
Advanced Physical Synthesis in the
Quartus® Prime Pro Edition Software

Abstract
Logic synthesis comprises techniques to optimize a logical representation of a user
design to create an optimized logical netlist. In a typical design implementation flow,
this logical netlist is taken through a place and route flow to physically place the
logic elements and route all the connections with them in a manner that is legally
compliant to the underlying FPGA architecture, layout, and design rules. Place and
route operations perform concurrent optimization of multiple metrics such as wiring
usage, timing, utilization, and routing congestion. Physical synthesis comprises
techniques to optimize the logical netlist further for metrics such as timing and
area during and after the place and route process. Physical synthesis optimizations
perform surgical netlist modifications by considering the physical information
that are readily available during and after the place and route process. The key
objective of physical synthesis is to improve the Quality of Results (QoR) metrics,
such as maximum frequency (fMAX) and user design area, with minimal compile time
overhead. In this paper, we discuss the advanced physical synthesis optimizations
performed in the Intel® Quartus® Prime Pro Edition Software that achieve an average
of about 13% fMAX improvement with <10% compile time overhead on the Intel
Agilex® FPGA family.

Introduction
Timing closure is a time-consuming process of any digital logic implementation
flow and users spend a significant portion of their design cycles to achieve their
desired timing goals. Key features in the Intel Agilex family of FPGAs, such as the
register-rich Intel® HyperFlex® architecture and the flexible clocking architecture,
were co-designed with the Intel Quartus software. To leverage these features, the
Intel Quartus software compiler engines and flows were significantly revamped.

The high-level compilation flow in the Intel Quartus Prime Pro Edition Software is
shown in Figure 1. The FPGA design implementation flow starts with logic synthesis,
followed by a plan stage that performs periphery placement, clock allocation, and
early global retiming. Next, in the place stage, the logic elements are placed and
clustered to the adaptive logic modules (ALMs) and logic array blocks (LABs) on the
FPGA. The place stage also legally positions all the block random access memory
(RAM) and digital signal processing (DSP) elements in the user design on the
underlying FPGA fabric. In the route stage, all the connections in the user design are
routed using the programmable routing fabric of the FPGA.

With the Intel Hyperflex architecture in the Intel Agilex FPGA, the Intel Quartus
software compiler flow was significantly revamped to be highly retiming-centric.
Various parts of the flow such as synthesis, placement, and routing were made
retiming-aware so they can fix critical paths that cannot be fixed by retiming. The Intel
Quartus software performs late-stage global retiming and clock skew optimization
with accurate delays very easily, without the need to reroute connections. The
software performs physical synthesis optimizations throughout the place and route
flow – during placement, after placement, and after routing and global retiming.

Table of Contents
Abstract . 1
Introduction . 1
Physical Synthesis Stages in the
Intel Quartus Software 2

 Post-Global Placement 2

 Post-Detailed Placement2

 Finalize Stage .3

Physical Synthesis Optimizations
Details . 3
 Shift-Register to RAM
 Inferencing .3

 DSP Register Unpacking4

 Register Retiming .4

 Register Duplication .5

 Logic Resynthesis .5

 LUT, ALM, and Routing
 Adjustments .5

 Hold Fixup .6
 Clock Skew Optimizations6

Incremental Engines 6
Functional Verification 7
Results . 7
Conclusion . 7
References . 8

Authors

Mahesh A. Iyer
Intel Senior Fellow

Junaid Khan
Senior FPGA Development Tools

Manager

Selvin Quadros
FPGA Development Tools Engineer

Nan Zhuang
Principal Engineer

Intel Corp.

Quartus® Prime

White Paper

White Paper | Advanced Physical Synthesis in the Quartus® Prime Pro Edition Software

Physical Synthesis Stages in the Intel Quartus
Software
Physical synthesis in the Intel Quartus software is performed
in three different stages.

Post-Global Placement

Global placement performs flat analytic placement of the
logical netlist comprising the basic logic elements (BLEs)
such as the lookup tables (LUTs), flip-flops (FFs), block RAM,
and DSP elements, concurrently optimizing for wiring usage,
timing, density, and routing congestion. Placement locations
after global placement are approximate and not fully legal to
the underlying FPGA architecture. This is the first stage in the
Intel Quartus software flow that has the physical information
for all the core fabric elements in the user design. This allows
for more realistic timing information considering the physical
locations of the BLEs and the modeled physical connections
between the BLEs, compared to a pure logical netlist as seen
in the logic synthesis phase.

We apply physical synthesis optimizations after global
placement to condition the netlist for further placement
operations. Since the design is not fully legalized at this global
placement stage, physical synthesis has more flexibility
in optimizing the netlist for wiring usage, area, and timing.
Approximate placement locations are also computed for
any newly created BLEs during post-global placement
physical synthesis, ensuring that the operations strictly
improve the results using an elaborate costing mechanism,
while maintaining the spirit of the global placement solution
computed by the solver.

After global placement, the Intel Quartus software physical
synthesis process applies several netlist optimization
techniques, such as register duplication, retiming, resynthesis,
shift register to RAM inferencing, DSP register unpacking, and
more, details of which are discussed in a later section.

Post-Detailed Placement

After post-global placement physical synthesis, the netlist
is optimally clustered into the physical elements of the
underlying Intel FPGA architecture, through the creation of
ALMs and LABs. All ALMs, LABs, block RAM, and DSP blocks
are then legalized onto actual physical sites on the FPGA.
This is followed by a fine-grained detailed placement step
that further optimizes the physical placement of the various
BLEs, ALMs, and LABs for wiring usage, timing, and routing
congestion.

With a fully legalized and optimized placement after the
detailed placement stage, the physical locations of the
elements in the user design are near final, thereby further
increasing the accuracy of timing analysis. We apply
incremental physical synthesis at this stage to further optimize
the netlist for any new critical paths that were not optimized
during the global placement stage. Again, post-placement
physical synthesis strictly improves the results using an
elaborate costing mechanism and ensures that any netlist
modifications are also completely legalized on the FPGA.
Many optimization techniques including retiming, resynthesis,
register duplication, placement adjustment, LUT rotation, and
others are used in this stage of physical synthesis.

Figure 1 . Quartus Pro high level compilation flow.

RTL

Synthesis

Plan and Early
Global Retimer

Place

Route

Retime

Finalize

Compiled
Design

The Intel Quartus Prime Pro Edition software performs
optimizations in all these compilation stages. Earlier in the
compilation flow, the optimizations mostly focus on reducing
the logical depth, while balancing the resources required
to implement the design in terms of ALMs and LABs, block
RAM, and DSP elements. As we progress further in the flow,
more accurate physical information progressively makes
the timing information more accurate. This progression in
timing accuracy starts exposing the real critical paths during
the place and route process. Physical synthesis is exactly
targeted to optimize such paths during the place and route
process through netlist optimizations, without perturbing
the optimization convergence of the placement and routing
engines.

For the rest of this paper, we present details where physical
synthesis is performed in the overall place and route flow
of the Intel Quartus software and the physical synthesis
optimization techniques used in the Intel Quartus Prime Pro
Edition Software. We also show our experimental results on
a large set of customer designs that show significant and
industry-leading improvements in fMAX with minimal compile
time overhead.

2

White Paper | Advanced Physical Synthesis in the Quartus® Prime Pro Edition Software

Finalize Stage

After detailed placement, the Intel Quartus software performs
routing to optimally route all the wiring connections in the user
design using the routing resources available on the underlying
FPGA. The complete placed and routed netlist now provides
very accurate timing information since all the wire delays are
computed using the actual routed connections.

The Intel Quartus software leverages the 2nd generation
register-rich Intel HyperFlex architecture in the Intel Agilex
FPGA that provides programmable registers ubiquitously
throughout the routing fabric. The software performs global
retiming to reposition the registers in the design using the
programmable Intel HyperFlex architecture registers on the
routing fabric. There are several advantages to performing
this late-stage global retiming. First, the timing information
is very accurate at this stage, and the Intel Quartus software
nicely optimizes the critical paths using global retiming.
Second, the underlying FPGA architecture does not require
rewiring or re-placing any logic or re-routing any connections
– as the Intel HyperFlex architecture registers are already
present on the routing fabric, and all the software needs to
do is program these registers to indicate whether or not they
are used in the design, as determined by the global retimer.
This is an industry-leading software/hardware co-design
methodology and is a unique optimization technique that
is beyond the scope of even state-of-the-art application-
specific integrated circuit (ASIC) Electronic Design Automation
(EDA) tools. The hardware and software capabilities provided
by the Intel HyperFlex architecture and global retiming are
industry leading and contribute significantly to the leadership
performance per watt advantages in Intel Agilex FPGAs.

The finalize stage in the Intel Quartus Prime Pro Edition
Software executes after the global retimer. At this stage,
the software leverages multi-corner, signoff-quality timing
analysis and fixes any remaining hold violations in the design
using routing optimization techniques. Next, with the accurate
multi-corner signoff-quality timing information, we perform
late-stage physical synthesis to further optimize the timing
of the design. Like in pre-route physical synthesis, several
optimization techniques are used at this late-stage physical
synthesis, such as retiming, register duplication, DSP register
unpacking, hold fixing, placement adjustment, routing
adjustment, ALM and LUT input rotation, clock skew scheduling,
and others. Like with the Intel HyperFlex architecture retiming,
the Intel Agilex FPGA hardware architecture was enhanced to
include a flexible and programmable clock skew architecture
that was co-designed with the Intel Quartus software physical
synthesis. This allows the software to leverage the combined
power of retiming and clock skew scheduling to achieve
superior fMAX. An important and unique highlight of the Intel
Quartus software physical synthesis in the finalize stage is
that it operates with highly accurate sign-off quality multi-
corner timing information for setup and hold. It also ensures
that the optimizations applied strictly improve the fMAX while
keeping the design fully legalized and routed at any point in
time during the optimizations. Furthermore, it accomplishes
these optimizations using highly incremental engines during
its elaborate costing mechanism thus providing industry-
leading compile times.

Physical Synthesis Optimizations Details
In this section, we discuss the key optimization techniques
that are used in the various stages of physical synthesis in the
Intel Quartus Prime Pro Edition Software.

Shift-Register to RAM Inferencing

Many user designs have shift registers that are generally
inferred and optimized by the Intel Quartus software logic
synthesis. One such key optimization to recover area is to
transform deep and wide shift registers into a RAM-based
implementation using the memory logic array block (MLAB)
resources on the FPGA. With the retiming centric Intel
Quartus software flow in the Intel Stratix® 10 and Intel Agilex
FPGA families, we defer some of these optimizations of shift
registers with depth ≤ 32 to be part of the physical synthesis
optimizations. This allows the early global retimer in the
plan stage of the Intel Quartus software to reposition these
registers in the netlist and create balanced paths prior to
global placement. Post-global placement physical synthesis
optimizes the remaining shift registers into a RAM-based
implementation, including the read-write address logic, using
the MLAB resources on the FPGA. This is shown in Figure 2.

Figure 2 . Shift Register to RAM Inference

1
6 5

5
2 1

WADDR RADDR

D0
D1
D2
D3
D4

0
0
0

D5

D5 D4 D3 D2 D1

D0

D0

3

White Paper | Advanced Physical Synthesis in the Quartus® Prime Pro Edition Software

DSP Register Unpacking Register Retiming

Critical Path = 200 MHz

Critical Path = 395 MHz

A

B

A

B

DSP

~750 MHz

Before Unpacking (200 MHz)

After Unpacking followed by Retiming (395 MHz)

~400 MHz

DSP

X

X

Figure 3 . DSP Register Unpacking

Figure 4 . Register Retiming

In the plan phase of the Intel Quartus software flow, registers
are aggressively packed into DSP blocks to save ALM and LAB
area. However, later in the fitter flow when timing information
becomes more accurate with progressively refined placement
and routing information, the DSP blocks may run at a higher
clock speed than the logic around them. In such cases, it
is beneficial to selectively unpack registers from the DSP
block into the logic that can be further retimed. The physical
synthesis process in the Intel Quartus software performs these
selective DSP register unpacking and retiming operations
during various stages of physical synthesis when the input/
output paths to/from the DSP blocks start becoming critical.
Such optimizations are only accepted if they strictly improve
the overall timing of the design, as illustrated in Figure 3.

Logic retiming is a sequential optimization technique to
improve performance. The objectives are to maximize
performance with the minimum number of registers. Retiming
modifies the netlist structurally through forward and backward
moves across combinational and interconnect elements. It
can be shown that, in general, logic retiming does not strictly
preserve sequential equivalence, particularly related to the
behavior of the original and retimed circuits under certain
initial power-up conditions of the registers.

Through software/hardware co-design, we created two
solutions to solve this sequential equivalence problem in
the Intel Stratix 10 and Intel Agilex FPGA families. The first
one introduced programmable initial states in the hardware
architecture. The retimer computes the initial states as it
moves the registers in compliance with the functionality of
the combinational nodes. The second solution introduces the
notion of c-cycle retiming in software. Here, a retimed circuit
is shown to be a c-cycle delayed replacement of the original
circuit, where ‘c’ is pessimistically computed by the retimer.
The reset sequence of the retimed circuit is computed by pre-
pending ‘c’ empty clock cycles to the reset sequence of the
original circuit.

The Intel Quartus Prime Pro Edition Software supports both
solutions for retiming operations. In addition to the global
retiming stages, physical synthesis also surgically fine-tunes
the retiming solution combined with other optimization
techniques, with capabilities to retime in and out of ALM
and Intel HyperFlex architecture registers, including c-cycle
retiming for maximum flexibility and fMAX. Figure 4 illustrates
how retiming can improve circuit performance. Our results
on a large set of industrial benchmarks show significant fMAX
improvements from retiming on Intel Agilex FPGAs.

Critical path Critical path

(a) Forward Retiming (b) Backward Retiming

4

White Paper | Advanced Physical Synthesis in the Quartus® Prime Pro Edition Software

Register Duplication Logic Resynthesis

LUT, ALM, and Routing Adjustments

Figure 5 . Register Duplication

Figure 6 . Re-Synthesis

Figure 7 . Routing Adjustment

Sometimes there are instances in the design where a register
feeds two or more fanout logic blocks that are placed far
away from each other due to other pulling forces in the
global placement of those fanout logic blocks. In such cases,
the interconnection wires between the register and one or
more of these fanout logic blocks can become critical due to
large wire delays. Such critical paths are solved by physical
synthesis by simply duplicating the register and moving the
critical registers closer to the fanout logic blocks they feed, as
illustrated in Figure 5. This operation ensures that the timing
of the design is improved before physical synthesis accepts
the moves.

Routing plays a significant role in determining the interconnect
delays, which dictate the overall timing of the design. Physical
synthesis performs several optimizations to readjust the
routing and interconnections between logic elements. As
shown in Figure 7(a), LUT input rotation is used to reassign
critical signals to faster LUT inputs, since there is a variance
of delays between each of the LUT inputs and outputs. ALM
rotation is used to reassign critical ALMs to other ALMs within

Logic synthesis optimizes the depth of the user logic using
the primitives of the underlying FPGA architecture. As these
logic elements get placed and routed, some signals become
more critical than others. To address this problem, physical
synthesis resynthesizes certain cones of logic surgically using
a Boolean formulation to move critical signals forward in a
cone of logic to reduce their overall delay on the critical path.
The operations are deeply interfaced with physical timing
analysis, and only moves that improve the critical path delay
are accepted. The newly created logic is also placed and
routed legally on the FPGA device.

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

L
U
T

(a) LUT Input Rotation (b) ALM Rotation

(c) Incremental Routing

A
LM

A
LM

A
LM

A
LM

the same LAB to be closer to their connections outside the
LAB. Physical synthesis also selectively and incrementally
adjusts routing connections between logic blocks to improve
their delays on critical paths. During this incremental re-
routing process, any Intel HyperFlex architecture registers
may also be rebalanced to further improve the interconnect
delay, as shown in Figure 7(c).the moves.

5

White Paper | Advanced Physical Synthesis in the Quartus® Prime Pro Edition Software

Hold Fixup

Clock Skew Optimizations

Figure 8 . Hold Fixup

Figure 9 . Intel Agilex Clock Skew Architecture

The Intel Quartus software ensures that the final design does
not have any hold violations. To ensure this, the software has
a special hold fixing step in the finalize stage so that such
hold fixing is done with accurate sign-off quality multi-corner
timing analysis. Two key techniques used to fix hold violations
is to create extra delay through detoured routing, as well as
to optionally insert buffer LUTs along very fast connection
to meet minimum delay requirements. These techniques are
illustrated in Figure 8. A key feature is that the Intel Quartus
software physical synthesis in the finalize stage is setup and
hold-aware when performing all its optimizations and in
accepting moves that improve the overall design performance.

Clock skew optimization intentionally introduces skew on
the clock input of certain registers to improve the overall
setup timing of the design without introducing any new hold
violations. Through software/hardware co-design for Intel
Agilex FPGAs, we introduced several clock skew capabilities
in the hardware architecture of LAB clocks and row clocks (as
shown in Figure 9), and companion clock skew optimization
technologies in the Intel Quartus software physical synthesis.

Skewed
Clock

Non-Skewed
Clock

LEIM
Hyperflex

ALM
Short DIMs

CE
HiPI

SCLR
HiPI

ALM

LAB

Row Clock Mux

Long DIMs

{0, 60, 110, 150, 250}

{0, 100, 200, 500}
LEIM: Logic Element Input Multiplexer
DIM: Driver Input Multiplexer
HiPI: Highly Pipelined Integration

With accurate sign-off quality multi-corner timing analysis,
the software determines optimal skew values for all register,
DSP, and RAM clocks to improve the overall timing of the
design. These clock skew optimizations have been architected
to work in tandem with other physical synthesis operations,
particularly retiming, such that they are complementary
to each other in how they improve the timing of the design
considering other trade-offs on logic utilization, routing
resources, and compile time.

Incremental Engines
Physical synthesis in the Intel Quartus software has a
detailed costing infrastructure that is used to determine
if the attempted moves improve the design. This costing
infrastructure heavily relies on the delay annotation and
timing engines to get accurate timing information depending
on which part of the flow is running physical synthesis.
Physical synthesis performs surgical netlist modifications to
improve the timing of the design. Since these modifications
are done during the place and route flow, it is imperative that
physical synthesis also determines placement and routing for
the modified logic elements (depending on which part of the
flow physical synthesis is running) before timing and costing
the changes.

One of the key objectives of the Intel Quartus software
physical synthesis is to improve the design’s QoR, while
having fast compile times. To enable this, the Intel Quartus
software physical synthesis is powered by highly incremental
engines listed below which allows it to try many optimization
moves without bloating the compile time. The efficient
implementation of these engines ensure that they only
perform the necessary computations, while also taking
advantage of parallelism.

• Incremental Placement: Places modified logic legally
on the FPGA without perturbing the globally converged
solution of the various placers

• Incremental Routing: Routes modified connections
between logic blocks without perturbing the globally
converged solution of the router

• Incremental Delay Annotation and Timing Analysis:
Computes the updated delays and timing of all modified
logic elements and connections as netlist, placement, and
routing modifications are made. This timing analysis gets
progressively more accurate as we progress through the
Intel Quartus software flow.

• Incremental Netlist Management: Performs fast netlist
modifications with the ability to undo the change if
physical synthesis determines as such.

• Incremental Costing Infrastructure: Computes all the
costs necessary for physical synthesis to determine if an
attempted move should be accepted or rejected. These
costs model many metrics such as timing, area, utilization,
and routing congestion. This costing infrastructure uses
the incremental delay annotation and timing analysis
engines.

6

White Paper | Advanced Physical Synthesis in the Quartus® Prime Pro Edition Software

Functional Verification
Functional verification plays a significant role in ensuring
that the functionality of the netlist implementations from
the Intel Quartus software is identical to the user’s register
transfer level (RTL) design. Since physical synthesis performs
many netlist transformations, Intel uses several techniques to
validate the functional correctness of such transformations.
While these techniques are routinely used by Intel across a
broad set of design suites to ensure functional quality of the
designs produced by the Intel Quartus software, we have also
developed some partner flows for customers to perform some
of these verifications. These techniques include:

• Formal verification with third-party verification tools

• Random design simulations (internal only)

• Sub-netlist simulations (internal only)

• Rewind retiming verification, that also performs initial
state verification and c-cycle retiming verification (internal
only)

Results
Physical synthesis has been productized in the high-effort
flow of the Intel Quartus Prime Pro Edition Software and is
supported for Intel Arria® 10, Intel Stratix 10, and Intel Agilex 7
FPGAs. This flow is geared towards achieving maximum clock
frequency, while maintaining good compile times.

Figure 10 shows results from the Intel Quartus software
physical synthesis on a large set of industrial benchmarks
using Intel Agilex FPGAs. As shown in Figure 10(a), every

Conclusion
In this paper, we presented the advanced physical synthesis
technology in the Intel Quartus Prime Pro Edition Software.
Physical synthesis is performed pervasively in the software
flow and employs several advanced optimization techniques.
The Intel Quartus software physical synthesis uses a
formalized and elaborate costing mechanism to ensure that
every move that it attempts through netlist, placement, or
routing modifications strictly improve the overall quality of
the design. The Intel Quartus software physical synthesis has
the unique and differentiated capabilities in its use of highly
incremental placement, routing, netlist modification, delay
annotation, and timing analysis engines. These capabilities
ensure that the compile time of the Intel Quartus software
physical synthesis is low and the fMAX improvements it
provides is large and statistically significant. The Intel Quartus
software physical synthesis is a key technology that provides
fMAX leadership in Intel Agilex FPGAs while maintaining very
low compile time overheads, both of which are critical to boost
designer productivity for timing closure.

Figure 10 . Physical Synthesis Results (a) FMax Improvement (b) Compile Time Increase

F
M

ax
 P

er
ce

nt
ag

e
In

cr
ea

se

60

50

40

30

20

10

0

C
om

pi
le

 T
im

e
P

er
ce

nt
ag

e
In

cr
ea

se

60

70

50

40

30

20

10

0

-10

GeoMean FMax Increase = 12.66%

GeoMean Compile Time Percentage Increase = 9.9%

(a) Intel Agilex® FMax Increase with Pysical Synthesis (ordered highest to lowest)

(b) Intel Agilex® Compile Time Increase with Physical Synthesis (ordered highest to lowest)

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

design improved in fMAX, which is a very statistically significant
result. This is also a validation of the accurate costing
mechanism in physical synthesis that ensures the overall
design is strictly improved, without causing signification
optimization trajectory changes in downstream engines. The
average improvement in fMAX was 12.66%, which is a speed-
grade advantage. Figure 10(b) shows that the compile time
increase from physical synthesis is <10% on the average. That
is, for every % increase in fMAX, physical synthesis consumed
<1% compile time.

7

White Paper | Advanced Physical Synthesis in the Quartus® Prime Pro Edition Software

References
• S. Adya, L. Singhal, D. Grant, and M. A. Iyer, “Analytic Fitter”,

Proceedings Altera Technical Symposium, November 2015.

• M. A. Iyer, “Are You Ready to Re-Time Your Design?”,
Keynote talk, ACM International Workshop on Timing
Issues in the Specification and Synthesis of Digital Systems,
March 2017.

• M. A. Iyer, “CAD Opportunities with Hyper-Pipelining”,
Invited talk, Proceedings ACM International Symposium
on Physical Design, March 2017.

• L. Singhal, M. A. Iyer, and S. Adya, “LSC: A Large-Scale
Consensus-Based Clustering Algorithm for High-
Performance FPGAs, Proceedings of the ACM/EDAC/IEEE
Design Automation Conference, June 2017.

• M. A. Iyer, “Symbiosis in Action: Reconfigurable
Architectures and EDA”, Keynote talk, Proceedings of
the 28th ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, February 2020.

• I. K. Ganusov, M. A. Iyer, N. Cheng, A. Meisler, “Agilex™
Generation of Intel® FPGAs”, Hot Chips: A Symposium on
High Performance Chips, August 2020.

• C. Ebeling, H. Schmit, D. How, M. Iyer, S. Adya, “Sector-
Based Clock Routing Methods and Apparatus”, US Patent
Number 9,922,157 issued on March 20, 2018.

• S. Adya, M. A. Iyer, and L. Singhal, “Method and Apparatus
for Performing Clock Allocation for a System Implemented
on a Programmable Device”, US Patent Number 10,303,202
issued on May 28, 2019.

• M. A. Iyer, V. M. Kamath, and R. L. Walker, “Integrated
Circuit Retiming with Selective Modeling of Flip-Flop
Secondary Signals”, US Patent Number 10,162,918 issued
on December 25, 2018.

• M. A. Iyer and R. L. Walker, “Methods for Incremental Circuit
Design Legalization During Physical Synthesis”, US Patent
Number 10,339,241 issued on July 2, 2019.

• M. A. Iyer, V. M. Kamath, and R. L. Walker, “Retiming with
Fixed Power-up States”, US Patent Number 10,296,701
issued on May 21, 2019.

• M. A. Iyer, V. M. Kamath, and R. L. Walker, “Retiming with
Programmable Power-up States”, US Patent Number
10,255,404 issued on April 9, 2019.

• M. A. Iyer, R. L. Walker, and V. M. Kamath, “Methods for
Incremental Circuit Physical Synthesis, US Patent Number
10,936,772 issued on March 2, 2021.

• M. A. Iyer, “Methods for Delaying Register Reset for Retimed
Circuits”, US Patent Number 10,169,518 issued on January
1, 2019.

• M. A. Iyer, “Methods for Bounding the Number of Delayed
Reset Clock Cycles for Retimed Circuit”, US Patent Number
10,354,038 issued on July 16, 2019.

• D. Le, M. A. Iyer, and I, Milton, “Method for Retiming with
Hybrid Initial States”, US Patent Application filed on May
31, 2017.

• L. Singhal, M. A. Iyer, and S. Adya, “Method and Apparatus
for Performing Large-Scale Consensus-Based Clustering”,
US Patent Number 10,162,924 issued on December 25,
2018.

• M. A. Iyer, “Method and Apparatus for Verifying Structural
Correctness in Retimed Circuits”, US Patent Number
9,824,177 issued on November 21, 2017.

• M. A. Iyer, “Method and Apparatus for Verifying Initial
States Equivalence of Unchanged Registers in Retimed
Circuits”, US Patent Application filed on March 24, 2016.

• M. A. Iyer, “Method and Apparatus for Verifying Initial States
Equivalence of Changed Registers in Retimed Circuits”, US
Patent Number 10,706,203 issued on July 7, 2020.

• M. A. Iyer, “Methods for Verifying Retimed Circuits with
Delayed Initialization”, US Patent Number 10,372,850
issued on August 6, 2019.

• M. A. Iyer and V. M. Kamath, “Method and Apparatus for
Reducing Constraints During Rewind Structural Verification
of Retimed Circuits”, US Patent Number 10,489,535 issued
on November 26, 2019.

• M. A. Iyer and V. M. Kamath, “Method and Apparatus for
Performing Rewind Structural Verification of Retimed
Circuits Driven by a Plurality of Clocks”, US Patent Number
10,157,247 issued December 18, 2018.

• M. A. Iyer, “Method and Apparatus for Verifying Structural
Correctness in Retimed Circuits”, US Patent Number
10,671,790 issued on June 2, 2020.

• M. A. Iyer and V. M. Kamath, “Method and Apparatus for
Performing Rewind Structural Verification of Retimed
Circuits Driven by a Plurality of Clocks”, US Patent Number
10,922,461 issued February 16, 2021.

8

Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.
Your costs and results may vary.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. *Other names and brands may be claimed as the property of others.

WP-01327-1.0

