv_bufs – [out] array of buffers to store gathered result, one buffer per
rank; each buffer must be large enough to keep the corresponding
recv_counts elements of BufferType size

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API
allgatherv (const BufferObjectType &send_buf, size_t send_count, BufferObjectType &recv_buf,
const vector_class< size_t > &recv_counts, const communicator &comm, const stream &stream,
const allgatherv_attr &attr=default_allgatherv_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Parameters • send_buf – the buffer of BufferObjectType with send_count elements
that stores local data to be gathered

• recv_buf – [out] the buffer of BufferObjectType to store gathered result,
must be large enough to hold values from all ranks, i.e. size should be equal
to BufferType size in bytes * sum of all values in recv_counts

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API
allgatherv (const BufferObjectType &send_buf, size_t send_count, BufferObjectType &recv_buf,
const vector_class< size_t > &recv_counts, const communicator &comm, const allgatherv_attr
&attr=default_allgatherv_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Parameters • send_buf – the buffer of BufferObjectType with send_count elements
that stores local data to be gathered

• recv_buf – [out] the buffer of BufferObjectType to store gathered result,
must be large enough to hold values from all ranks, i.e. size should be equal
to BufferType size in bytes * sum of all values in recv_counts

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API
allgatherv (const BufferObjectType &send_buf, size_t send_count, vector_class<
reference_wrapper_class< BufferObjectType >> &recv_bufs, const vector_class< size_t >
&recv_counts, const communicator &comm, const stream &stream, const allgatherv_attr
&attr=default_allgatherv_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Parameters • send_buf – the buffer of BufferObjectType with send_count elements
that stores local data to be gathered

• recv_bufs – [out] array of buffers to store gathered result, one buffer per
rank; each buffer must be large enough to keep the corresponding
recv_counts elements of BufferObjectType size

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API
allgatherv (const BufferObjectType &send_buf, size_t send_count, vector_class<

Intel® oneAPI Collective Communications Library 1

17

reference_wrapper_class< BufferObjectType >> &recv_bufs, const vector_class< size_t >
&recv_counts, const communicator &comm, const allgatherv_attr &attr=default_allgatherv_attr,
const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Parameters • send_buf – the buffer of BufferObjectType with send_count elements
that stores local data to be gathered

• recv_bufs – [out] array of buffers to store gathered result, one buffer per
rank; each buffer must be large enough to keep the corresponding
recv_counts elements of BufferObjectType size

Allreduce

event CCL_API allreduce (const void *send_buf, void *recv_buf, size_t count, datatype dtype,
reduction rtype, const communicator &comm, const stream &stream, const allreduce_attr
&attr=default_allreduce_attr, const vector_class< event > &deps={})

Allreduce is a collective communication operation that performs the global reduction operation on values from
all ranks of communicator and distributes the result back to all ranks.

Parameters • send_buf – the buffer with count elements of dtype that stores local data to
be reduced

• recv_buf – [out] the buffer to store reduced result, must have the same
dimension as send_buf

• count – the number of elements of type dtype in send_buf and recv_buf
• dtype – the datatype of elements in send_buf and recv_buf`
• rtype – the type of the reduction operation to be applied
• comm – the communicator for which the operation will be performed
• stream – abstraction over a device queue constructed via ccl::create_stream
• attr – optional attributes to customize operation
• deps – an optional vector of the events that the operation should depend on

Returns ccl::event an object to track the progress of the operation

event CCL_API allreduce (const void *send_buf, void *recv_buf, size_t count, datatype dtype,
reduction rtype, const communicator &comm, const allreduce_attr &attr=default_allreduce_attr,
const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API
allreduce (const BufferType *send_buf, BufferType *recv_buf, size_t count, reduction rtype,
const communicator &comm, const stream &stream, const allreduce_attr
&attr=default_allreduce_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API
allreduce (const BufferType *send_buf, BufferType *recv_buf, size_t count, reduction rtype,
const communicator &comm, const allreduce_attr &attr=default_allreduce_attr, const
vector_class< event > &deps={})

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

18

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API allreduce
(const BufferObjectType &send_buf, BufferObjectType &recv_buf, size_t count, reduction rtype,
const communicator &comm, const stream &stream, const allreduce_attr
&attr=default_allreduce_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API allreduce
(const BufferObjectType &send_buf, BufferObjectType &recv_buf, size_t count, reduction rtype,
const communicator &comm, const allreduce_attr &attr=default_allreduce_attr, const
vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Alltoall

event CCL_API alltoall (const void *send_buf, void *recv_buf, size_t count, datatype dtype, const
communicator &comm, const stream &stream, const alltoall_attr &attr=default_alltoall_attr,
const vector_class< event > &deps={})

Alltoall is a collective communication operation in which each rank sends distinct equal-sized blocks of data to
each rank. The j-th block of send_buf sent from the i-th rank is received by the j-th rank and is placed in
the i-th block of recvbuf.

Parameters • send_buf – the buffer with count elements of dtype that stores local data to
be sent

• recv_buf – [out] the buffer to store received result, must be large enough to
hold values from all ranks, i.e. at least comm_size * count

• count – the number of elements of type dtype to be send to or to received
from each rank

• dtype – the datatype of elements in send_buf and recv_buf
• comm – the communicator for which the operation will be performed
• stream – abstraction over a device queue constructed via ccl::create_stream
• attr – optional attributes to customize operation
• deps – an optional vector of the events that the operation should depend on

Returns ccl::event an object to track the progress of the operation

event CCL_API alltoall (const void *send_buf, void *recv_buf, size_t count, datatype dtype, const
communicator &comm, const alltoall_attr &attr=default_alltoall_attr, const vector_class< event
> &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

event CCL_API alltoall (const vector_class< void * > &send_buf, const vector_class< void * >
&recv_buf, size_t count, datatype dtype, const communicator &comm, const stream &stream,
const alltoall_attr &attr=default_alltoall_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Intel® oneAPI Collective Communications Library 1

19

Parameters • send_bufs – array of buffers with local data to be sent, one buffer per rank
• recv_bufs – [out] array of buffers to store received result, one buffer per

rank

event CCL_API alltoall (const vector_class< void * > &send_buf, const vector_class< void * >
&recv_buf, size_t count, datatype dtype, const communicator &comm, const alltoall_attr
&attr=default_alltoall_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Parameters • send_bufs – array of buffers with local data to be sent, one buffer per rank
• recv_bufs – [out] array of buffers to store received result, one buffer per

rank

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API alltoall
(const BufferType *send_buf, BufferType *recv_buf, size_t count, const communicator &comm,
const stream &stream, const alltoall_attr &attr=default_alltoall_attr, const vector_class< event >
&deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API alltoall
(const BufferType *send_buf, BufferType *recv_buf, size_t count, const communicator &comm,
const alltoall_attr &attr=default_alltoall_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API alltoall
(const vector_class< BufferType * > &send_buf, const vector_class< BufferType * > &recv_buf,
size_t count, const communicator &comm, const stream &stream, const alltoall_attr
&attr=default_alltoall_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Parameters • send_bufs – array of buffers with local data to be sent, one buffer per rank
• recv_bufs – [out] array of buffers to store received result, one buffer per

rank

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API alltoall
(const vector_class< BufferType * > &send_buf, const vector_class< BufferType * > &recv_buf,
size_t count, const communicator &comm, const alltoall_attr &attr=default_alltoall_attr, const
vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Parameters • send_bufs – array of buffers with local data to be sent, one buffer per rank

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

20

• recv_bufs – [out] array of buffers to store received result, one buffer per
rank

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API alltoall
(const BufferObjectType &send_buf, BufferObjectType &recv_buf, size_t count, const
communicator &comm, const stream &stream, const alltoall_attr &attr=default_alltoall_attr,
const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API alltoall
(const BufferObjectType &send_buf, BufferObjectType &recv_buf, size_t count, const
communicator &comm, const alltoall_attr &attr=default_alltoall_attr, const vector_class< event
> &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Parameters • send_bufs – array of buffers with local data to be sent, one buffer per rank
• recv_bufs – [out] array of buffers to store received result, one buffer per

rank

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API alltoall
(const vector_class< reference_wrapper_class< BufferObjectType >> &send_buf, const
vector_class< reference_wrapper_class< BufferObjectType >> &recv_buf, size_t count, const
communicator &comm, const stream &stream, const alltoall_attr &attr=default_alltoall_attr,
const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Parameters • send_bufs – array of buffers with local data to be sent, one buffer per rank
• recv_bufs – [out] array of buffers to store received result, one buffer per

rank

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API alltoall
(const vector_class< reference_wrapper_class< BufferObjectType >> &send_buf, const
vector_class< reference_wrapper_class< BufferObjectType >> &recv_buf, size_t count, const
communicator &comm, const alltoall_attr &attr=default_alltoall_attr, const vector_class< event
> &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Parameters • send_bufs – array of buffers with local data to be sent, one buffer per rank
• recv_bufs – [out] array of buffers to store received result, one buffer per

rank

Alltoallv

Intel® oneAPI Collective Communications Library 1

21

event CCL_API alltoallv (const void *send_buf, const vector_class< size_t > &send_counts, void
*recv_buf, const vector_class< size_t > &recv_counts, datatype dtype, const communicator
&comm, const stream &stream, const alltoallv_attr &attr=default_alltoallv_attr, const
vector_class< event > &deps={})

Alltoallv is a collective communication operation in which each rank sends distinct blocks of data to each
rank. Block sizes may differ. The j-th block of send_buf sent from the i-th rank is received by the j-th rank
and is placed in the i-th block of recvbuf.

Parameters • send_buf – the buffer with elements of dtype that stores local blocks to be
sent to each rank

• send_bufs – array of buffers to store send blocks, one buffer per rank
• recv_buf – [out] the buffer to store received result, must be large enough to

hold blocks from all ranks
• recv_bufs – [out] array of buffers to store receive blocks, one buffer per

rank
• send_counts – array with the number of elements of type dtype in send

blocks for each rank
• recv_counts – array with the number of elements of type dtype in receive

blocks from each rank
• dtype – the datatype of elements in send_buf and recv_buf
• comm – the communicator for which the operation will be performed
• stream – abstraction over a device queue constructed via ccl::create_stream
• attr – optional attributes to customize operation
• deps – an optional vector of the events that the operation should depend on

Returns ccl::event an object to track the progress of the operation

event CCL_API alltoallv (const void *send_buf, const vector_class< size_t > &send_counts, void
*recv_buf, const vector_class< size_t > &recv_counts, datatype dtype, const communicator
&comm, const alltoallv_attr &attr=default_alltoallv_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

event CCL_API alltoallv (const vector_class< void * > &send_bufs, const vector_class< size_t >
&send_counts, const vector_class< void * > &recv_bufs, const vector_class< size_t >
&recv_counts, datatype dtype, const communicator &comm, const stream &stream, const
alltoallv_attr &attr=default_alltoallv_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

event CCL_API alltoallv (const vector_class< void * > &send_bufs, const vector_class< size_t >
&send_counts, const vector_class< void * > &recv_bufs, const vector_class< size_t >
&recv_counts, datatype dtype, const communicator &comm, const alltoallv_attr
&attr=default_alltoallv_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API alltoallv
(const BufferType *send_buf, const vector_class< size_t > &send_counts, BufferType *recv_buf,
const vector_class< size_t > &recv_counts, const communicator &comm, const stream &stream,
const alltoallv_attr &attr=default_alltoallv_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

22

Type-safe version.

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API alltoallv
(const BufferType *send_buf, const vector_class< size_t > &send_counts, BufferType *recv_buf,
const vector_class< size_t > &recv_counts, const communicator &comm, const alltoallv_attr
&attr=default_alltoallv_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API alltoallv
(const vector_class< BufferType * > &send_bufs, const vector_class< size_t > &send_counts,
const vector_class< BufferType * > &recv_bufs, const vector_class< size_t > &recv_counts,
const communicator &comm, const stream &stream, const alltoallv_attr
&attr=default_alltoallv_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API alltoallv
(const vector_class< BufferType * > &send_bufs, const vector_class< size_t > &send_counts,
const vector_class< BufferType * > &recv_bufs, const vector_class< size_t > &recv_counts,
const communicator &comm, const alltoallv_attr &attr=default_alltoallv_attr, const
vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API alltoallv
(const BufferObjectType &send_buf, const vector_class< size_t > &send_counts,
BufferObjectType &recv_buf, const vector_class< size_t > &recv_counts, const communicator
&comm, const stream &stream, const alltoallv_attr &attr=default_alltoallv_attr, const
vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API alltoallv
(const BufferObjectType &send_buf, const vector_class< size_t > &send_counts,
BufferObjectType &recv_buf, const vector_class< size_t > &recv_counts, const communicator
&comm, const alltoallv_attr &attr=default_alltoallv_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API alltoallv
(const vector_class< reference_wrapper_class< BufferObjectType >> &send_bufs, const
vector_class< size_t > &send_counts, const vector_class< reference_wrapper_class<

Intel® oneAPI Collective Communications Library 1

23

BufferObjectType >> &recv_bufs, const vector_class< size_t > &recv_counts, const
communicator &comm, const stream &stream, const alltoallv_attr &attr=default_alltoallv_attr,
const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API alltoallv
(const vector_class< reference_wrapper_class< BufferObjectType >> &send_bufs, const
vector_class< size_t > &send_counts, const vector_class< reference_wrapper_class<
BufferObjectType >> &recv_bufs, const vector_class< size_t > &recv_counts, const
communicator &comm, const alltoallv_attr &attr=default_alltoallv_attr, const vector_class<
event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Barrier

event CCL_API barrier (const communicator &comm, const stream &stream, const barrier_attr
&attr=default_barrier_attr, const vector_class< event > &deps={})

Barrier synchronization is performed across all ranks of the communicator and it is completed only after all
the ranks in the communicator have called it.

Parameters • comm – the communicator for which the operation will be performed
• stream – abstraction over a device queue constructed via ccl::create_stream
• attr – optional attributes to customize operation
• deps – an optional vector of the events that the operation should depend on

Returns ccl::event an object to track the progress of the operation

event CCL_API barrier (const communicator &comm, const barrier_attr
&attr=default_barrier_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Broadcast

event CCL_API broadcast (void *buf, size_t count, datatype dtype, int root, const communicator
&comm, const stream &stream, const broadcast_attr &attr=default_broadcast_attr, const
vector_class< event > &deps={})

Broadcast is a collective communication operation that broadcasts data from one rank of communicator
(denoted as root) to all other ranks.

Parameters • buf – [in,out] the buffer with count elements of dtype serves as send buffer
for root and as receive buffer for other ranks

• count – the number of elements of type dtype in buf
• dtype – the datatype of elements in buf
• root – the rank that broadcasts buf
• comm – the communicator for which the operation will be performed
• stream – abstraction over a device queue constructed via ccl::create_stream
• attr – optional attributes to customize operation

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

24

• deps – an optional vector of the events that the operation should depend on

Returns ccl::event an object to track the progress of the operation

event CCL_API broadcast (void *buf, size_t count, datatype dtype, int root, const communicator
&comm, const broadcast_attr &attr=default_broadcast_attr, const vector_class< event >
&deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API
broadcast (BufferType *buf, size_t count, int root, const communicator &comm, const stream
&stream, const broadcast_attr &attr=default_broadcast_attr, const vector_class< event >
&deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API
broadcast (BufferType *buf, size_t count, int root, const communicator &comm, const
broadcast_attr &attr=default_broadcast_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API
broadcast (BufferObjectType &buf, size_t count, int root, const communicator &comm, const
stream &stream, const broadcast_attr &attr=default_broadcast_attr, const vector_class< event >
&deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API
broadcast (BufferObjectType &buf, size_t count, int root, const communicator &comm, const
broadcast_attr &attr=default_broadcast_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Reduce

event CCL_API reduce (const void *send_buf, void *recv_buf, size_t count, datatype dtype,
reduction rtype, int root, const communicator &comm, const stream &stream, const reduce_attr
&attr=default_reduce_attr, const vector_class< event > &deps={})

Reduce is a collective communication operation that performs the global reduction operation on values from
all ranks of the communicator and returns the result to the root rank.

Intel® oneAPI Collective Communications Library 1

25

Parameters • send_buf – the buffer with count elements of dtype that stores local data to
be reduced

• recv_buf – [out] the buffer to store reduced result, must have the same
dimension as send_buf. Used by the root rank only, ignored by other ranks.

• count – the number of elements of type dtype in send_buf and recv_buf
• dtype – the datatype of elements in send_buf and recv_buf
• rtype – the type of the reduction operation to be applied
• root – the rank that gets the result of reduction
• comm – the communicator for which the operation will be performed
• stream – abstraction over a device queue constructed via ccl::create_stream
• attr – optional attributes to customize operation
• deps – an optional vector of the events that the operation should depend on

Returns ccl::event an object to track the progress of the operation

event CCL_API reduce (const void *send_buf, void *recv_buf, size_t count, datatype dtype,
reduction rtype, int root, const communicator &comm, const reduce_attr
&attr=default_reduce_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API reduce
(const BufferType *send_buf, BufferType *recv_buf, size_t count, reduction rtype, int root, const
communicator &comm, const stream &stream, const reduce_attr &attr=default_reduce_attr,
const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API reduce
(const BufferType *send_buf, BufferType *recv_buf, size_t count, reduction rtype, int root, const
communicator &comm, const reduce_attr &attr=default_reduce_attr, const vector_class< event
> &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API reduce
(const BufferObjectType &send_buf, BufferObjectType &recv_buf, size_t count, reduction rtype,
int root, const communicator &comm, const stream &stream, const reduce_attr
&attr=default_reduce_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API reduce
(const BufferObjectType &send_buf, BufferObjectType &recv_buf, size_t count, reduction rtype,
int root, const communicator &comm, const reduce_attr &attr=default_reduce_attr, const
vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

26

Type-safe version.

ReduceScatter

event CCL_API reduce_scatter (const void *send_buf, void *recv_buf, size_t recv_count,
datatype dtype, reduction rtype, const communicator &comm, const stream &stream, const
reduce_scatter_attr &attr=default_reduce_scatter_attr, const vector_class< event > &deps={})

Reduce-scatter is a collective communication operation that performs the global reduction operation on
values from all ranks of the communicator and scatters the result in blocks back to all ranks.

Parameters • send_buf – the buffer with comm_size * count elements of dtype that
stores local data to be reduced

• recv_buf – [out] the buffer to store result block containing recv_count
elements of type dtype

• recv_count – the number of elements of type dtype in receive block
• dtype – the datatype of elements in send_buf and recv_buf
• rtype – the type of the reduction operation to be applied
• comm – the communicator for which the operation will be performed
• stream – abstraction over a device queue constructed via ccl::create_stream
• attr – optional attributes to customize operation
• deps – an optional vector of the events that the operation should depend on

Returns ccl::event an object to track the progress of the operation

event CCL_API reduce_scatter (const void *send_buf, void *recv_buf, size_t recv_count,
datatype dtype, reduction rtype, const communicator &comm, const reduce_scatter_attr
&attr=default_reduce_scatter_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API
reduce_scatter (const BufferType *send_buf, BufferType *recv_buf, size_t recv_count, reduction
rtype, const communicator &comm, const stream &stream, const reduce_scatter_attr
&attr=default_reduce_scatter_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferType, class = typename
std::enable_if<is_native_type_supported<BufferType>(), event>::type> event CCL_API
reduce_scatter (const BufferType *send_buf, BufferType *recv_buf, size_t recv_count, reduction
rtype, const communicator &comm, const reduce_scatter_attr
&attr=default_reduce_scatter_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API
reduce_scatter (const BufferObjectType &send_buf, BufferObjectType &recv_buf, size_t
recv_count, reduction rtype, const communicator &comm, const stream &stream, const
reduce_scatter_attr &attr=default_reduce_scatter_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Intel® oneAPI Collective Communications Library 1

27

template<class BufferObjectType, class = typename
std::enable_if<is_class_supported<BufferObjectType>(), event>::type> event CCL_API
reduce_scatter (const BufferObjectType &send_buf, BufferObjectType &recv_buf, size_t
recv_count, reduction rtype, const communicator &comm, const reduce_scatter_attr
&attr=default_reduce_scatter_attr, const vector_class< event > &deps={})

This is an overloaded member function, provided for convenience. It differs from the above function only in
what argument(s) it accepts.

Type-safe version.

Point-To-Point Operations

Point-to-point operations enable direct communication between two specific entities, facilitating data
exchange, synchronization, and coordination within a parallel computing environment.

The following point-to-point operations are available in oneCCL:

• send
• recv

send
send is a blocking point-to-point communication operation that transfers data from a designated memory
buffer (buf) to a specific peer rank.

event CCL_API send(void *buf,
 size_t count,
 datatype dtype,
 int peer,
 const communicator &comm,
 const stream &stream,
 const pt2pt_attr &attr = default_pt2pt_attr,
 const vector_class<event> &deps = {});

Parameters

• buf - A buffer with dtype count elements that contains the data to be sent.
• count - The number of dtype elements in a buf.
• dtype- The datatype of elements in a buf.
• peer - A destination rank.
• comm - A communicator for which the operation is performed.
• stream - A stream associated with the operation.
• attr - Optional attributes to customize the operation.
• deps - An optional vector of the events, on which the operation should depend.

Returns

ccl::event - An object to track the progress of the operation.

event CCL_API send(void* buf,
 size_t count,
 datatype dtype,
 int peer,
 const communicator &comm,
 const pt2pt_attr &attr = default_pt2pt_attr,
 const vector_class<event> &deps = {});

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

28

Below you can find an overloaded member function provided for the convenience. It differs from the above
function only in what argument(s) it accepts.

template <class BufferType,
 class = typename std::enable_if<is_native_type_supported<BufferType>(), event>::type>
event CCL_API send(BufferType *buf,
 size_t count,
 int peer,
 const communicator &comm,
 const stream &stream,
 const pt2pt_attr &attr = default_pt2pt_attr,
 const vector_class<event>& deps = {});

Below you can find an overloaded member function provided for the convenience. It differs from the above
function only in what argument(s) it accepts.:

event CCL_API send(BufferType *buf,
 size_t count,
 int peer,
 const communicator &comm,
 const pt2pt_attr &attr = default_pt2pt_attr,
 const vector_class<event> &deps = {});

Below you can find an overloaded member function provided for the convenience. It differs from the above
function only in what argument(s) it accepts.

event CCL_API send(BufferObjectType &buf,
 size_t count,
 int peer,
 const communicator &comm,
 const stream &stream,
 const pt2pt_attr &attr = default_pt2pt_attr,
 const vector_class<event> &deps = {});

Below you can find an overloaded member function provided for the convenience. It differs from the above
function only in what argument(s) it accepts.

event CCL_API send(BufferObjectType &buf,
 size_t count,
 int peer,
 const communicator &comm,
 const pt2pt_attr &attr = default_pt2pt_attr,
 const vector_class<event> &deps = {});

recv
recv is a blocking point-to-point communication operation that receives data from a peer rank in a memory
buffer.

event CCL_API recv(void *buf,
 size_t count,
 datatype dtype,
 int peer,
 const communicator &comm,
 const stream &stream,
 const pt2pt_attr &attr = default_pt2pt_attr,
 const vector_class<event> &deps = {});

Parameters

• buf - A buffer with dtype count elements that contains where the data is received.
• count - The number of dtype elements in a buf.

Intel® oneAPI Collective Communications Library 1

29

• dtype- The datatype of elements in a buf.
• peer - A source rank.
• comm - A communicator for which the operation is performed.
• dtream - A stream associated with the operation.
• attr - Optional attributes to customize the operation.
• deps - An optional vector of the events, on which the operation should depend.

Returns:

ccl::event - An object to track the progress of the operation.

event CCL_API recv(void *buf,
 size_t count,
 datatype dtype,
 int peer,
 const communicator &comm,
 const pt2pt_attr &attr = default_pt2pt_attr,
 const vector_class<event>& deps = {});

Below you can find an overloaded member function provided for the convenience. It differs from the above
function only in what argument(s) it accepts.

template <class BufferType,
 class = typename std::enable_if<is_native_type_supported<BufferType>(), event>::type>
event CCL_API recv(BufferType *buf,
 size_t count,
 int peer,
 const communicator &comm,
 const stream &stream,
 const pt2pt_attr &attr = default_pt2pt_attr,
 const vector_class<event> &deps = {});

Below you can find an overloaded member function provided for the convenience. It differs from the above
function only in what argument(s) it accepts.

event CCL_API recv(BufferType *buf,
 size_t count,
 int peer,
 const communicator &comm,
 const pt2pt_attr &attr = default_pt2pt_attr,
 const vector_class<event> &deps = {});

Below you can find an overloaded member function provided for the convenience. It differs from the above
function only in what argument(s) it accepts.

event CCL_API recv(BufferObjectType &buf,
 size_t count,
 int peer,
 const communicator &comm,
 const stream &stream,
 const pt2pt_attr &attr = default_pt2pt_attr,
 const vector_class<event> &deps = {});

Below you can find an overloaded member function provided for the convenience. It differs from the above
function only in what argument(s) it accepts.

event CCL_API recv(BufferObjectType &buf,
 size_t count,
 int peer,

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

30

 const communicator &comm,
 const pt2pt_attr &attr = default_pt2pt_attr,
 const vector_class<event> &deps = {});

Environment Variables

Collective Algorithms Selection
oneCCL supports collective operations for the host (CPU) memory buffers and device (GPU) memory buffers.
Below you can see how to select the collective algorithm depending on the type of buffer being utilized.

Device (GPU) Memory Buffers

Collectives that use GPU buffers are implemented using two phases:

• Scaleup phase. Communication between ranks/processes in the same node.
• Scaleout phase. Communication between ranks/processes on different nodes.

SCALEUP

Use the following environment variables to select the scaleup algorithm:

CCL_REDUCE_SCATTER_MONOLITHIC_KERNEL
Syntax

CCL_REDUCE_SCATTER_MONOLITHIC_KERNEL=<value>
Arguments

<value> Description

1 Uses compute kernels to transfer data across GPUs for the
ALLREDUCE, REDUCE, and REDUCE_SCATTER collectives.

0 Uses copy engines to transfer data across GPUs for the ALLREDUCE,
REDUCE, and REDUCE_SCATTER collectives. The default value.

Description

Set this environment variable to enable compute kernels for the ALLREDUCE, REDUCE, and REDUCE_SCATTER
collectives using device (GPU) buffers.

CCL_ALLGATHERV_MONOLITHIC_PIPELINE_KERNEL

Syntax

CCL_ALLGATHERV_MONOLITHIC_PIPELINE_KERNEL=<value>
Arguments

<value> Description

1 Uses compute kernels to transfer data across GPUs for the
ALLGATHERV collective. The default value.

0 Uses copy engines to transfer data across GPUs for the ALLGATHERV
collective.

Description

Intel® oneAPI Collective Communications Library 1

31

Set this environment variable to enable compute kernels that pipeline data transfers across tiles in the same
GPU with data transfers across different GPUs, for the ALLGATHERV collective using device (GPU) buffers.

CCL_REDUCE_SCATTER_MONOLITHIC_PIPELINE_KERNEL

Syntax

CCL_REDUCE_SCATTER_MONOLITHIC_PIPELINE_KERNEL=<value>
Arguments

<value> Description

1 Uses compute kernels for the ALLREDUCE, REDUCE, and
REDUCE_SCATTER collectives. The default value.

0 Uses copy engines to transfer data across GPUs for the ALLREDUCE,
REDUCE, and REDUCE_SCATTER collectives.

Description

Set this environment variable to enable compute kernels that pipeline data transfers across tiles in the same
GPU with data transfers across different GPUs for the ALLREDUCE, REDUCE, and REDUCE_SCATTER collectives
using the device (GPU) buffers.

CCL_ALLTOALLV_MONOLITHIC_KERNEL

Syntax

CCL_ALLTOALLV_MONOLITHIC_KERNEL=<value>
Arguments

<value> Description

1 Uses compute kernels to transfer data across GPUs for the ALLTOALL
and ALLTOALLV collectives. The default value.

0 Uses copy engines to transfer data across GPUs for the ALLTOALL and
ALLTOALLV collectives.

Description

Set this environment variable to enable compute kernels for the ALLTOALL and ALLTOALLV collectives using
device (GPU) buffers CCL_<coll_name>_SCALEOUT.

CCL_SKIP_SCHEDULER

Syntax

CCL_SKIP_SCHEDULER=<value>
Arguments

<value> Description

1 Enable SYCL kernels

0 Disable SYCL kernels. The default value.

Description

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

32

Set this environment variable to 1 to enable the SYCL kernel-based implementation for ALLGATHERV,
ALLREDUCE, and REDUCE_SCATTER. This new optimization enhances all message sizes and supports the
int32, fp32, fp16, and bf16 data types, sum operations, and single nodes. oneCCL falls back to other
implementations when the support is unavailable with SYCL kernels. Therefore, you can safely set this
environment variable.

SCALEOUT

The following environment variables can be used to select the scaleout algorithm used.

Syntax

To set a specific algorithm for scaleout for the device (GPU) buffers for the whole message size range:

CCL_<coll_name>_SCALEOUT=<algo_name>
To set a specific algorithm for scaleout for the device (GPU) buffers for a specific message size range:

CCL_<coll_name>_SCALEOUT="<algo_name_1>[:<size_range_1>][;<algo_name_2>:<size_range_2>][;...]"
Where:

• <coll_name> is selected from a list of the available collective operations (Available collectives).
• <algo_name> is selected from a list of the available algorithms for the specific collective operation

(Available collectives).
• <size_range> is described by the left and the right size borders in the <left>-<right> format. The size

is specified in bytes. To specify the maximum message size, use reserved word max.

oneCCL internally fills the algorithm selection table with sensible defaults. Your input complements the
selection table. To see the actual table values, set CCL_LOG_LEVEL=info.

Example

CCL_ALLREDUCE_SCALEOUT="recursive_doubling:0-8192;rabenseifner:8193-1048576;ring:1048577-max"

Available Collectives

Available collective operations (<coll_name>):

• ALLGATHERV
• ALLREDUCE
• ALLTOALL
• ALLTOALLV
• BARRIER
• BCAST
• REDUCE
• REDUCE_SCATTER

Available algorithms

Available algorithms for each collective operation (<algo_name>):

ALLGATHERV algorithms

direct Based on MPI_Iallgatherv

naive Send to all, receive from all

flat Alltoall-based algorithm

multi_bcast Series of broadcast operations with different root ranks

Intel® oneAPI Collective Communications Library 1

33

ring Ring-based algorithm

ALLREDUCE algorithms

direct Based on MPI_Iallreduce

rabenseifner Rabenseifner’s algorithm

nreduce May be beneficial for imbalanced workloads

ring reduce_scatter + allgather ring. Use CCL_RS_CHUNK_COUNT and
CCL_RS_MIN_CHUNK_SIZE to control pipelining on reduce_scatter
phase.

double_tree Double-tree algorithm

recursive_doubling Recursive doubling algorithm

2d Two-dimensional algorithm (reduce_scatter + allreduce + allgather).
Only available for the host (CPU) buffers.

ALLTOALL algorithms

direct Based on MPI_Ialltoall

naive Send to all, receive from all

scatter Scatter-based algorithm

ALLTOALLV algorithms

direct Based on MPI_Ialltoallv

naive Send to all, receive from all

scatter Scatter-based algorithm

BARRIER algorithms

direct Based on MPI_Ibarrier

ring Ring-based algorithm

NOTE The BARRIER` algorithm does not support the CCL_BARRIER_SCALEOUT environment variable.
To change the algorithm for BARRIER, use the CCL_BARRIER environment variable.

BCAST algorithms

direct Based on MPI_Ibcast

ring Ring

double_tree Double-tree algorithm

naive Send to all from root rank

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

34

NOTE The BCAST algorithm does not yet support the CCL_BCAST_SCALEOUT environment variable. To
change the algorithm for BCAST, use the CCL_BCAST environment variable.

REDUCE algorithms

direct Based on MPI_Ireduce

rabenseifner Rabenseifner’s algorithm

tree Tree algorithm

double_tree Double-tree algorithm

REDUCE_SCATTER algorithms

direct Based on MPI_Ireduce_scatter_block

ring Use CCL_RS_CHUNK_COUNT and CCL_RS_MIN_CHUNK_SIZE to control
pipelining.

NOTE The REDUCE_SCATTER algorithm does not yet support the CCL_REDUCE_SCATTER_SCALEOUT
environment variable. To change the algorithm for REDUCE_SCATTER, use the CCL_REDUCE_SCATTER
environment variable.

Host (CPU) Memory Buffers

CCL_<coll_name>

Syntax

To set a specific algorithm for the host (CPU) buffers for the whole message size range:

CCL_<coll_name>=<algo_name>
To set a specific algorithm for the host (CPU) buffers for a specific message size range:

CCL_<coll_name>="<algo_name_1>[:<size_range_1>][;<algo_name_2>:<size_range_2>][;...]"
Where:

• <coll_name> is selected from a list of available collective operations (Available collectives).
• <algo_name> is selected from a list of available algorithms for a specific collective operation (Available

algorithms).
• <size_range> is described by the left and the right size borders in a format <left>-<right>. Size is

specified in bytes. Use reserved word max to specify the maximum message size.

oneCCL internally fills algorithm selection table with sensible defaults. User input complements the selection
table. To see the actual table values set CCL_LOG_LEVEL=info.

Example

CCL_ALLREDUCE="recursive_doubling:0-8192;rabenseifner:8193-1048576;ring:1048577-max"

CCL_RS_CHUNK_COUNT

Syntax

CCL_RS_CHUNK_COUNT=<value>

Intel® oneAPI Collective Communications Library 1

35

Arguments

<value> Description

COUNT Maximum number of chunks.

Description

Set this environment variable to specify maximum number of chunks for reduce_scatter phase in ring
allreduce.

CCL_RS_MIN_CHUNK_SIZE

Syntax

CCL_RS_MIN_CHUNK_SIZE=<value>
Arguments

<value> Description

SIZE Minimum number of bytes in chunk.

Description

Set this environment variable to specify minimum number of bytes in chunk for reduce_scatter phase in ring
allreduce. Affects actual value of CCL_RS_CHUNK_COUNT.

Workers
The group of environment variables to control worker threads.

CCL_WORKER_COUNT

Syntax

CCL_WORKER_COUNT=<value>
Arguments

<value> Description

N The number of worker threads for oneCCL rank (1 if not specified).

Description

Set this environment variable to specify the number of oneCCL worker threads.

CCL_WORKER_AFFINITY

Syntax

CCL_WORKER_AFFINITY=<cpulist>
Arguments

<cpulist> Description

auto Workers are automatically pinned to last cores of pin domain. Pin
domain depends from process launcher. If mpirun from oneCCL
package is used then pin domain is MPI process pin domain.
Otherwise, pin domain is all cores on the node.

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

36

<cpulist> Description

<cpulist> A comma-separated list of core numbers and/or ranges of core
numbers for all local workers, one number per worker. The i-th local
worker is pinned to the i-th core in the list. For example <a>,-<c>
defines list of cores contaning core with number <a> and range of
cores with numbers from to <c>. The core number should not
exceed the number of cores available on the system. The length of
the list should be equal to the number of workers.

Description

Set this environment variable to specify cpu affinity for oneCCL worker threads.

CCL_WORKER_MEM_AFFINITY

Syntax

CCL_WORKER_MEM_AFFINITY=<nodelist>
Arguments

<nodelist> Description

auto Workers are automatically pinned to NUMA nodes that correspond to
CPU affinity of workers.

<nodelist> A comma-separated list of NUMA node numbers for all local workers,
one number per worker. The i-th local worker is pinned to the i-th
NUMA node in the list. The number should not exceed the number of
NUMA nodes available on the system.

Description

Set this environment variable to specify memory affinity for oneCCL worker threads.

ATL
The group of environment variables to control ATL (abstract transport layer).

CCL_ATL_TRANSPORT

Syntax

CCL_ATL_TRANSPORT=<value>
Arguments

<value> Description

mpi MPI transport (default).

ofi OFI (libfabric*) transport.

Description

Set this environment variable to select the transport for inter-process communications.

CCL_ATL_HMEM

Syntax

CCL_ATL_HMEM=<value>

Intel® oneAPI Collective Communications Library 1

37

Arguments

<value> Description

1 Enable heterogeneous memory support on the transport layer.

0 Disable heterogeneous memory support on the transport layer
(default).

Description

Set this environment variable to enable handling of HMEM/GPU buffers by the transport layer. The actual
HMEM support depends on the limitations on the transport level and system configuration.

CCL_ATL_SHM

Syntax

CCL_ATL_SHM=<value>
Arguments

<value> Description

0 Disables the OFI shared memory provider. The default value.

1 Enables the OFI shared memory provider.

Description

Set this environment variable to enable the OFI shared memory provider to communicate between ranks in
the same node of the host (CPU) buffers. This capability requires OFI as the transport
(CCL_ATL_TRANSPORT=ofi).

The OFI/SHM provider has support to utilize the Intel(R) Data Streaming Accelerator* (DSA). To run it with
DSA*, you need: * Linux* OS kernel support for the DSA* shared work queues * Libfabric* 1.17 or later

To enable DSA, set the following environment variables:

FI_SHM_DISABLE_CMA=1
FI_SHM_USE_DSA_SAR=1

Refer to Libfabric* Programmer’s Manual for the additional details about DSA* support in the SHM provider:
https://ofiwg.github.io/libfabric/main/man/fi_shm.7.html.

CCL_PROCESS_LAUNCHER

Syntax

CCL_PROCESS_LAUNCHER=<value>
Arguments

<value> Description

hydra Uses the MPI hydra job launcher. The default value.

torch Uses a torch job launcher.

pmix Is used with the PALS job launcher that uses the pmix API. The
mpiexec command should be similar to:

CCL_PROCESS_LAUNCHER=pmix CCL_ATL_TRANSPORT=mpi mpiexec -np 2
-ppn 2 --pmi=pmix ...

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

38

https://01.org/blogs/2019/introducing-intel-data-streaming-accelerator
https://ofiwg.github.io/libfabric/main/man/fi_shm.7.html

<value> Description

none No job launcher is used. You should specify the values for
CCL_LOCAL_SIZE and CCL_LOCAL_RANK.

Description

Set this environment variable to specify the job launcher.

CCL_LOCAL_SIZE

Syntax

CCL_LOCAL_SIZE=<value>
Arguments

<value> Description

SIZE A total number of ranks on the local host.

Description

Set this environment variable to specify a total number of ranks on a local host.

CCL_LOCAL_RANK

Syntax

CCL_LOCAL_RANK=<value>
Arguments

<value> Description

RANK Rank number of the current process on the local host.

Description

Set this environment variable to specify the rank number of the current process in the local host.

Multi-NIC
CCL_MNIC, CCL_MNIC_NAME and CCL_MNIC_COUNT define filters to select multiple NICs. oneCCL workers will
be pinned on selected NICs in a round-robin way.

CCL_MNIC

Syntax

CCL_MNIC=<value>
Arguments

<value> Description

global Select all NICs available on the node.

local Select all NICs local for the NUMA node that corresponds to process
pinning.

none Disable special NIC selection, use a single default NIC (default).

Description

Intel® oneAPI Collective Communications Library 1

39

Set this environment variable to control multi-NIC selection by NIC locality.

CCL_MNIC_NAME

Syntax

CCL_MNIC_NAME=<namelist>
Arguments

<namelist> Description

<namelist> A comma-separated list of NIC full names or prefixes to filter NICs.
Use the ^ symbol to exclude NICs starting with the specified prefixes.
For example, if you provide a list mlx5_0,mlx5_1,^mlx5_2, NICs
with the names mlx5_0 and mlx5_1 will be selected, while mlx5_2
will be excluded from the selection.

Description

Set this environment variable to control multi-NIC selection by NIC names.

CCL_MNIC_COUNT

Syntax

CCL_MNIC_COUNT=<value>
Arguments

<value> Description

N The maximum number of NICs that should be selected for oneCCL
workers. If not specified then equal to the number of oneCCL
workers.

Description

Set this environment variable to specify the maximum number of NICs to be selected. The actual number of
NICs selected may be smaller due to limitations on transport level or system configuration.

Low-precision datatypes
The group of environment variables to control processing of low-precision datatypes.

CCL_BF16

Syntax

CCL_BF16=<value>
Arguments

<value> Description

avx512f Select implementation based on AVX512F instructions.

avx512bf Select implementation based on AVX512_BF16 instructions.

Description

Set this environment variable to select implementation for BF16 <-> FP32 conversion on reduction phase of
collective operation. Default value depends on instruction set support on specific CPU. AVX512_BF16-based
implementation has precedence over AVX512F-based one.

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

40

CCL_FP16

Syntax

CCL_FP16=<value>
Arguments

<value> Description

f16c Select implementation based on F16C instructions.

avx512f Select implementation based on AVX512F instructions.

Description

Set this environment variable to select implementation for FP16 <-> FP32 conversion on reduction phase of
collective operation. Default value depends on instruction set support on specific CPU. AVX512F-based
implementation has precedence over F16C-based one.

CCL_LOG_LEVEL
Syntax

CCL_LOG_LEVEL=<value>
Arguments

<value>

error

warn (default)

info

debug

trace

Description

Set this environment variable to control logging level.

CCL_ITT_LEVEL
Syntax

CCL_ITT_LEVEL=<value>
Arguments

<value> Description

1 Enable support for ITT profiling.

0 Disable support for ITT profiling (default).

Description

Set this environment variable to specify Intel® Instrumentation and Tracing Technology (ITT) profiling level.
Once the environment variable is enabled (value > 0), it is possible to collect and display profiling data for
oneCCL using tools such as Intel® VTune™ Profiler.

Intel® oneAPI Collective Communications Library 1

41

Fusion
The group of environment variables to control fusion of collective operations.

CCL_FUSION

Syntax

CCL_FUSION=<value>
Arguments

<value> Description

1 Enable fusion of collective operations

0 Disable fusion of collective operations (default)

Description

Set this environment variable to control fusion of collective operations. The real fusion depends on additional
settings described below.

CCL_FUSION_BYTES_THRESHOLD

Syntax

CCL_FUSION_BYTES_THRESHOLD=<value>
Arguments

<value> Description

SIZE Bytes threshold for a collective operation. If the size of a
communication buffer in bytes is less than or equal to SIZE, then
oneCCL fuses this operation with the other ones.

Description

Set this environment variable to specify the threshold of the number of bytes for a collective operation to be
fused.

CCL_FUSION_COUNT_THRESHOLD

Syntax

CCL_FUSION_COUNT_THRESHOLD=<value>
Arguments

<value> Description

COUNT The threshold for the number of collective operations. oneCCL can
fuse together no more than COUNT operations at a time.

Description

Set this environment variable to specify count threshold for a collective operation to be fused.

CCL_FUSION_CYCLE_MS

Syntax

CCL_FUSION_CYCLE_MS=<value>
Arguments

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

42

<value> Description

MS The frequency of checking for collectives operations to be fused, in
milliseconds:

• Small MS value can improve latency.
• Large MS value can help to fuse larger number of operations at a

time.

Description

Set this environment variable to specify the frequency of checking for collectives operations to be fused.

CCL_PRIORITY
Syntax

CCL_PRIORITY=<value>
Arguments

<value> Description

direct You have to explicitly specify priority using priority.

lifo Priority is implicitly increased on each collective call. You do not have
to specify priority.

none Disable prioritization (default).

Description

Set this environment variable to control priority mode of collective operations.

CCL_MAX_SHORT_SIZE
Syntax

CCL_MAX_SHORT_SIZE=<value>
Arguments

<value> Description

SIZE Bytes threshold for a collective operation (0 if not specified). If the
size of a communication buffer in bytes is less than or equal to SIZE,
then oneCCL does not split operation between workers. Applicable for
allreduce, reduce and broadcast.

Description

Set this environment variable to specify the threshold of the number of bytes for a collective operation to be
split.

CCL_SYCL_OUTPUT_EVENT
Syntax

CCL_SYCL_OUTPUT_EVENT=<value>
Arguments

Intel® oneAPI Collective Communications Library 1

43

<value> Description

1 Enable support for SYCL output event (default).

0 Disable support for SYCL output event.

Description

Set this environment variable to control support for SYCL output event. Once the support is enabled, you can
retrieve SYCL output event from oneCCL event using get_native() method. oneCCL event must be
associated with oneCCL communication operation.

CCL_ZE_LIBRARY_PATH
Syntax

CCL_ZE_LIBRARY_PATH=<value>
Arguments

<value> Description

PATH/NAME Specify the name and full path to the Level-Zero library for dynamic
loading by oneCCL.

Description

Set this environment variable to specify the name and full path to Level-Zero library. The path should be
absolute and validated. Set this variable if Level-Zero is not located in the default path. By default oneCCL
uses libze_loader.so name for dynamic loading.

Point-To-Point Operations

CCL_RECV
Syntax

CCL_RECV=<value>
Arguments

<value> Description

direct Based on the MPI*/OFI* transport layer.

topo Uses XeLinks across GPUs in a multi-GPU node. Default for GPU
buffers.

offload Based on the MPI*/OFI* transport layer and GPU RDMA when
supported by the hardware.

CCL_SEND
Syntax

CCL_SEND=<value>
Arguments

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

44

<value> Description

direct Based on the MPI*/OFI* transport layer.

topo Uses XeLinks across GPUs in a multi-GPU node. Default for GPU
buffers.

offload Based on the MPI*/OFI* transport layer and GPU RDMA when
supported by the hardware.

oneCCL Benchmark User Guide
The oneCCL benchmark provides performance measurements for the collective operations in oneCCL, such
as:

• allreduce
• reduce
• allgather
• alltoall
• alltoallv
• reduce-scatter
• broadcast
The benchmark is distributed with the oneCCL package. You can find it in the examples directory within the
oneCCL installation path.

Build oneCCL Benchmark

CPU-Only

To build the benchmark, complete the following steps:

1. Configure your environment. Source the installed oneCCL library for the CPU-only support:

source <ccl installation dir>/ccl/latest/env/vars.sh --ccl-configuration=cpu
2. Navigate to <oneCCL install location>/share/doc/ccl/examples
3. Build the benchmark with the following command:

cmake -S . -B build -DCMAKE_INSTALL_PREFIX=$(pwd)/build/_install && cmake --build build -j $
(nproc) -t install

CPU-GPU

1. Configure your environment.

• Source the Intel(R) oneAPI DPC++/C++ Compiler. See the documentation for the instructions.
• Source the installed oneCCL library for the CPU-GPU support:

source <ccl installation dir>/ccl/latest/env/vars.sh --ccl-configuration=cpu_gpu_dpcpp
2. Navigate to <oneCCL install location>/share/doc/ccl/examples.
3. Build the SYCL benchmark with the following command:

cmake -S . -B build -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DCOMPUTE_BACKEND=dpcpp -
DCMAKE_INSTALL_PREFIX=$(pwd)/build/_install && cmake --build build -j $(nproc) -t install

Run oneCCL Benchmark
To run the benchmark, use the following command:

mpirun -np <N> -ppn <P> benchmark [arguments]

Intel® oneAPI Collective Communications Library 1

45

https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/get-started-guide/current/overview.html

Where:

• N is the overall number of processes
• P is the number of processes within a node

The benchmark reports:

• #bytes - the message size in the number of bytes
• #repetitions - the number of iterations
• t_min - the average time across iterations of the fastest process in each iteration
• t_max - the average time across iterations of the slowest process in each iteration
• t_avg - the average time across processes and iterations
• stddev - standard deviation
• wait_t_avg - the average wait time after the collective call returns and until it completes To enable, use

the -x option.

Notice that t_min, t_max, and t_avg measure the total collective execution time. It means the timer starts
before calling oneCCL API and ends once the collective completes. While wait_t_avg only measures the wait
time. It means the timer starts after the collective API call returns control to the host/calling thread and ends
once the collective completes. Thus, wait_t_avg does not include the time spent on the oneCCL API call,
while t_min, t_max, and t_avg include that time. Time is reported in μsec.

Benchmark Arguments

To see the benchmark arguments, use the --help argument.

The benchmark accepts the following arguments:

Option Description Default Value

-b, --backend Specify the backend. The possible values are host
and sycl. For a CPU-only build, the backend is
automatically set to host, and only the host option
is available. For a CPU-GPU build, host and sycl
options are available, and sycl is the default value.
The host value allocates buffers in the host (CPU)
memory, while the sycl value allocates buffers in
the device (GPU) memory.

sycl

-i, --iters Specify the number of iterations executed by the
benchmark.

16

-w, --warmup_iters Specify the number of the warmup iterations. It
means the number of iterations the benchmark
runs before starting the timing of the iterations
specified with the -i argument.

16

-j, --iter_policy Specify the iteration policy. Possible values are off
and auto. When the iteration policy is off, the
number of iterations is the same across the
message sizes. When the iteration policy is auto,
the number of iterations reduces based on the
message size of the collective operation.

auto

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

46

Option Description Default Value

-n, --buf_count Specify the number of collective operations the
benchmark calls in each iteration. Each collective
uses different send and receive buffers. The
explicit wait calls are placed for each collective after
all of them are called.

1

-f, --min_elem_count Specify the minimum number of elements used for
the collective.

1

-t, --max_elem_count Specify the maximum number of elements used for
the collective.

128

-y, --elem_counts Specify a list with the number of elements used for
the collective, , such as [-y 4, 8, 32, 131072].

[1, 2, 4, 8, 16,
32, 64, 128]

-c, --check Check for correctness. The possible values are off
(disable checking), last (check the last iteration),
and all (check all the iterations).

last

-p, --cache Specify whether to use persistent collectives (p=1)
or not (p=0).

NOTE A collective is persistent when the same
collective is called with the same parameters multiple
times. OneCCL generates a schedule for each
collective it runs and can apply optimizations when
persistent collectives are used. It means the schedule
is generated once and reused across the subsequent
invocations, saving the time to generate the schedule.

1

-q, --inplace Specify for oneCCL to use in-place (1) or out-of-
place (0) buffers. With the in-place buffers, the
send and receive buffers used by the collective are
the same. With the out-of-place, the buffers are
different.

0

-a, --sycl_dev_type Specify the type of the SYCL device. The possible
values are host, cpu, and gpu.

gpu

-g, --sycl_root_dev Specify to use the root devices (0) and sub-devices
(1).

0

-m, --sycl_mem_type Specify the type of SYCL memory. The possible
values are usm (unified shared memory) and buf
(buffers).

usm

-u, --sycl_usm_type Specify the type of SYCL device. The possible
values are device or shared.

device

-e, --
sycl_queue_type

Specify the type of the SYCL queue. The possible
values are in_order and out_order.

out_order

Intel® oneAPI Collective Communications Library 1

47

Option Description Default Value

-l, --coll Specify the collective to run. Accept a comma-
separated list, without whitespace characters, of
collectives to run. The available collectives are
allreduce, reduce, alltoallv, alltoall,
allgatherv, reduce-scatter, broadcast.

allreduce

-d, --dtype Specify the datatype. Accept a comma-separated
list, without whitespace characters, of datatypes to
benchmark. The available types are int8, int32,
int64, uint64, float16, float32, and bfloat16.

float32

-r, --reduction Specify the type of the reduction. Accept a coma-
separated list, without whitespace characters, of
the reduction operations to run. The available
operations are sum, prod, min, and max.

sum

-o, --csv_filepath Specify to store the output in the specified CSV file.
User specifies the csv_filepath/file_to_store CSV-
formatted data into

-x, --ext Specify to show the additional information. The
possible values are off, auto, and on. With on, it
also displays the average wait time.

auto

-h, --help Show all of the supported options.

NOTE The -t and -f options specify the count in number of elements, so the total number of bytes is
obtained by multiplying the number of elements by the number of bytes of the data type the collective
uses. For instance, with -f 128 and fp32 datatype, the total amount of bytes is 512 (128 element
count * 4 bytes FP32). The benchmark runs and reports time for message sizes that correspond to the
-t and -f arguments and all message sizes that are powers of two in between these two numbers.

Example

GPU

The following example shows how to run the benchmark with the GPU buffers:

mpirun -n <N> -ppn <P> benchmark -a gpu -m usm -u device -l allreduce -i 20 -j off -f 1024 -t
67108864 -d float32 -p 0 -e in_order

The above command runs:

• The allreduce collective operation
• With a total of N processes
• With P processes per node allocating the memory in the GPU
• Using SYCL Unified Shared Memory (USM) of the device type
• 20 iterations
• With the element count from 1024 to 67108864 (the benchmark runs with all the powers on two in that

range) of float32 datatype, assuming the collective is not persistent and using a SYCL in-order queue

 1 Intel® oneAPI Collective Communications Library Developer Guide and Reference

48

Similar for allreduce and reduce_scatter:

mpirun -n <N> -ppn <P> benchmark -a gpu -m usm -u device -l allreduce,reduce_scatter -i 20 -j
off -f 1024 -t 67108864 -d float32 -p 0 -e in_order

NOTE In this case, the time reported is the accumulated time corresponding to the execution time of
allreduce and reduce_scatter.

CPU

mpirun -b host -n <N> -ppn <P> benchmark -l allreduce -i 20 -j off -f 1024 -t 67108864 -d
float32 -p 0

The above command specifies to run

• The allreduce collective operation
• With a total of N processes
• With P processes per node
• 20 iterations
• With the element count from 1024 to 67108864 (the benchmark runs with all the powers on two in that

range) of float32 datatype, assuming the collective is not persistent

Similar for allreduce and reduce_scatter:

mpirun -b host -n <N> -ppn <P> benchmark -l allreduce,reduce_scatter -i 20 -j off -f 1024 -t
67108864 -d float32 -p 0

Notices and Disclaimers
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

The products described may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

Intel® oneAPI Collective Communications Library 1

49

	Contents
	Intel® oneAPI Collective Communications Library
	Release Notes
	Installation Guide
	Sample Application
	Use oneCCL package from CMake
	Programming Model
	Sample Application
	Sample Application
	Limitations

	General Configuration
	Execution of Communication Operations
	Transport Selection

	Advanced Configuration
	Selection of Collective Algorithms
	Low-precision Datatypes
	Caching of Communication Operations
	Prioritization of Communication Operations
	Fusion of Communication Operations
	Enabling OFI/verbs/dmabuf Support

	oneCCL API
	Initialization
	oneCCL Concepts
	Communicator
	Context
	Device
	Event
	Key-value Store
	Stream

	Communication Operations
	Datatypes
	Collective Operations
	Allgatherv
	Allreduce
	Alltoall
	Alltoallv
	Barrier
	Broadcast
	Reduce
	ReduceScatter

	Point-To-Point Operations

	Environment Variables
	oneCCL Benchmark User Guide
	Notices and Disclaimers

