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1.0 Introduction 

This document presents the BKMs for optimizing and quantizing YOLOv7 model 
using Intel® Distribution of OpenVINO™ Toolkit. The object detection use case based 
on the optimized YOLOv7 model is evaluated on Intel platforms to demonstrate the 
improved throughput. Furthermore, the potential cost savings by the optimized 
model in cloud deployment is illustrated with the real-time use case of an ISV.    

Figure 1. Model Optimization Workflow 

 

The raw pre-trained model is converted into the optimized IR model using Model 
Optimizer that implements most of the optimization parameters to a model by default. 
It is further optimized by applying special optimization methods, such as 
quantization, pruning, and preprocessing optimization. Starting from OpenVINOTM 
2022.2.0, Neural Network Compression Framework (NNCF) becomes the 
recommended tool for post-training and training-time optimization methods. Post-
training Quantization (or Post-training Optimization Tool (POT) in previous versions 
of OpenVINOTM) is designed to accelerate the inference of models by converting 
them into a more hardware-friendly representation (INT8) by applying specific 
methods that do not require re-training. It is limited in terms of achievable accuracy-
performance trade-off for optimizing models. To overcome this, training-time 
optimization may give better results with methods, like Quantization-aware Training 
and Filter Pruning. This paper demonstrates the increased throughput of the object 
detection use case with the quantized YOLOv7 model in INT8 precision using post-
training quantization.   
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1.1 Acronyms 

Table 1. Acronyms 

Term Description 

BKM Best Known Method 

OpenVINOTM Open Visual Inference & Neural Network Optimization 

NNCF Neural Network Compression Framework 

POT Post-training Optimization Tool 

ISV Independent Software Vendor 

DUT Device Under Test 

8-bit Integer INT8 

16-bit Floating Point FP16 

32-bit Floating Point FP32 

FPS Frames per second 

1.2 Reference Documents 

Log in to the Resource and Documentation Center (rdc.intel.com) to search and 
download the document numbers listed in the following table. Contact your Intel 
field representative for access.  

Note: Third-party links are provided as a reference only. Intel does not control or audit 
third-party benchmark data or the web sites referenced in this document. You should 
visit the referenced web site and confirm whether the referenced data is accurate.  

 

 

 

 

 

 

 

 

 

 

https://www.intel.com/content/www/us/en/design/resource-design-center.html
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Table 2. Reference Document 

 

Document Document 
No./Location 

OpenVINOTM Toolkit https://software.seek.intel.com/openvino-toolkit 

OpenVINOTM Docker Image https://hub.docker.com/r/openvino/ubuntu20_dev  

YOLOv7 GitHub Repository https://github.com/WongKinYiu/yolov7 

OpenVINOTM Notebook for 
Optimization and Quantization 
of YOLOv7 model 

https://github.com/openvinotoolkit/openvino_noteb
ooks/blob/main/notebooks/226-yolov7-
optimization/226-yolov7-optimization.ipynb  

Model Optimization Guide https://docs.openvino.ai/latest/openvino_docs_mod
el_optimization_guide.html   

numactl https://manpages.ubuntu.com/manpages/trusty/ma
n8/numactl.8.html 

taskset https://manpages.ubuntu.com/manpages/jammy/ma
n1/taskset.1.html 

OpenVINOTM CPU plugin 
properties 

https://docs.openvino.ai/2023.0/openvino_doc
s_OV_UG_supported_plugins_CPU.html 

AWS EC2 Xeon Instances https://aws.amazon.com/ec2/instance-
types/m6i/ 

AWS EC2 Pricing https://aws.amazon.com/emr/pricing/ 

PuTTY https://www.chiark.greenend.org.uk/~sgtatham/putty
/latest.html 

WinSCP https://winscp.net/eng/index.php 

 

 

 

 

 

 

 

 

 

 

 

https://software.seek.intel.com/openvino-toolkit
https://hub.docker.com/r/openvino/ubuntu20_dev
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https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/226-yolov7-optimization/226-yolov7-optimization.ipynb
https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/226-yolov7-optimization/226-yolov7-optimization.ipynb
https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/226-yolov7-optimization/226-yolov7-optimization.ipynb
https://docs.openvino.ai/latest/openvino_docs_model_optimization_guide.html
https://docs.openvino.ai/latest/openvino_docs_model_optimization_guide.html
https://manpages.ubuntu.com/manpages/trusty/man8/numactl.8.html
https://manpages.ubuntu.com/manpages/trusty/man8/numactl.8.html
https://manpages.ubuntu.com/manpages/jammy/man1/taskset.1.html
https://manpages.ubuntu.com/manpages/jammy/man1/taskset.1.html
https://docs.openvino.ai/2023.0/openvino_docs_OV_UG_supported_plugins_CPU.html
https://docs.openvino.ai/2023.0/openvino_docs_OV_UG_supported_plugins_CPU.html
https://aws.amazon.com/ec2/instance-types/m6i/
https://aws.amazon.com/ec2/instance-types/m6i/
https://aws.amazon.com/emr/pricing/
https://www.chiark.greenend.org.uk/%7Esgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/%7Esgtatham/putty/latest.html
https://winscp.net/eng/index.php
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Table 3. Devices Under Test 

DUT-1: 
Core 

Model NUC11TNHv5 

CPU  11th Gen Intel® CoreTM i5-1145G7 x 8  

GPU  Intel® Iris® Xe Graphics  

Memory 16 GB 

OS Ubuntu 20.04 LTS 

Docker  20.10.16 

OpenVINOTM 2022.2.0 

NNCF 2.4.0 

DUT-2: 
Celeron 

Model iBOX-6305E 

CPU Intel® Celeron® 6305E CPU x 2 

GPU Intel® UHD Graphics 

Memory 16 GB 

OS Ubuntu 20.04 LTS 

OpenVINOTM 2022.2.0 

DUT-3: 
3rd Gen 
Xeon 

CPU Intel® Xeon® Silver 4316 CPU x 80 

Memory 256 GB 

OS Ubuntu 20.04 LTS 

OpenVINOTM 2022.2.0 

DUT-4: 
AWS EC2 
(2nd Gen 
Xeon) 

Model c5.2xlarge 

CPU Intel® Xeon® Platinum 8275CL CPU x 8 

Memory 16 GB 

OS Ubuntu 20.04 LTS 

OpenVINOTM 2022.2.0 

 

§ 
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2.0 Model Optimization and Quantization 

2.1 Prerequisites  

a. Create a Python* virtual environment and upgrade the pip version in DUT-1 

b. Clone the official YOLOv7 GitHub repository and install the dependencies 

c. Install OpenVINO™ and NNCF for model optimization and quantization      

d. Verify the object detection results of the pre-trained YOLOv7 model in PyTorch 
format (yolov7.pt) using the existing script detect.py in the YOLOv7 repository  

The inference time of the detection results shown in Figure 2 is 211 ms on CPU in 
DUT-1.  

 

 

 

python -m venv yolov7_venv 
source yolov7_venv/bin/activate 
python -m pip install --upgrade pip 

git clone https://github.com/WongKinYiu/yolov7.git 
cd yolov7 
pip install -r requirements.txt 
pip install coremltools onnx onnx-simplifier onnxruntime 
jupyterlab 

pip install openvino-dev==2022.2.0 nncf 

python detect.py --weights yolov7.pt --conf 0.25 --img-size 
384 --source ./inference/images/bus.jpg 

https://github.com/WongKinYiu/yolov7
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Figure 2. Detection Results of YOLOv7 Model in PyTorch Framework 

 
 

2.2 Model Optimization 

a. Export the YOLOv7 model from PyTorch into ONNX format 

Using the end2end parameter in the above exports the full model to ONNX including 
post-processing to achieve more performant results. The input image size (img-size) 
is changed from 640 (default) to 384 as the latter is found to satisfy the target 
performance metrics of the ISV. The resulting ONNX model is saved as yolov7.onnx 
in the current working directory. 

python export.py --weights yolov7.pt --grid --end2end --
simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 
--img-size 384 384 --max-wh 384 
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b. Convert the ONNX model into IR format with FP32 precision using Model 
Optimizer 

 

c. Verify the object detection results of the optimized YOLOv7 model in IR format 
(yolov7.xml) using the customized script main.py as shown below 

 

mo --input_model yolov7.onnx --data_type FP32 --output_dir 
./FP32 

import sys 
import numpy as np 
import random 
import cv2 
from openvino.runtime import Core 
import time 
 
names = ['person', 'bicycle', 'car', 'motorcycle', 
'airplane', 'bus', 'train', 'truck', 'boat', 'traffic 
light', 
'fire hydrant', 'stop sign', 'parking meter', 'bench', 
'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 
'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 
'baseball glove', 'skateboard', 'surfboard', 
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 
'knife', 'spoon', 'bowl', 'banana', 'apple', 
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 
'pizza', 'donut', 'cake', 'chair', 'couch', 
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 
'book', 'clock', 'vase', 'scissors', 'teddy bear', 
'hair drier', 'toothbrush'] 
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def letterbox(im, new_shape=(384, 384), color=(114, 114, 114),  
              auto=True, scaleup=True, stride=32): 
 
    # Resize and pad image while meeting stride-multiple  
    # constraints 
    shape = im.shape[:2]  # current shape [height, width] 
    if isinstance(new_shape, int): 
        new_shape = (new_shape, new_shape) 
 
    # Scale ratio (new / old) 
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) 
  # only scale down, do not scale up (for better val mAP)  
    if not scaleup:   
        r = min(r, 1.0) 
 
    # Compute padding 
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) 
  # wh padding 
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] -  
             new_unpad[1]   
 
    if auto:  # minimum rectangle 
        # wh padding 
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)   
 
    dw /= 2  # divide padding into 2 sides 
    dh /= 2 
    if shape[::-1] != new_unpad:  # resize 
        im = cv2.resize(im, new_unpad, interpolation=  
              cv2.INTER_LINEAR) 
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) 
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) 
    im = cv2.copyMakeBorder(im, top, bottom, left, right,     
          cv2.BORDER_CONSTANT, value=color)  # add border 
    return im, r, (dw, dh) 
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def detect_with_ir_model(): 
    core = Core()     
    colors = {name: [random.randint(0, 255) for _ in range(3)] for i,   
     name in enumerate(names)} 
 
    model_path = str(sys.argv[1]) 
    compiled_model = core.compile_model(model_path, 'CPU') 
    input_layer_ir = compiled_model.input(0) 
    N, C, H, W = input_layer_ir.shape 
    iname = input_layer_ir.any_name 
 
    img_path = str(sys.argv[2]) 
    img = cv2.imread(img_path) 
    image = img.copy() 
    image, ratio, dwdh = letterbox(image, (H,W), auto=False) 
    image = image.transpose((2, 0, 1)) 
    image = np.expand_dims(image, 0) 
    image = np.ascontiguousarray(image) 
    im = image.astype(np.float32) 
    im /= 255 
    inp = {iname: im} 
 
    start = round(time.time() * 1000) 
    ov_outputs = compiled_model(inp)[compiled_model.output(0)] 
    end = round(time.time() * 1000) 
 
    print(f' Inference time = {end - start} ms') 
 
    ori_images = [img.copy()] 
 
    for i, (batch_id, x0, y0, x1, y1, cls_id, score) in  
     enumerate(ov_outputs): 
        if (score != 0): 
            image = ori_images[int(batch_id)] 
            box = np.array([x0, y0, x1, y1]) 
            box -= np.array(dwdh * 2) 
            box /= ratio 
            box = box.round().astype(np.int32).tolist() 
            print(box) 
            cls_id = int(cls_id) 
            score = round(float(score), 3) 
            name = names[cls_id] 
            color = colors[name] 
            name += ' ' + str(score) 
            cv2.rectangle(image, box[:2], box[2:], color, 2) 
            cv2.putText(image, name, (box[0], box[1] - 2),  
             cv2.FONT_HERSHEY_SIMPLEX, 0.75, [225, 255, 255],   
             thickness=2) 
            print(name) 
 
    cv2.imshow("out", ori_images[0]) 
    cv2.waitKey(0) 
if __name__ == '__main__': 
    detect_with_ir_model() 
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Run the script main.py to verify the detection results of the optimized model 

The inference time of the detection results shown in Figure 3 is 104 ms on CPU in 
DUT-1. Thus, the optimized model with FP32 precision reduces the inference time of 
the PyTorch model (211 ms) by 51%.  

Figure 3. Detection Results of the Optimized YOLOv7 Model with FP32 Precision 

A 

 

B 

 

python3 main.py FP32/yolov7.xml inference/images/bus.jpg 
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2.3 Model Quantization 

NNCF provides a suite of advanced algorithms for inference optimization in 
OpenVINO™ with minimal accuracy drop. Post-training Quantization is a quantization 
algorithm that doesn't demand retraining of a quantized model. It utilizes a small 
subset of the initial dataset to calibrate quantization constants. The post-training 
quantization is integrated into NNCF in OpenVINO™ 2022.2.0 and later versions. The 
model quantization workflow involves the following steps: 

i. Create a Dataset for quantization. 

ii. Run nncf.quantize for getting a quantized model with INT8 precision. 

iii. Serialize an OpenVINO™ IR model, using the openvino.runtime.serialize function  

a. Move to the yolov7 directory containing the utils subdirectory to execute the 
following code snippets to create the validation dataloader and transform function.  

import nncf   
import numpy as np 
from collections import namedtuple 
import yaml 
from utils.datasets import create_dataloader 
from utils.general import check_dataset, box_iou, xywh2xyxy, 
colorstr 
 
# read dataset config 
DATA_CONFIG = 'data/coco128.yaml' 
with open(DATA_CONFIG) as f: 
    data = yaml.load(f, Loader=yaml.SafeLoader) 
 
# Dataloader 
TASK = 'val'  # path to train/val/test images 
Option = namedtuple('Options', ['single_cls'])   
opt = Option(False) 
dataloader = create_dataloader( 
    data[TASK], 384, 1, 32, opt, pad=0.5, 
    prefix=colorstr(f'{TASK}: ') 
)[0] 
 
def prepare_input_tensor(image: np.ndarray):     
    input_tensor = image.astype(np.float32)  # uint8 to fp16/32 
    input_tensor /= 255.0  # 0 - 255 to 0.0 - 1.0 
     
    if input_tensor.ndim == 3: 
        input_tensor = np.expand_dims(input_tensor, 0) 
    return input_tensor 
 
def transform_fn(data_item):     
    img = data_item[0].numpy() 
    input_tensor = prepare_input_tensor(img)  
    return input_tensor 
 
quantization_dataset = nncf.Dataset(dataloader, transform_fn) 
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Create the config file coco128.yaml with the COCO validation dataset path to create 
dataloader using create_dataloader method with the size of 384 instead of its default 
value (640).  

b. Run the following snippet to create and save the quantized model. 

Note: The above mentioned quantization steps are adapted from the OpenVINO 
notebook that also includes the validation results of the quantized model.   

c. Run the script main.py to verify the detection results of the quantized model 

The inference time of the detection results shown in Figure 4 is 34 ms on CPU in 
DUT-1. Thus, the quantized model with INT8 precision reduces the inference time of 
the raw PyTorch (211 ms) and the optimized FP32 (104 ms) models by 84% and 
67%, respectively. 

python3 main.py INT8/yolov7.xml inference/images/bus.jpg 

from openvino.runtime import Core 
from openvino.runtime import serialize 
 
core = Core() 
model = core.read_model('FP32/yolov7.xml') 
 
quantized_model = nncf.quantize(model, 
quantization_dataset, preset=nncf.QuantizationPreset.MIXED) 
 
serialize(quantized_model, 'INT8_test/yolov7_int8.xml') 

https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/226-yolov7-optimization/226-yolov7-optimization.ipynb
https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/226-yolov7-optimization/226-yolov7-optimization.ipynb
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Figure 4. Detection Results of the Quantized YOLOv7 Model with INT8 Precision 

A 

 

B 
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3.0 Accelerating Throughput of Real-Time Use 
Case with Quantized YOLOv7 Model 

3.1 Use Case 

Smart fleet management involves the use of AI-based algorithms for monitoring the 
vehicle dashboard camera to ensure driver safety by detecting the use of mobile 
phone, spectacle, and seat belt while driving. An ISV is currently running this object 
detection use case with the unoptimized YOLOv7 model at 25 FPS on AWS 
SageMaker (Nvidia Jetson Nano GPU) at the price of 0.75 USD$/hour. The objective 
of the ISV is to achieve the throughput of ≥25 FPS at lower price on Intel platforms 
by optimizing the YOLOv7 model using OpenVINOTM. Follow the steps in Section 2.0 
to quantize the pre-trained YOLOv7 model provided by the ISV. To verify the 
inference results with main.py in Section 2.2c, replace the value of names variable 
with the class names used by the ISV.   

3.2 Deploying Object Detection on AWS EC2  

Refer to the steps in Appendix A to establish the SSH connection and file transfer 
from the Windows notebook in Intel network to the remote AWS EC2 instance. The 
deployment of object detection based on the optimized YOLOv7 model is simple as 
it involves the installation of a very few modules as shown below. 

a. Install the required dependencies 

b. Create the Python* virtual environment to install OpenVINO™ and OpenCV 

c. Verify the detection results of the optimized YOLOv7 model 

The step b is used to install OpenVINO™ on the Xeon-based edge device (DUT-3). 

sudo apt update 

sudo apt install -y python3-pip python3-venv python3-tk 

libgl1 

python -m venv deploy_venv 

source deploy_venv/bin/activate 

pip install --upgrade pip 

pip install opencv-python openvino==2022.2.0 

python3 main.py INT8/yolov7.xml test.jpg 
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3.3 Deploying Object Detection on iBOX-6305E   

The OpenVINO™ is installed using docker as it eases the method of executing 
inference on iGPU in the Celeron-based edge device (DUT-2).  

a. Install Docker 

b. Create the OpenVINO™ container using this docker image 

c. Verify the detection results of the optimized YOLOv7 model 

3.4 Performance Evaluation 

The performance of object detection is evaluated on DUT 1-3 with the Python script 
main_video.py using the 15-second-long input video containing 394 frames. The 
optimized YOLOv7 model with INT8 precision and the input shape of 384x384 is 
used in the evaluation. The execution time (in seconds) and throughput (in FPS) are 
presented for the three DUTs in Table 4. For the Xeon-based DUT, the performance 
is evaluated only on the selected number of CPUs and the execution time is verified 
using the following three methods: a) numactl, b) taskset and c) setting the inference 
threads in OpenVINO CPU plugin properties. The corresponding commands used in 
these methods are shown below: 

a) Using numactl 

The CPUs (0-3 for 4 CPUs and 0-7 for 8 CPUs) to be used for executing the object 
detection are set using the parameter C in numactl.  

 

 

docker run -it --rm --name openvino_test -v /tmp/.X11-

unix:/tmp/.X11-unix -e DISPLAY="$DISPLAY" -v 

/home/ubuntu:/home/openvino --device /dev/dri:/dev/dri --

group-add="$(stat -c "%g" /dev/dri/render*)" 

openvino/ubuntu20_dev:2022.2.0 

apt update 

python3 main.py INT8/yolov7.xml test.jpg 

numactl -C 0-3 python3 main_video.py 

numactl -C 0-7 python3 main video.py 

sudo apt install docker.io 

https://hub.docker.com/r/openvino/ubuntu20_dev
https://manpages.ubuntu.com/manpages/trusty/man8/numactl.8.html
https://manpages.ubuntu.com/manpages/jammy/man1/taskset.1.html
https://docs.openvino.ai/2023.0/openvino_docs_OV_UG_supported_plugins_CPU.html
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b) Using taskset 

The CPUs (0-3 for 4 CPUs and 0-7 for 8 CPUs) to be used for executing the object 
detection are set using the parameter c in taskset. 

c) Setting the inference threads in OpenVINO CPU plugin properties 

The number of inference threads is set as 4 (replace 4 with 8 for executing the 
inference script on 8 CPUs) in the OpenVNIO CPU plugin properties using the 
following steps before compiling the model. 

In this method, the Python script is executed in the conventional way as follows: 

The values of execution time for the third (Xeon (4 CPUs)) and fourth (Xeon (8 CPUs)) 
rows in Table 4 are verified using the above three methods.           

Table 4. Performance of object detection with the optimized YOLOv7 model in DUT 

DUT Inference 
Device 

Execution  

Time* (s) 

Throughput 

(FPS) 

NUC11TNHv5 CPU 15.6 25.3 

iBOX-6305E GPU 15.5 25.4 

Xeon (4 CPUs) CPU 15.6 25.3 

Xeon (8 CPUs) CPU 9.6 41 
*The execution time is the time taken to process and execute the inference on the 15-second-long input 

video. Its value may vary depending on the software/hardware changes in the test device. 

Table 5. Estimated cost savings with the recommended AWS EC2 Instances based on 3rd 
Gen Xeon CPU 

AWS EC2 
Instance 

CPUs Memory 
(GB) 

Price 
(USD$/hour) 

Cost 
Savings* 
(%) 

m6i.xlarge 4 16 0.192 74 

m6i.2xlarge 8 32 0.384 49 
*Cost savings (%) is computed relative to the price of AWS SageMaker 

taskset -c 0-3 python3 main_video.py 

taskset -c 0-7 python3 main video.py 

from openvino.runtime import Core 

core = Core() 

core.set_properties({‘INFERENCE_NUM_THREADS’:4}) 

python3 main_video.py 
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From Table 4, it is evident that NUC11TNHv5 and iBOX-6305E are suitable for edge 
deployment. On the other hand, the 3rd Gen Xeon CPU is suitable for the cloud 
deployment and the recommended AWS EC2 instances are m6i.xlarge and 
m6i.2xlarge. According to the AWS pricing list, the price of m6i.xlarge and 
m6i.2xlarge is 0.192 USD$/hour and 0.384 USD$/hour, respectively. Refer to Table 
5 for the specifications of the recommended AWS EC2 instances and the 
corresponding cost savings. Therefore, the recommended AWS EC2 instances could 
result in 49-74% cost savings compared to AWS SageMaker, while achieving the 
target throughput of ≥25 FPS.  
 

 

§ 
 

https://aws.amazon.com/ec2/instance-types/m6i/
https://aws.amazon.com/emr/pricing/
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4.0 Conclusion  

This white paper presents the methods to optimize and quantize the YOLOv7 model 
using OpenVINOTM toolkit. This also covers the steps to install OpenVINOTM and 
verify the inference execution on the AWS EC2 instance. The real-time object 
detection use case of an ISV is demonstrated to achieve the target throughput (≥25 
FPS) with the quantized YOLOv7 model on Intel platforms. The performance 
evaluation results further reveal that the recommended AWS EC2 instances could 
help this ISV to reduce the cloud cost by 49-74% compared to their existing Nvidia 
GPU-based AWS SageMaker instance.                   

 

§ 
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5.0 Appendix A  

5.1 Converting the Private Key from PEM into PPK Format 

In this case, we provided the Intel proxy hostname/port to the ISV to allow us access 
to their AWC EC2 instance with the private key in PEM format. We used PuTTY to 
connect from the Windows notebook in Intel network to the remote cloud instance. 
As PuTTY does not natively support the PEM format, the following steps are used to 
convert the private key from PEM into PPK format: 

1. From the Start menu, choose All Programs -> PuTTYgen. 

2. Under Type of key to generate, choose RSA. If your version of PuTTYgen does not 
include this option, choose SSH-2 RSA.                       

 

3. Choose Load. By default, PuTTYgen displays only files with the extension .ppk. To 
locate your .pem file, choose the option to display files of all types. 

 

4. Select your .pem file for the key pair that you specified when you launched your 
instance and choose Open. PuTTYgen displays a notice that the .pem file was 
successfully imported. Choose OK. 
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5. To save the key in the format that PuTTY can use, choose Save private key. 
PuTTYgen displays a warning about saving the key without a passphrase. Choose Yes. 

Note: passphrase on a private key is an extra layer of protection. Even if your private key 
is discovered, it can't be used without the passphrase. The downside to using a 
passphrase is that it makes automation harder because human intervention is 
needed to log on to an instance, or to copy files to an instance. 

6. Specify the same name for the key that you used for the key pair (for example, key-
pair name) and choose Save. PuTTY automatically adds the .ppk file extension. 

Now, the private key is in the correct format for use with PuTTY to connect to the 
cloud instance using PuTTY's SSH client. 

5.2 Connecting from Intel Network to AWS EC2 Instance 

1. From the Start menu, choose All Programs -> PuTTY. Enter the IP address 
(provided by ISV) and Port of the AWS EC2 instance in PuTTY. 
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2. Select your private key file (.ppk) for authentication in Connection -> SSH -> Auth 
-> Credentials 
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3. Select the proxy type as SOCKS 4 in Connection -> Proxy. Enter the preferred Intel 
proxy hostname/port (Contact the Intel IT team to get this information and share it 
with ISV to allow access to their cloud instance) and click Open to establish the SSH 
connection to the remote AWS EC2 instance. 
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5.3 Transferring Files from Intel Network to AWS EC2 
Instance 

1. Download WinSCP from https://winscp.net 

2. Enter the IP address and Port of the cloud instance on the login screen and click 
Advanced. 

 

3. Select your private key file (PPK) for authentication in SSH -> Authentication

 

https://winscp.net/


 
Appendix A 

 
 

Accelerating Object Detection Throughput in Cloud and Edge Deployments by  
Optimizing YOLOv7 Model using Intel® Distribution of OpenVINO™ Toolkit  
White Paper  July 2023 
28   Document Number: 783469-1.0 

4. Select the proxy type as SOCKS4 in Connection -> Proxy and enter the Intel proxy 
hostname/port. Then, click OK. 

 

5. Click Login to connect to the cloud instance and transfer files 
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