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Abstract
Logic synthesis comprises techniques to optimize a logical representation of a user 
design to create an optimized logical netlist. In a typical design implementation flow, 
this logical netlist is taken through a place and route flow to physically place the 
logic elements and route all the connections with them in a manner that is legally 
compliant to the underlying FPGA architecture, layout, and design rules. Place and 
route operations perform concurrent optimization of multiple metrics such as wiring 
usage, timing, utilization, and routing congestion. Physical synthesis comprises 
techniques to optimize the logical netlist further for metrics such as timing and 
area during and after the place and route process. Physical synthesis optimizations 
perform surgical netlist modifications by considering the physical information 
that are readily available during and after the place and route process. The key 
objective of physical synthesis is to improve the Quality of Results (QoR) metrics, 
such as maximum frequency (fMAX) and user design area, with minimal compile time 
overhead. In this paper, we discuss the advanced physical synthesis optimizations 
performed in the Intel® Quartus® Prime Pro Edition Software that achieve an average 
of about 13% fMAX improvement with <10% compile time overhead on the Intel 
Agilex® FPGA family.

Introduction
Timing closure is a time-consuming process of any digital logic implementation 
flow and users spend a significant portion of their design cycles to achieve their 
desired timing goals. Key features in the Intel Agilex family of FPGAs, such as the 
register-rich Intel® HyperFlex® architecture and the flexible clocking architecture, 
were co-designed with the Intel Quartus software. To leverage these features, the 
Intel Quartus software compiler engines and flows were significantly revamped.

The high-level compilation flow in the Intel Quartus Prime Pro Edition Software is 
shown in Figure 1. The FPGA design implementation flow starts with logic synthesis, 
followed by a plan stage that performs periphery placement, clock allocation, and 
early global retiming. Next, in the place stage, the logic elements are placed and 
clustered to the adaptive logic modules (ALMs) and logic array blocks (LABs) on the 
FPGA. The place stage also legally positions all the block random access memory 
(RAM) and digital signal processing (DSP) elements in the user design on the 
underlying FPGA fabric. In the route stage, all the connections in the user design are 
routed using the programmable routing fabric of the FPGA. 

With the Intel Hyperflex architecture in the Intel Agilex FPGA, the Intel Quartus 
software compiler flow was significantly revamped to be highly retiming-centric. 
Various parts of the flow such as synthesis, placement, and routing were made 
retiming-aware so they can fix critical paths that cannot be fixed by retiming. The Intel 
Quartus software performs late-stage global retiming and clock skew optimization 
with accurate delays very easily, without the need to reroute connections. The 
software performs physical synthesis optimizations throughout the place and route 
flow – during placement, after placement, and after routing and global retiming.
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Physical Synthesis Stages in the Intel Quartus 
Software
Physical synthesis in the Intel Quartus software is performed 
in three different stages.

Post-Global Placement

Global placement performs flat analytic placement of the 
logical netlist comprising the basic logic elements (BLEs) 
such as the lookup tables (LUTs), flip-flops (FFs), block RAM, 
and DSP elements, concurrently optimizing for wiring usage, 
timing, density, and routing congestion. Placement locations 
after global placement are approximate and not fully legal to 
the underlying FPGA architecture. This is the first stage in the 
Intel Quartus software flow that has the physical information 
for all the core fabric elements in the user design.  This allows 
for more realistic timing information considering the physical 
locations of the BLEs and the modeled physical connections 
between the BLEs, compared to a pure logical netlist as seen 
in the logic synthesis phase. 

We apply physical synthesis optimizations after global 
placement to condition the netlist for further placement 
operations. Since the design is not fully legalized at this global 
placement stage, physical synthesis has more flexibility 
in optimizing the netlist for wiring usage, area, and timing. 
Approximate placement locations are also computed for 
any newly created BLEs during post-global placement 
physical synthesis, ensuring that the operations strictly 
improve the results using an elaborate costing mechanism, 
while maintaining the spirit of the global placement solution 
computed by the solver. 

After global placement, the Intel Quartus software physical 
synthesis process applies several netlist optimization 
techniques, such as register duplication, retiming, resynthesis, 
shift register to RAM inferencing, DSP register unpacking, and 
more, details of which are discussed in a later section.

Post-Detailed Placement

After post-global placement physical synthesis, the netlist 
is optimally clustered into the physical elements of the 
underlying Intel FPGA architecture, through the creation of 
ALMs and LABs. All ALMs, LABs, block RAM, and DSP blocks 
are then legalized onto actual physical sites on the FPGA. 
This is followed by a fine-grained detailed placement step 
that further optimizes the physical placement of the various 
BLEs, ALMs, and LABs for wiring usage, timing, and routing 
congestion.

With a fully legalized and optimized placement after the 
detailed placement stage, the physical locations of the 
elements in the user design are near final, thereby further 
increasing the accuracy of timing analysis. We apply 
incremental physical synthesis at this stage to further optimize 
the netlist for any new critical paths that were not optimized 
during the global placement stage. Again, post-placement 
physical synthesis strictly improves the results using an 
elaborate costing mechanism and ensures that any netlist 
modifications are also completely legalized on the FPGA. 
Many optimization techniques including retiming, resynthesis, 
register duplication, placement adjustment, LUT rotation, and 
others are used in this stage of physical synthesis.

Figure 1 .  Quartus Pro high level compilation flow.
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The Intel Quartus Prime Pro Edition software performs 
optimizations in all these compilation stages. Earlier in the 
compilation flow, the optimizations mostly focus on reducing 
the logical depth, while balancing the resources required 
to implement the design in terms of ALMs and LABs, block 
RAM, and DSP elements. As we progress further in the flow, 
more accurate physical information progressively makes 
the timing information more accurate. This progression in 
timing accuracy starts exposing the real critical paths during 
the place and route process. Physical synthesis is exactly 
targeted to optimize such paths during the place and route 
process through netlist optimizations, without perturbing 
the optimization convergence of the placement and routing 
engines.

For the rest of this paper, we present details where physical 
synthesis is performed in the overall place and route flow 
of the Intel Quartus software and the physical synthesis 
optimization techniques used in the Intel Quartus Prime Pro 
Edition Software. We also show our experimental results on 
a large set of customer designs that show significant and 
industry-leading improvements in fMAX with minimal compile 
time overhead.
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Finalize Stage

After detailed placement, the Intel Quartus software performs 
routing to optimally route all the wiring connections in the user 
design using the routing resources available on the underlying 
FPGA. The complete placed and routed netlist now provides 
very accurate timing information since all the wire delays are 
computed using the actual routed connections. 

The Intel Quartus software leverages the 2nd generation 
register-rich Intel HyperFlex architecture in the Intel Agilex 
FPGA that provides programmable registers ubiquitously 
throughout the routing fabric. The software performs global 
retiming to reposition the registers in the design using the 
programmable Intel HyperFlex architecture registers on the 
routing fabric. There are several advantages to performing 
this late-stage global retiming. First, the timing information 
is very accurate at this stage, and the Intel Quartus software 
nicely optimizes the critical paths using global retiming. 
Second, the underlying FPGA architecture does not require 
rewiring or re-placing any logic or re-routing any connections 
– as the Intel HyperFlex architecture registers are already 
present on the routing fabric, and all the software needs to 
do is program these registers to indicate whether or not they 
are used in the design, as determined by the global retimer. 
This is an industry-leading software/hardware co-design 
methodology and is a unique optimization technique that 
is beyond the scope of even state-of-the-art application-
specific integrated circuit (ASIC) Electronic Design Automation 
(EDA) tools. The hardware and software capabilities provided 
by the Intel HyperFlex architecture and global retiming are 
industry leading and contribute significantly to the leadership 
performance per watt advantages in Intel Agilex FPGAs.

The finalize stage in the Intel Quartus Prime Pro Edition 
Software executes after the global retimer. At this stage, 
the software leverages multi-corner, signoff-quality timing 
analysis and fixes any remaining hold violations in the design 
using routing optimization techniques. Next, with the accurate 
multi-corner signoff-quality timing information, we perform 
late-stage physical synthesis to further optimize the timing 
of the design. Like in pre-route physical synthesis, several 
optimization techniques are used at this late-stage physical 
synthesis, such as retiming, register duplication, DSP register 
unpacking, hold fixing, placement adjustment, routing 
adjustment,  ALM and LUT input rotation, clock skew scheduling, 
and others. Like with the Intel HyperFlex architecture retiming, 
the Intel Agilex FPGA hardware architecture was enhanced to 
include a flexible and programmable clock skew architecture 
that was co-designed with the Intel Quartus software physical 
synthesis. This allows the software to leverage the combined 
power of retiming and clock skew scheduling to achieve 
superior fMAX. An important and unique highlight of the Intel 
Quartus software physical synthesis in the finalize stage is 
that it operates with highly accurate sign-off quality multi-
corner timing information for setup and hold. It also ensures 
that the optimizations applied strictly improve the fMAX while 
keeping the design fully legalized and routed at any point in 
time during the optimizations. Furthermore, it accomplishes 
these optimizations using highly incremental engines during 
its elaborate costing mechanism thus providing industry-
leading compile times.

Physical Synthesis Optimizations Details
In this section, we discuss the key optimization techniques 
that are used in the various stages of physical synthesis in the 
Intel Quartus Prime Pro Edition Software.

Shift-Register to RAM Inferencing

Many user designs have shift registers that are generally 
inferred and optimized by the Intel Quartus software logic 
synthesis.  One such key optimization to recover area is to 
transform deep and wide shift registers into a RAM-based 
implementation using the memory logic array block (MLAB) 
resources on the FPGA. With the retiming centric Intel 
Quartus software flow in the Intel Stratix® 10 and Intel Agilex 
FPGA families, we defer some of these optimizations of shift 
registers with depth ≤ 32 to be part of the physical synthesis 
optimizations. This allows the early global retimer in the 
plan stage of the Intel Quartus software to reposition these 
registers in the netlist and create balanced paths prior to 
global placement. Post-global placement physical synthesis 
optimizes the remaining shift registers into a RAM-based 
implementation, including the read-write address logic, using 
the MLAB resources on the FPGA. This is shown in Figure 2.

Figure 2 .  Shift Register to RAM Inference
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DSP Register Unpacking Register Retiming

Critical Path = 200 MHz

Critical Path = 395 MHz

A

B

A

B

DSP

~750 MHz

Before Unpacking (200 MHz)

After Unpacking followed by Retiming (395 MHz)

~400 MHz

DSP

X

X

Figure 3 .  DSP Register Unpacking

Figure 4 .  Register Retiming

In the plan phase of the Intel Quartus software flow, registers 
are aggressively packed into DSP blocks to save ALM and LAB 
area. However, later in the fitter flow when timing information 
becomes more accurate with progressively refined placement 
and routing information, the DSP blocks may run at a higher 
clock speed than the logic around them. In such cases, it 
is beneficial to selectively unpack registers from the DSP 
block into the logic that can be further retimed. The physical 
synthesis process in the Intel Quartus software performs these 
selective DSP register unpacking and retiming operations 
during various stages of physical synthesis when the input/
output paths to/from the DSP blocks start becoming critical. 
Such optimizations are only accepted if they strictly improve 
the overall timing of the design, as illustrated in Figure 3.

Logic retiming is a sequential optimization technique to 
improve performance. The objectives are to maximize 
performance with the minimum number of registers. Retiming 
modifies the netlist structurally through forward and backward 
moves across combinational and interconnect elements. It 
can be shown that, in general, logic retiming does not strictly 
preserve sequential equivalence, particularly related to the 
behavior of the original and retimed circuits under certain 
initial power-up conditions of the registers.

Through software/hardware co-design, we created two 
solutions to solve this sequential equivalence problem in 
the Intel Stratix 10 and Intel Agilex FPGA families. The first 
one introduced programmable initial states in the hardware 
architecture. The retimer computes the initial states as it 
moves the registers in compliance with the functionality of 
the combinational nodes. The second solution introduces the 
notion of c-cycle retiming in software. Here, a retimed circuit 
is shown to be a c-cycle delayed replacement of the original 
circuit, where ‘c’ is pessimistically computed by the retimer. 
The reset sequence of the retimed circuit is computed by pre-
pending ‘c’ empty clock cycles to the reset sequence of the 
original circuit.

The Intel Quartus Prime Pro Edition Software supports both 
solutions for retiming operations. In addition to the global 
retiming stages, physical synthesis also surgically fine-tunes 
the retiming solution combined with other optimization 
techniques, with capabilities to retime in and out of ALM 
and Intel HyperFlex architecture registers, including c-cycle 
retiming for maximum flexibility and fMAX. Figure 4 illustrates 
how retiming can improve circuit performance. Our results 
on a large set of industrial benchmarks show significant fMAX 
improvements from retiming on Intel Agilex FPGAs.

Critical path Critical path

(a) Forward Retiming (b) Backward Retiming

4



White Paper   |   Advanced Physical Synthesis in the Quartus® Prime Pro Edition Software

Register Duplication Logic Resynthesis

LUT, ALM, and Routing Adjustments

Figure 5 .  Register Duplication

Figure 6 .  Re-Synthesis

Figure 7 .  Routing Adjustment

Sometimes there are instances in the design where a register 
feeds two or more fanout logic blocks that are placed far 
away from each other due to other pulling forces in the 
global placement of those fanout logic blocks. In such cases, 
the interconnection wires between the register and one or 
more of these fanout logic blocks can become critical due to 
large wire delays. Such critical paths are solved by physical 
synthesis by simply duplicating the register and moving the 
critical registers closer to the fanout logic blocks they feed, as 
illustrated in Figure 5. This operation ensures that the timing 
of the design is improved before physical synthesis accepts 
the moves.

Routing plays a significant role in determining the interconnect 
delays, which dictate the overall timing of the design. Physical 
synthesis performs several optimizations to readjust the 
routing and interconnections between logic elements. As 
shown in Figure 7(a), LUT input rotation is used to reassign 
critical signals to faster LUT inputs, since there is a variance 
of delays between each of the LUT inputs and outputs. ALM 
rotation is used to reassign critical ALMs to other ALMs within 

Logic synthesis optimizes the depth of the user logic using 
the primitives of the underlying FPGA architecture. As these 
logic elements get placed and routed, some signals become 
more critical than others. To address this problem, physical 
synthesis resynthesizes certain cones of logic surgically using 
a Boolean formulation to move critical signals forward in a 
cone of logic to reduce their overall delay on the critical path. 
The operations are deeply interfaced with physical timing 
analysis, and only moves that improve the critical path delay 
are accepted. The newly created logic is also placed and 
routed legally on the FPGA device.
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(a) LUT Input Rotation (b) ALM Rotation

(c) Incremental Routing
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the same LAB to be closer to their connections outside the 
LAB. Physical synthesis also selectively and incrementally 
adjusts routing connections between logic blocks to improve 
their delays on critical paths. During this incremental re-
routing process, any Intel HyperFlex architecture registers 
may also be rebalanced to further improve the interconnect 
delay, as shown in Figure 7(c).the moves.
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Hold Fixup 

Clock Skew Optimizations

Figure 8 .  Hold Fixup

Figure 9 .  Intel Agilex Clock Skew Architecture

The Intel Quartus software ensures that the final design does 
not have any hold violations. To ensure this, the software has 
a special hold fixing step in the finalize stage so that such 
hold fixing is done with accurate sign-off quality multi-corner 
timing analysis. Two key techniques used to fix hold violations 
is to create extra delay through detoured routing, as well as 
to optionally insert buffer LUTs along very fast connection 
to meet minimum delay requirements. These techniques are 
illustrated in Figure 8. A key feature is that the Intel Quartus 
software physical synthesis in the finalize stage is setup and 
hold-aware when performing all its optimizations and in 
accepting moves that improve the overall design performance.

Clock skew optimization intentionally introduces skew on 
the clock input of certain registers to improve the overall 
setup timing of the design without introducing any new hold 
violations. Through software/hardware co-design for Intel 
Agilex FPGAs, we introduced several clock skew capabilities 
in the hardware architecture of LAB clocks and row clocks (as 
shown in Figure 9), and companion clock skew optimization 
technologies in the Intel Quartus software physical synthesis. 
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With accurate sign-off quality multi-corner timing analysis, 
the software determines optimal skew values for all register, 
DSP, and RAM clocks to improve the overall timing of the 
design. These clock skew optimizations have been architected 
to work in tandem with other physical synthesis operations, 
particularly retiming, such that they are complementary 
to each other in how they improve the timing of the design 
considering other trade-offs on logic utilization, routing 
resources, and compile time. 

Incremental Engines
Physical synthesis in the Intel Quartus software has a 
detailed costing infrastructure that is used to determine 
if the attempted moves improve the design. This costing 
infrastructure heavily relies on the delay annotation and 
timing engines to get accurate timing information depending 
on which part of the flow is running physical synthesis. 
Physical synthesis performs surgical netlist modifications to 
improve the timing of the design. Since these modifications 
are done during the place and route flow, it is imperative that 
physical synthesis also determines placement and routing for 
the modified logic elements (depending on which part of the 
flow physical synthesis is running) before timing and costing 
the changes.

One of the key objectives of the Intel Quartus software 
physical synthesis is to improve the design’s QoR, while 
having fast compile times. To enable this, the Intel Quartus 
software physical synthesis is powered by highly incremental 
engines listed below which allows it to try many optimization 
moves without bloating the compile time. The efficient 
implementation of these engines ensure that they only 
perform the necessary computations, while also taking 
advantage of parallelism.

• Incremental Placement: Places modified logic legally 
on the FPGA without perturbing the globally converged 
solution of the various placers

• Incremental Routing: Routes modified connections 
between logic blocks without perturbing the globally 
converged solution of the router

• Incremental Delay Annotation and Timing Analysis: 
Computes the updated delays and timing of all modified 
logic elements and connections as netlist, placement, and 
routing modifications are made. This timing analysis gets 
progressively more accurate as we progress through the 
Intel Quartus software flow. 

• Incremental Netlist Management: Performs fast netlist 
modifications with the ability to undo the change if 
physical synthesis determines as such.

• Incremental Costing Infrastructure: Computes all the 
costs necessary for physical synthesis to determine if an 
attempted move should be accepted or rejected. These 
costs model many metrics such as timing, area, utilization, 
and routing congestion. This costing infrastructure uses 
the incremental delay annotation and timing analysis 
engines.
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Functional Verification
Functional verification plays a significant role in ensuring 
that the functionality of the netlist implementations from 
the Intel Quartus software is identical to the user’s register 
transfer level (RTL) design. Since physical synthesis performs 
many netlist transformations, Intel uses several techniques to 
validate the functional correctness of such transformations. 
While these techniques are routinely used by Intel across a 
broad set of design suites to ensure functional quality of the 
designs produced by the Intel Quartus software, we have also 
developed some partner flows for customers to perform some 
of these verifications. These techniques include:

• Formal verification with third-party verification tools

• Random design simulations (internal only)

• Sub-netlist simulations (internal only)

• Rewind retiming verification, that also performs initial 
state verification and c-cycle retiming verification (internal 
only)

Results
Physical synthesis has been productized in the high-effort 
flow of the Intel Quartus Prime Pro Edition Software and is 
supported for Intel Arria® 10, Intel Stratix 10, and Intel Agilex 7 
FPGAs. This flow is geared towards achieving maximum clock 
frequency, while maintaining good compile times. 

Figure 10 shows results from the Intel Quartus software 
physical synthesis on a large set of industrial benchmarks 
using Intel Agilex FPGAs. As shown in Figure 10(a), every 

Conclusion
In this paper, we presented the advanced physical synthesis 
technology in the Intel Quartus Prime Pro Edition Software. 
Physical synthesis is performed pervasively in the software 
flow and employs several advanced optimization techniques. 
The Intel Quartus software physical synthesis uses a 
formalized and elaborate costing mechanism to ensure that 
every move that it attempts through netlist, placement, or 
routing modifications strictly improve the overall quality of 
the design. The Intel Quartus software physical synthesis has 
the unique and differentiated capabilities in its use of highly 
incremental placement, routing, netlist modification, delay 
annotation, and timing analysis engines. These capabilities 
ensure that the compile time of the Intel Quartus software 
physical synthesis is low and the fMAX improvements it 
provides is large and statistically significant. The Intel Quartus 
software physical synthesis is a key technology that provides 
fMAX leadership in Intel Agilex FPGAs while maintaining very 
low compile time overheads, both of which are critical to boost 
designer productivity for timing closure. 

Figure 10 .  Physical Synthesis Results (a) FMax Improvement (b) Compile Time Increase
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design improved in fMAX, which is a very statistically significant 
result. This is also a validation of the accurate costing 
mechanism in physical synthesis that ensures the overall 
design is strictly improved, without causing signification 
optimization trajectory changes in downstream engines. The 
average improvement in fMAX was 12.66%, which is a speed-
grade advantage. Figure 10(b) shows that the compile time 
increase from physical synthesis is <10% on the average. That 
is, for every % increase in fMAX, physical synthesis consumed 
<1% compile time.
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