

Document Number: 330554-001

Intel® Firmware Support Package

External Architecture Specification

April 2014

Introduction

Firmware Support Package EAS April 2014
2 Document Number: 330554-001

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in
personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL
APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE
DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND
REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL
INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS
PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and
other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014, Intel Corporation. All rights reserved.

Introduction

April 2014 Firmware Support Package EAS
Document Number: 330554-001 3

Contents
1 Introduction ...6

1.1 Purpose ..6
1.2 Intended Audience ...6
1.3 Related Documents ...6
1.4 Conventions ..6
1.5 Acronyms and Terminology ..7

2 FSP Overview ...8
2.1 Design Philosophy ..8
2.2 Technical Overview ...8

3 FSP Integration ..9
3.1 FSP Distribution Package ...9
3.2 FSP Image ID and Revision ..9

4 Boot Flow .. 10

5 FSP Binary Format .. 11
5.1 FSP Header ... 11

5.1.1 Finding the FSP Header .. 12
5.1.2 FSP Header Offset ... 13

6 FSP Interface (FSP API) ... 14
6.1 Entry-Point Calling Assumptions ... 14
6.2 Data Structure Convention ... 14
6.3 Entry-Point Calling Convention ... 14
6.4 Exit Convention .. 15
6.5 Return Status Code .. 15
6.6 TempRamInitEntry ... 16

6.6.1 Prototype ... 16
6.6.2 Parameters... 16
6.6.3 Related Definitions .. 17
6.6.4 Return Values ... 17
6.6.5 Description ... 18

6.7 FspInitEntry .. 18
6.7.1 Prototype ... 18
6.7.2 Parameters... 18
6.7.3 Related Definitions .. 19
6.7.4 Return Values ... 20
6.7.5 Description ... 20

6.8 NotifyPhaseEntry .. 21
6.8.1 Prototype ... 22
6.8.2 Parameters... 22
6.8.3 Related Definitions .. 22
6.8.4 Return Values ... 23
6.8.5 Description ... 23

Introduction

Firmware Support Package EAS April 2014
4 Document Number: 330554-001

7 FSP Output .. 24
7.1 Boot Loader Temporary Memory Data HOB .. 24
7.2 FSP Reserved Memory Resource Descriptor HOB 25
7.3 Non-Volatile Storage HOB .. 25

8 FSP Configuration Firmware File .. 26

9 Tools ... 27

10 Other Host Boot Loader Concerns .. 28
10.1 Power Management .. 28
10.2 Bus Enumeration .. 28
10.3 Security .. 28
10.4 Pre-OS Graphics ... 28

Introduction

April 2014 Firmware Support Package EAS
Document Number: 330554-001 5

Revision History

Date Revision Description

April 2014 001 Initial release.

§

Introduction

Firmware Support Package EAS April 2014
6 Document Number: 330554-001

1 Introduction

1.1 Purpose
The purpose of this document is to describe the external architecture and interfaces
provided in the Intel® Firmware Support Package (FSP).

1.2 Intended Audience
This document is targeted at all platform and system developers who need to
consume FSP binaries in their boot loader solutions. This includes, but is not limited
to: system BIOS developers, boot loader developers, system integrators, as well as
end users.

1.3 Related Documents
• Platform Initialization (PI) Specification located at

http://www.uefi.org/specifications

• Binary Configuration Tool for Intel® Firmware Support Package – available at
http://www.intel.com/fsp

1.4 Conventions
To illustrate some of the points better, the document may use code snippets. The code
snippets follow the GNU C Compiler and GNU Assembler syntax.

Introduction

April 2014 Firmware Support Package EAS
Document Number: 330554-001 7

1.5 Acronyms and Terminology

BCT Binary Configuration Tool

BSP Boot Strap Processor

BSF Boot Setting File

BWG BIOS Writer’s Guide. Interchangeable with FWG.

CRB Customer Reference Board

FSP Firmware Support Package

FSP API Firmware Support Package Interface

FWG Firmware Writer’s Guide. Interchangeable with BWG.

HOB Hand-Off-Block

IVI In Vehicle Infotainment

NBSP Node BSP

RSM Resume to Operating System (OS) from SMM

PCH Platform Controller Hub

SBSP System BSP

SMI System Management Interrupt

SMM System Management Mode

TSEG Memory Reserved at the Top of Memory to be used as SMRAM

TXE Trusted Execution Engine/Environment

UPD Updatable Product Data

VPD Vital Product Data

FSP Overview

Firmware Support Package EAS April 2014
8 Document Number: 330554-001

2 FSP Overview

2.1 Design Philosophy
Intel recognizes that it holds the key programming information that is crucial for
initializing Intel silicon. After Intel provides the key information, most experienced
firmware engineers can make the rest of the system work by studying manuals and
specifications.

FSP is a binary distribution of the silicon reference code that is needed to initialize the
Intel silicon. The design goal of Intel Firmware Support Package (FSP) is to abstract
the complexities of initialization of Intel Silicon and expose a limited number of well-
defined interfaces.

2.2 Technical Overview
The Intel® Firmware Support Package (FSP) provides chipset and processor
initialization in a format that can easily be incorporated into many existing boot
loaders.

The FSP performs all the necessary initialization steps as documented in the
BWG/BIOS Specification including initialization of the CPU, memory controller, chipset
and certain bus interfaces, if necessary.

FSP is not a stand-alone boot loader; therefore it needs to be integrated into a host
boot loader to carry out other boot loader functions, such as: initializing non-Intel
components, conducting bus enumeration, and discovering devices in the system and
all industry standard and Intel architectural initialization.

FSP Integration

April 2014 Firmware Support Package EAS
Document Number: 330554-001 9

3 FSP Integration
The FSP binary can be integrated easily into many different boot loaders and also into
the embedded OS directly.

Below are some required steps for the integration:

• Customizing

The FSP has some sets of configuration parameters that are part of the FSP binary
and can be customized by external tools that are provided by Intel.

• Rebasing

The FSP is not Position Independent Code (PIC) and the whole FSP has to be
rebased if it is placed at a location which is different from the preferred base
address specified during the FSP build.

• Placing

Once the FSP binary is ready for integration, the boot loader build process needs
to be modified to place this FSP binary at the specific rebasing location identified
above.

• Interfacing

The boot loader needs to add code to set up the operating environment for the
FSP, call the FSP with the correct parameters and parse the FSP output to retrieve
the necessary information returned by the FSP.

3.1 FSP Distribution Package
The FSP distribution package for each hardware platform contains the following:

• FSP Binary

• Reference code that illustrates the interfacing mechanism required by the boot
loader.

• VPD/UPD Data structure definitions

• BSF File

• Integration Guide

The FSP configuration utility called BCT is available as a separate package.

3.2 FSP Image ID and Revision
The FSP information header contains an Image Identifier field and an Image Revision
field that provide the identification and revision information of the FSP binary. It is
important to verify these fields while integrating the FSP as the FSP configuration data
could change between different FSP Image identifiers and revisions.

Boot Flow

Firmware Support Package EAS April 2014
10 Document Number: 330554-001

4 Boot Flow
The figure below shows the boot flow from the reset vector to the OS handoff for a
typical boot loader. The APIs are described in more detail in the following sections.

FSP Binary Format

April 2014 Firmware Support Package EAS
Document Number: 330554-001 11

5 FSP Binary Format
The FSP is distributed in binary format. The FSP binary contains an FSP-specific
FSP_INFORMATION_HEADER structure, the initialization code/data needed by the
Intel Silicon supported by the FSP and a configuration region that allows the boot
loader developer to customize some of the settings through the Binary Configuration
Tool (BCT) provided by Intel.

5.1 FSP Header
The FSP header conveys the information required by the boot loader to interface with
the FSP binary, such as providing the addresses for the entry points, configuration
region address, etc.

Byte

Offset
Size
in

Bytes

Field Description

 0 4 Signature ‘FSPH’. Signature for the FSP information
header.

4 4 HeaderLength Length of the header

8 3 Reserved Reserved

11 1 HeaderRevision Revision of the header

12 4 ImageRevision Revision of the FSP binary.
The ImageRevision can be decoded as follows:
0..7 - Minor Version
8..15 - Major Version
16..31 - Reserved

16 8 Image Id 8-byte signature string that will help match the
FSP binary to a supported hardware
configuration.

24 4 ImageSize Size of the entire FSP binary.

28 4 ImageBase FSP binary preferred base address. If the FSP
binary will be located at the address different
from the preferred address, the rebasing tool is
required to relocate the base before the FSP
binary integration.

32 4 ImageAttribute Attributes of the FSP binary. This field is not
currently used.

36 4 CfgRegionOffset Offset of the configuration region. This offset is
relative to the FSP binary base address.

40 4 CfgRegionSize Size of the configuration region.

FSP Binary Format

Firmware Support Package EAS April 2014
12 Document Number: 330554-001

Byte
Offset

Size
in

Bytes

Field Description

44 4 ApiEntryNum Number of API entries this FSP supports. The
current design supports three APIs as given
below.

48 4 TempRamInitEntryOffset The offset for the API to setup a temporary stack
till the memory is initialized.

52 4 FspInitEntryOffset The offset for the API to initialize the CPU and
the chipset (SOC).

56 4 NotifyPhaseEntryOffset The offset for the API to inform the FSP about
the different stages in the boot process.

60 4 Reserved Reserved

5.1.1 Finding the FSP Header

The FSP binary follows the UEFI Platform Initialization Firmware Volume Specification
format. The Firmware Volume (FV) format is described in the Platform Initialization
(PI) Specification - Volume 3: Shared Architectural Elements specification and can be
downloaded from http://www.uefi.org/specifications.

FV is a way to organize/structure binary components. It enables a standardized way to
parse the binary and handle the individual binary components that make up the FV.

The FSP_INFORMATION_HEADER is a firmware file and is placed as the first firmware
file within the firmware volume. All firmware files will have a GUID that can be used to
identify the files, including the FSP Header file. The FSP header firmware file GUID is
defined as 912740BE-2284-4734-B971-84B027353F0C.

The boot loader can find the offset of the FSP header within the FSP binary by the
following steps described below:

• Use EFI_FIRMWARE_VOLUME_HEADER to parse the FSP FV header and skip
the standard and extended FV header.

• The EFI_FFS_FILE_HEADER with the FSP_FFS_INFORMATION_FILE_GUID
is located at the 8-byte aligned offset following the FV header.

• The EFI_RAW_SECTION header follows the FFS File Header.

• Immediately following the EFI_RAW_SECTION header is the raw data. The
format of this data is defined in the FSP_INFORMATION_HEADER structure.

The next figure shows a pictorial representation of the data structures that is parsed in
the above flow.

FSP Binary Format

April 2014 Firmware Support Package EAS
Document Number: 330554-001 13

5.1.2 FSP Header Offset

To simplify the integration of the FSP binary with a boot loader, the offset of the FSP
header will be provided with the FSP binary documentation. In this case, the boot
loader may choose to skip the generic algorithm to find the FSP header as described
above, but instead use the hardcoded value for the FSP header offset. This approach
is easier to implement from the boot loader side.

For the FSP binary the FSP information header structure is placed at offset 0x94.

FSP Interface (FSP API)

Firmware Support Package EAS April 2014
14 Document Number: 330554-001

6 FSP Interface (FSP API)

6.1 Entry-Point Calling Assumptions
There are some requirements regarding the operating environment for FSP execution.
The boot loader is responsible to set up this operating environment before calling the
FSP API. These conditions have to be met before calling any entry point or the
behavior is not determined. These conditions include:

• The system is in flat 32-bit mode.

• Both the code and data selectors should have full 4-GB access range.

• Interrupts should be turned off.

• The FSP API should be called only by the system BSP, unless otherwise noted.

Other requirements needed by individual FSP API will be covered in the respective
sections.

6.2 Data Structure Convention
All data structure definitions should be packed using compiler provided directives such
as #pragma pack(1) to avoid alignment mismatch between the FSP and the boot
loader.

6.3 Entry-Point Calling Convention
All FSP APIs defined in the FSP information header are 32-bit only. The FSP API
interface is similar to the default C __cdecl convention. Like the default C __cdecl
convention, with the FSP API interface:

• All parameters are pushed onto the stack in right-to-left order before the API is
called.

• The calling function needs to clean the stack up after the API returns.

• The return value is returned in the EAX register. All the other registers are
preserved.

There are, however, a couple of notable exceptions with the FSP API interface
convention. Refer to individual API descriptions for any special notes and these
exceptions.

FSP Interface (FSP API)

April 2014 Firmware Support Package EAS
Document Number: 330554-001 15

6.4 Exit Convention
The TempRamInit API preserves all general purpose registers except EAX, ECX, and
EDX. Because this FSP API is executing in a stackless environment, the floating point
registers may be used by the FSP to save/restore other general purpose registers to
the boot loader.

The FspInit and the FspNotify interfaces will preserve all the general purpose registers
except EAX. The return status will be passed back through the EAX register.

The FSP reserves some memory for its internal use and the memory region that is
used by the FSP is passed back though a hand off block (HOB). This is a generic
resource HOB, but the owner field of the HOB will identify the owner as FSP. Refer to
“FSP Output” in Section 7 for more details. The boot loader should not use this
memory except for parsing the HOB output. The boot loader should also mark this
memory as reserved when passing the memory map to the OS.

6.5 Return Status Code
All FSP APIs will return a status code to indicate the API execution result. FSP reuses a
subset of the standard status codes defined in the EDK II specifications. See status
codes listed below.
#define FSP_SUCCESS 0x00000000

#define FSP_INVALID_PARAMETER 0x80000002

#define FSP_UNSUPPORTED 0x80000003

#define FSP_NOT_READY 0x80000006

#define FSP_DEVICE_ERROR 0x80000007

#define FSP_OUT_OF_RESOURCES 0x80000009

#define FSP_VOLUME_CORRUPTED 0x8000000A

#define FSP_NOT_FOUND 0x8000000E

#define FSP_TIMEOUT 0x80000012

#define FSP_ABORTED 0x80000015

#define FSP_INCOMPATIBLE_VERSION 0x80000010

#define FSP_SECURITY_VIOLATION 0x8000001A

#define FSP_CRC_ERROR 0x8000001B

FSP Interface (FSP API)

Firmware Support Package EAS April 2014
16 Document Number: 330554-001

6.6 TempRamInitEntry
This FSP API is called soon after coming out of reset and before memory and stack is
available. This FSP API will load the microcode update, enable code caching for the
region specified by the boot loader and also setup a temporary stack to be used until
main memory is initialized.

A hardcoded stack can be set up with the following values, and the “esp” register
initialized to point to this hardcoded stack.
1. The return address where the FSP will return control after setting up a temporary

stack.
2. A pointer to the input parameter structure

However, since the stack is in ROM and not writeable, this FSP API cannot be called
using the “call” instruction, but needs to be jumped to.

This API should be called only once after the system comes out the reset, and it must
be called before any other FSP APIs. The system needs to go through a reset cycle
before this API can be called again. Otherwise, unexpected results may occur.

6.6.1 Prototype
typedef

FSP_STATUS

(FSPAPI *FSP_TEMP_RAM_INIT) (

 IN FSP_TEMP_RAM_INIT_PARAMS *TempRamInitParamPtr

);

6.6.2 Parameters
TempRaminitParamPtr

Address pointer to the FSP_TEMP_RAM_INIT_PARAMS structure. The structure
definition is provided below under Related Definitions. The structure has a pointer
to the base of a code region and the size of it. The FSP enables code caching for
this region. Enabling code caching for this region should not take more than one
MTRR pair. The structure also has a pointer to a microcode region and its size. The
microcode region may have multiple microcodes packed together one after the
other and the FSP will try to load all the microcodes that it finds in the region that
is compatible with the silicon it is supporting. This microcode region is
remembered by FSP so that it can be used to load microcode for all APs later on
during the FspInit API call.

FSP Interface (FSP API)

April 2014 Firmware Support Package EAS
Document Number: 330554-001 17

6.6.3 Related Definitions
typedef struct {

 UINT32 MicrocodeRegionBase,

 UINT32 MicrocodeRegionLength,

 UINT32 CodeRegionBase,

 UINT32 CodeRegionLength

} FSP_TEMP_RAM_INIT_PARAMS;

MicrocodeRegionBase Base address of the microcode region.

MicrocodeRegionLength Length of the microcode region.

CodeRegionBase Base address of the cacheable flash region.

CodeRegionLength Length of the cacheable flash region.

6.6.4 Return Values

If this function is successful, the FSP initializes the ECX and EDX registers to point to
a temporary but writeable memory range available to the boot loader and returns with
FSP_SUCCESS in register EAX. Register ECX points to the start of this temporary
memory range and EDX points to the end of the range. Boot loader is free to use the
whole range described. Typically the boot loader can reload the ESP register to point
to the end of this returned range so that it can be used as a standard stack.

Note: This returned range is just a sub-region of the whole temporary memory initialized by
the FSP. The FSP maintains and consumes the remaining temporary memory. The
boot loader must not access the temporary memory beyond the returned boundary.

FSP_SUCCESS Temp RAM was initialized successfully.

FSP_INVALID_PARAMETER Input parameters are invalid.

FSP_NOT_FOUND No valid microcode was found in the microcode
region.

FSP_UNSUPPORTED The FSP calling conditions were not met.

FSP_DEVICE_ERROR Temp RAM initialization failed.

FSP Interface (FSP API)

Firmware Support Package EAS April 2014
18 Document Number: 330554-001

6.6.5 Description

The entry to this function is in a stackless/memoryless environment. After the boot
loader completes its initial steps, it finds the address of the FSP INFO HEADER and
then from the header finds the offset of the TempRamInit function. It then converts
the offset to an absolute address by adding the base of the FSP binary and jumps to
the TempRamInit function.

This temporary memory is intended to be primarily used by the boot loader as a stack.
After this stack is available, the boot loader can switch to using C functions. This
temporary stack should be used to do only the minimal initialization that needs to be
done before memory can be initialized by the next call into the FSP.

The FSP will initialize the ECX and EDX registers to point to a temporary but writeable
memory range. Register ECX points to the start of this temporary memory range and
EDX points to the end of the range. The size of the temporary stack for the platform
can be calculated by taking the range between ECX and EDX.

6.7 FspInitEntry
This FSP API is called after TempRamInitEntry. This FSP API initializes the memory,
the CPU and the chipset to enable normal operation of these devices. This FSP API
accepts a pointer to a data structure that will be platform dependent and defined for
each FSP binary. This will be documented in the Integration Guide for each FSP
release.

The boot loader provides a continuation function as a parameter when calling FspInit.
After FspInit completes its execution, it does not return to the boot loader from where
it was called but instead returns control to the boot loader by calling the continuation
function which is passed to FspInit as an argument.

6.7.1 Prototype
typedef

FSP_STATUS

(FSPAPI *FSP_FSP_INIT) (

 INOUT FSP_INIT_PARAMS *FspInitParamPtr

);

6.7.2 Parameters
FspInitParamPtr Address pointer to the FSP_INIT_PARAMS
 structure.

FSP Interface (FSP API)

April 2014 Firmware Support Package EAS
Document Number: 330554-001 19

6.7.3 Related Definitions
typedef struct {

 VOID *NvsBufferPtr;

 VOID *RtBufferPtr;

 CONTINUATION_PROC ContinuationFunc;

} FSP_INIT_PARAMS;

NvsBufferPtr Pointer to the non-volatile storage (NVS) data buffer.
If it is NULL, it indicates the NVS data is not
available.

RtBufferPtr Pointer to the runtime data buffer
FSP_INIT_RT_BUFFER. This buffer contains various
FSP configuration data that will be used during the
platform initialization. The detailed structure layout
will be described in the platform-specific FSP
integration guide.

ContinuationFunc Pointer to a continuation function provided by the boot
loader.

typedef VOID (* CONTINUATION_PROC)(

 IN FSP_STATUS Status,

 IN VOID *HobListPtr

);

Status Status of the FSP INIT API.

HobBufferPtr Pointer to the HOB data structure defined in the PI
specification.

typedef struct {

 UINT32 *StackTop;

 UINT32 BootMode;

 VOID *UpdDataRgnPtr;

 UINT32 Reserved[7];

} FSP_INIT_RT_COMMON_BUFFER;

FSP Interface (FSP API)

Firmware Support Package EAS April 2014
20 Document Number: 330554-001

typedef struct {

 FSP_INIT_RT_COMMON_BUFFER Common;

 …

} FSP_INIT_RT_BUFFER;

StackTop Point to the desired boot loader stack top location in
memory after memory is initialized.

BootMode Current boot mode. Refer to sample code file
fsp_bootmode.h for the definitions.

UpdDataRgnPtr Pointer to an updatable platform configuration data
structure UPD_DATA_REGION defined in sample code file
fsp_vpd.h. This structure contains options that can be
overridden by the bootloader at runtime. If this pointer is
NULL, it indicates the default built-in values in the FSP
binary will be used. Refer to Section 8 for details.

Reserved Reserved fields. Must be set to 0.

6.7.4 Return Values

FSP_SUCCESS FSP execution environment was initialized

successfully.

FSP_INVALID_PARAMETER Input parameters are invalid.

FSP_UNSUPPORTED The FSP calling conditions were not met.

FSP_DEVICE_ERROR FSP initialization failed.

6.7.5 Description

One important piece of data that will be part of the FSP_INIT_RT_BUFFER
structure will be the StackTop. This passes the address of the stack top where the
boot loader wants to establish the stack after memory is initialized and available for
use.

ContinuationFunc is a function entry point that will be jumped to at the end of the
FspInit() to transfer control back to the boot loader.

FSP Interface (FSP API)

April 2014 Firmware Support Package EAS
Document Number: 330554-001 21

Note that this FspInit API initializes the permanent memory and switches the stack
from the temporary memory to the permanent memory as specified by StackTop.
Sometimes switching the stack in a function can cause some unexpected execution
results because the compiler is not aware of the stack change during runtime and the
precompiled code may still refer to the old stack for data and pointers. A stack switch
therefore requires assembly code to go patch the data for the new stack location
which may lead to compatibility issues.

To avoid such possible compatibility issues introduced by different compilers and to
ease the integration of FSP with a boot loader, the API uses the
ContinuationFunction parameter to continue the boot loader execution flow
rather than return as a normal C function. Although this API is called as a normal C
function, it never returns.

The FSP needs to get some parameters from the boot loader when it is initializing the
silicon. These parameters are passed from the boot loader to the FSP through the
FSP_INIT_RT_BUFFER structure pointer. Refer to the related FSP integration guide
for the detailed structure definitions.

A set of parameters that the FSP may need to initialize memory under special
circumstances, such as during an S3 resume and during fast boot mode, are returned
by the FSP to the boot loader during a normal boot. The boot loader is expected to
store these parameters in non-volatile memory, such as in the SPI flash, and return a
pointer to this structure (through NvsBufferPtr) when it is requesting the FSP to
initialize the silicon under these special circumstances. Refer to Section 7.3 for the
details on how to get the returned NVS data from FSP.

This API should be called only once after the TempRamInit API.

6.8 NotifyPhaseEntry
This FSP API is used to notify the FSP about the different phases in the boot process.
This allows the FSP to take appropriate actions as needed during different initialization
phases. The phases will be platform dependent and will be documented with the FSP
release. The current FSP supports two notify phases:

• Post PCI enumeration

• Ready To Boot

FSP Interface (FSP API)

Firmware Support Package EAS April 2014
22 Document Number: 330554-001

6.8.1 Prototype
typedef

FSP_STATUS

(FSPAPI *FSP_NOTFY_PHASE) (

 IN NOTIFY_PHASE_PARAMS *NotifyPhaseParamPtr

);

6.8.2 Parameters
NotifyPhaseParamPtr Address pointer to the NOTIFY_PHASE_PRAMS

6.8.3 Related Definitions
typedef enum {

 EnumInitPhaseAfterPciEnumeration = 0x20,

 EnumInitPhaseReadyToBoot = 0x40

} FSP_INIT_PHASE;

typedef struct {

 FSP_INIT_PHASE Phase;

 } NOTIFY_PHASE_PARAMS;

EnumInitPhaseAfterPciEnumeration

This stage is notified when the boot loader completed the PCI enumeration and the
resource allocation for the PCI devices is complete. FSP will use it to do some specific
initialization for processor and chipset that requires PCI resource assignment.

EnumInitPhaseReadyToBoot

This stage is notified just before the boot loader hands off to the OS loader. FSP will
use it to do some specific initialization for processor and chipset that is required before
control is transferred to the OS.

FSP Interface (FSP API)

April 2014 Firmware Support Package EAS
Document Number: 330554-001 23

6.8.4 Return Values

FSP_SUCCESS The notification was handled successfully.

FSP_UNSUPPORTED The notification was not called in the proper order.

FSP_INVALID_PARAMETER The notification code is invalid.

6.8.5 Description

The FSP will lock the configuration registers to enhance security as required by the
BIOS Writer’s Guide (BWG)/BIOS Specification when it is notified that the boot loader
is ready to transfer control to the operating system.

Therefore, this API should only be called after the FspInit API and each notification
code should be called only once in the predefined order. For example, the
EnumInitPhaseAfterPciEnumeration notification needs to be called before
the EnumInitPhaseReadyToBoot notification. Once the
EnumInitPhaseReadyToBoot is notified, the whole FSP flow is considered to be
completed and no further FSP API calls are allowed.

FSP Output

Firmware Support Package EAS April 2014
24 Document Number: 330554-001

7 FSP Output
The FSP builds a series of data structures called the Hand-Off-Blocks (HOBs) as it
progresses through initializing the silicon. These data structures conform to the HOB
format as described in the Platform Initialization (PI) Specification - Volume 3: Shared
Architectural Elements specification and can be downloaded from
http://www.uefi.org/specifications

The user of the FSP binary is strongly encouraged to go through the specification
mentioned above to understand the HOB design details and create a simple
infrastructure to parse the HOBs, because the same infrastructure can be reused with
different FSPs across different platforms

The boot loader developer must decide on how to consume the information passed
through the HOBs produced by the FSP. For example, even the specification
mentioned above describes about nine different HOBs; most of this information may
not be relevant to a particular boot loader. For example, a boot loader design may be
interested only in knowing the amount of memory populated and may not care about
any other information.

The section below describes the GUID HOBs that are produced by the FSP. GUID HOB
structures are non-architectural in the sense that the structure the HOB needs is not
defined in the HOB specifications. So the GUID and the data structure are documented
below to enable the boot loader to consume these HOB data.

7.1 Boot Loader Temporary Memory Data HOB
As described in the FspInit API, the system memory is initialized and the whole
temporary memory is destroyed during this API call. However, the sub region of the
temporary memory returned in the TempRamInit API may still contain boot loader-
specific data which might be useful for the boot loader even after the FspInit call. So
before destroying the temporary memory, all contents in this sub region will be
migrated to the permanent memory, FSP builds a boot loader temporary memory data
HOB and the boot loader can use it to access the data saved in the temporary memory
after FspInit API if necessary. If the boot loader does not care about the previous data
in the stack, this HOB can be simply ignored.

This HOB follows the EFI_HOB_GUID_TYPE format with the name GUID defined as
below:

#define FSP_BOOTLOADER_TEMPORARY_MEMORY_HOB_GUID \

{ 0xbbcff46c, 0xc8d3, 0x4113, { 0x89, 0x85, 0xb9, 0xd4, 0xf3,
0xb3, 0xf6, 0x4e } };

To retrieve this HOB data, refer to GetBootloaderTempMemoryBuffer () function in the
sample file fsp_support.c which illustrates how to get the boot loader temporary
memory back from the FSP HOB.

FSP Output

April 2014 Firmware Support Package EAS
Document Number: 330554-001 25

7.2 FSP Reserved Memory Resource Descriptor HOB
The FSP reserves some memory for its internal use and a descriptor for this memory
region used by the FSP is passed back through a HOB. This is a generic resource HOB,
but the owner field of the HOB identifies the owner as FSP. This FSP reserved
memory region must be preserved by the boot loader and reported as reserved
memory to the OS.

#define FSP_HOB_RESOURCE_OWNER_FSP GUID \

{ 0x69a79759, 0x1373, 0x4367, { 0xa6, 0xc4, 0xc7, 0xf5, 0x9e,
0xfd, 0x98, 0x6e } }

To retrieve this HOB data, refer to GetFspReservedMemory() function in the sample
file fsp_support.c, which illustrates how to get the FSP reserved memory from the
HOB.

7.3 Non-Volatile Storage HOB
#define FSP_NON_VOLATILE_STORAGE_HOB_GUID \

{ 0x721acf02, 0x4d77, 0x4c2a, { 0xb3, 0xdc, 0x27, 0xb, 0x7b,
0xa9, 0xe4, 0xb0 } }

The Non-Volatile Storage (NVS) HOB provides a mechanism for FSP to request the
boot loader to save the platform configuration data into non-volatile storage so that it
can be reused in many cases, such as S3 resume.

The boot loader needs to parse the HOB list to see if such a GUID HOB exists after
returning from the FspInit() API. If so, the boot loader should extract the data portion
from the HOB, and then save it into a platform-specific NVS device, such as flash,
EEPROM, etc. The next time the system boots, the boot loader should load the data
block back from the NVS device to temporary memory and populate the buffer pointer
into FSP_INIT_PARAMS.NvsBufferPtr field before calling into the FspInit() API. If the
NVS device is memory mapped, the boot loader can initialize the buffer pointer
directly to the buffer.

To retrieve this HOB data, refer to the function implementation of
GetFspNvsDataBuffer () in sample file fsp_support.c for a code snippet that illustrates
how to get the FSP NVS data that needs to be saved by the boot loader.

FSP Configuration Firmware File

Firmware Support Package EAS April 2014
26 Document Number: 330554-001

8 FSP Configuration Firmware
File
The FSP binary contains a configurable data region which will be used by the FSP
during the initialization.

 The configurable data region has two sets of data

 VPD – Vital Product Data, which can only be configured statically.

 UPD – Updatable Product Data, which can be configured statically for default
values, but also can be overridden during boot at runtime.

Both the VPD and the UPD parameters can be statically customized using a separate
tool called the Binary Configuration Tool (BCT) as explained in the tools section. The
tool uses a Boot Setting File (BSF) to understand the layout of the configuration region
within the FSP.

In addition to static configuration, the UPD data can be overridden by the boot loader
during runtime. The UPD data is organized as a structure. The FspInit API parameter
includes an UpdDataRgnPtr pointer which can be initialized to point to the UPD data
structure. If this pointer is initialized to NULL when calling the FspInit API, the FSP will
use the default built-in UPD configuration data in the FSP binary. However, if the boot
loader wants to override any of the UPD parameters, it has to copy the whole UPD
structure from flash to memory, override the parameters and initialize the
UpdDataRgnPtr pointer to the address of the UPD structure with updated data in
memory when it calls the FspInit API. The FSP uses this data structure instead of the
default configuration region data for platform initialization. The UPD data structure
pointed by pointer UpdDataRgnPtr is a platform-specific structure; refer to the
platform-specific FSP Integration Guide for the details of this structure.

When calling the FspInit API, the stack is in temporary memory where the UPD data
structure is copied, updated, and passed to the FSP API. When permanent memory is
initialized, the FSP sets up a new stack in the permanent memory and tears down the
temporary memory. However, the FSP saves the whole boot loader temporary
memory region in a GUID HOB. If the boot loader needs to access the old data in the
temporary memory, it can be done by parsing the HOB to retrieve the previous
temporary memory data. Note that the migrated temporary memory contains an
identical copy of the original data. If pointers are stored in this region, they need to
be fixed to point to the new migrated region before they are used.

Both the VPD and the UPD structure definitions are provided as part of the FSP
distribution package. To update these configuration options statically using the BCT, a
BSF file is required. This file contains the detailed information on all configurable
options, including description, help information, valid value range, and the default
value. The BSF file is also provided with the FSP distribution package.

Tools

April 2014 Firmware Support Package EAS
Document Number: 330554-001 27

9 Tools
The Binary Configuration Tool (BCT) is available at http://www.intel.com/fsp, which
allows a user to modify certain well defined configuration values in the FSP binary. The
BCT provides a Graphical User Interface (GUI) for changing these configuration
values. The BCT includes separate documentation that explains the usage of the tool.
Refer to Section 1.3 for the BCT documentation information.

Other Host Boot Loader Concerns

Firmware Support Package EAS April 2014
28 Document Number: 330554-001

10 Other Host Boot Loader
Concerns

10.1 Power Management
Intel® FSP does not provide power management functions besides making power
management features available to the host boot loader. ACPI is an independent
component of the boot loader, and it is not included in the Intel® FSP.

10.2 Bus Enumeration
Intel® FSP initializes the CPU and the companion chips to a state where all bus
topology can be discovered by the host boot loader.

10.3 Security
The FSP follows the BWG / BIOS Specification to set the necessary registers for
security concerns. However, some other security features, such as secure boot, are
not covered by the current FSP. If the secure boot feature is required, contact your
local Intel representative.

10.4 Pre-OS Graphics
The current FSP binary does not include the graphics initialization function. For other
pre-OS graphics initialization solutions, contact your local Intel representative.

