
White Paper

Accelerating Embedded Software
Development with the Intel® Simics®
Simulator for Altera® FPGAs

Agilex™ FPGAs
Intel® Simics® Simulator

Executive Summary
Computationally intensive workloads – for example, those that employ artificial
intelligence (AI) and machine learning (ML) algorithms – are increasingly migrating
from data centers to embedded systems at the network’s edge. To satisfy the
demands of these workloads, the developers of embedded and edge-based systems
often employ SoC FPGAs resulting in a sophisticated mix of hardware and software.

An Intel® SoC FPGA includes a hard processor subsystem and hard peripheral
functions such as transceivers. Meanwhile, accelerators and other custom functions
can be implemented in the device’s programmable fabric. The new Intel Agilex® 5
SoC FPGA E-Series deliver the excellent performance per watt characteristics
needed to meet the demanding requirements of today’s embedded and edge
applications.

In a traditional design flow for an embedded system, the main portion of the software
development cannot commence until the hardware is available in the form of
integrated circuits (ICs), evaluation boards, development boards, and ultimately,
the customer’s circuit boards. Due to the market pressure to release a final product
faster, developers need to start software development as early as possible, even
before the hardware in silicon and boards becomes available.

The solution is to create a virtual representation of the hardware called a virtual
platform or a digital twin. The virtual platform mirrors its physical counterpart with
such fidelity that both can run the same compiled binary software files providing
the same results in the software’s execution. Through a program called a simulator,
the software can be developed, debugged, and verified on the virtual platform up
to a year in advance of the physical hardware becoming available.

Intel uses the Intel Simics® simulator as its virtual platform simulator. The Intel
Simics simulator has many valuable features that enable the creation of virtual
platforms involving multiple processors, network connectivity, serial consoles, and
others. The Intel Simics simulator can also be used with virtual platforms featuring
models of Intel Agilex 5 SoC FPGAs E-Series to accelerate the embedded software
development for systems that use these devices, providing developers with a vehicle
to exercise their software similarly to how they would do so with real hardware.

Table of Contents
Executive Summary 1

Industry Challenges for Embedded
Systems . 1

Intel Agilex 5 SoC FPGA E-Series . . .2

Virtual Platform Value
Proposition .3

Virtual Platforms, SoCs, and SoC
FPGAs .3

The Intel Simics Simulator 4

The Intel Simics Simulator for Intel
FPGAs .6

Intel Simics Simulation Example 7

Conclusion .8

Learn More .8

References .8

Authors

Kalen Brunham
Principal Engineer Intel

Rolando Santoyo Rincon
Factory Embedded Applications

Engineer

Findlay Shearer
Product Marketing Manager

Intel Corp.

Creating virtual platforms for Agilex™ 5 SoC FPGA E-Series is now possible using the
powerful and proven Intel Simics simulator.

Industry Challenges for Embedded Systems
In the not-so-distant past, one definition of an embedded system was “something
you didn’t even know existed until it stopped working.” Although this may seem a
little flippant, it wasn’t far from the truth because many embedded systems in the
past were implemented as standalone devices with little connectivity to the outside
world. These embedded devices were often based on simple 8-bit microcontrollers
performing relatively low-level monitoring and control activities on a local device

1

White Paper | Accelerating Embedded Software Development with the Intel® Simics® Simulator for Altera® FPGAs

Intel Agilex 5 SoC FPGAs E-Series
ASIC SoCs of fer the lowest power and the highest
performance. However, they are extremely expensive and
time - consuming to develop. Also, any algor ithms
implemented in the form of hardware accelerators are
effectively “frozen in silicon.” This is problematic in
applications and markets where standards and protocols are
constantly evolving, which is the case with most of today’s
high-end applications and markets.

B y c o m p a r i s o n , a l g o r i t h m s i m p l e m e n t e d i n t h e
programmable fabric in FPGAs can be quickly and easily
modified to address any changes in standards and protocols.
Functions implemented in the programmable fabric can
execute tasks in a massively parallel fashion, thereby
providing high bandwidth while consuming relatively low
power. These capabilities are complemented by the hard
processor subsystems in SoC FPGAs, which – amongst other
tasks – can be used to provide command and control
functionality for the hardware accelerators implemented in
the programmable fabric.

In 2019, Intel introduced Intel Agilex 7 FPGAs and SoC FPGAs
to ser vice the ex treme capacit y and per formance
requirements demanded by the network core and data
centers. Following the tremendous market acceptance of
the Intel Agilex 7 device families, Intel continues to innovate
by bringing the high-performance capabilities of Intel Agilex
7 devices into new mid-range Intel Agilex 5 FPGAs and SoC
FPGAs. In addition to all the functions provided by Intel Agilex
5 FPGAs, their SoC FPGA counterparts also include a hard
processor subsystem (HPS).

All members of the new Intel Agilex 5 device family –
including the performance-optimized D-Series and the
power-optimized E-Series—are manufactured on Intel 7
technology, have a monolithic construction, and come in
smaller sizes, both in terms of numbers of logic elements
(LEs) and physical packages, which allows them to deliver
the excellent performance per watt characteristics needed
to meet embedded and edge application requirements. For
these discussions, we will focus on the power-optimized Intel
Agilex 5 SoC FPGA E-Series.

or system. For example, a small, standalone embedded
system might spend its days monitoring the temperature of
a machine like a pump, shutting the device down if the
temperature exceeded a specified level.

Things have changed dramatically over the years. Today,
almost any electronic system that isn’t either a desktop
computer or a server may be considered an embedded
system or include one or more embedded systems. Also,
such systems are almost invariably connected – to each other
or to a local fog or remote cloud – by wired means, such as
Ethernet, or wireless means, such as Bluetooth and Wi-Fi.

Computationally intensive workloads—for example, those
that employ AI and ML algorithms – are increasingly migrating
from data centers to embedded systems at the network’s
edge, where localized concurrent processing and analysis
are needed to meet demanding system-level latency
requirements. At the same time, power is more constrained
in many embedded and edge applications, meaning the
implementation technology must be power-efficient while
providing the required performance attributes.

To satisfy the demands of these computationally intensive
workloads, embedded and edge-based systems often employ
custom-designed application-specific integrated circuit
(ASIC) SoCs or SoC FPGAs. An ASIC SoC includes one or
more processors, on-chip memory, hardware accelerators,
and various peripheral, communications, and interface
functions. An SoC FPGA includes a hard processor
subsystem and other hardened functions such as transceivers
and external memory interfaces. However, hardware
accelerators and other custom functions can be implemented
in the device’s programmable fabric, providing a more flexible
solution than an ASIC.

The software content of embedded systems has increased
exponentially over the years. As a result, on average, there
are now five software developers for every hardware design
engineer on an embedded project.1 Even when all aspects of
hardware development are considered – including
architectural explor ation , logic al design , physic al
implementation, verification, and more – engineering is
currently dedicating more than 50% of the total development
effort to software.1

A large part of this software development effort is devoted
to debugging tasks. On average, embedded software
developers spend 20% of their time architecting and
designing the code they are going to write, 30% of their time
writing the code they just thought about, and the remaining
50% of their time debugging the code they just wrote.2 What
all of this means is that the later embedded software
developers manage to start developing, the longer it will take
to complete the project.

Common challenges for any company creating embedded
systems are that competition is intense, market windows are
shrinking, and getting one’s product with high-quality
software and hardware to the market in a timely fashion is
critical to the company’s success, or even the company’s
continued existence in certain cases. Because of these
challenges, finding solutions that accelerate the software
development process is imperative.

Figure 1 . High-level visualization of an Intel Agilex 5 SoC
FPGA E-Series.

2

White Paper | Accelerating Embedded Software Development with the Intel® Simics® Simulator for Altera® FPGAs

The programmable logic fabric in Intel Agilex 5 SoC FPGAs
E-Series is based on the same architecture used in the high-
performance Intel Agilex 7 device family. These devices also
feature multiple input/output (I/O) capabilities that can
handle nearly any I/O task needed in equipment used in
embedded and edge applications, including high-speed
SerDes transceivers, high-speed general-purpose I/O (GPIO)
banks, high-voltage I/O (HVIO) banks, and hard memory
controllers for DDR4, LPDDR4, DDR5, LPDDR5, and QDR-
IV SRAM.

The upgraded HPS in Intel Agilex 5 SoC FPGAs E-Series
incorporates two 32/64-bit Arm Cortex*-A76 and two 32/64-
bit Arm Cortex-A55 processor cores. The Arm Cortex-A76
cores operate at clock speeds as high as 1.8 GHz, while the
Arm Cortex-A55 cores operate at clock speeds as fast as 1.5
GHz. In addition to L1, L2, and L3 caches, this upgraded HPS
also includes a floating-point unit (FPU) and a system
memory management unit (SMMU) that enables system-
wide hardware virtualization and supports advanced
operating system (OS) implementations such as Linux*.

Intel Agilex 5 SoC FPGAs E-Series also incorporate MIPI* IP
to support a wide range of video applications. Furthermore,
the hard Ethernet MACs in these devices implement Time
Sensitive Networking (TSN) endpoint functionality compliant
with the IEEE 802.1AS-2020, Qav, Qbv, Qbu, and IEEE
802.3br standards.

Virtual Platform Value Proposition
The key value proposition associated with virtual platforms
is that they allow software to be developed and tested on
virtual hardware before physical hardware becomes available.

The virtual platform, along with the Intel Simics simulator,
provides access to hardware internals for observation, fault
injection, early hardware/software integration, and software
debugging, allowing a smooth transition once the physical
hardware becomes available. This is made possible because
the Intel Simics simulation can run the same software binary
as the actual hardware. Using virtual platforms can also bring
immediate benefits during post-silicon activities as they can
facilitate software maintenance and continuous integration
processes without requiring large board farms.

Virtual Platforms, SoCs, and SoCs FPGAs
As previously noted, one aspect of embedded systems based
on ASIC SoCs is that these devices take a long time to be
created – several years, in some cases. The SoC development
process involves the creation of the device itself along with
the reference software stack that will be run on this device.
The challenge for the developers of these systems is to make
the entire development cycle as short as possible. Based on
this, the three main facets of an SoC development cycle are
hardware, software, and integration and test, where the latter
involves ensuring that the hardware and software work
together as planned and identifying, debugging, and resolving
any problems.

The hardware portion of the SoC involves architecting,
designing, and building the silicon chip itself. This is followed
by creating evaluation boards and development boards based
on this device. The software portion includes porting the
bootloader and the OS to the SoC and developing low-level
firmware, middleware, libraries, software development kits
(SDKs), application programming interfaces (APIs), and
application software.

In a traditional development cycle as seen in Figure 2a,
software development cannot commence until the first
silicon has been returned from the foundry and packaged
and verified. Similarly, integration and testing cannot
commence until after the software is well-progressed in its
development. All of this increases the duration of the
development cycle, thereby delaying the product’s
presentation to the market.3

Figure 2 . Traditional vs. virtual platform-based
development cycles.3

In software development, the term “shift-left” is used to
describe the concept of moving software development and
integration and test so both occur earlier in the development
cycle. The way this is achieved is to create a simulation model
of the SoC FPGA and to use this model as part of a virtual
platform, which allows software development to commence
in advance of the silicon becoming available. This is seen in
Figure 2b.3

Many people think of SoC FPGAs as being readily available
“off-the-shelf” parts. On this basis, they may question the
need for the use of virtual platforms with these components.
However, ease of access to these devices is true only after
they are in full production. Consider a new component, such
as the Intel Agilex 5 SoC FPGA E-Series, for example. These
devices won’t move into full production until 2024. Early
access to a simulation model and corresponding virtual
platform means that software developers can commence
work anywhere from nine to twelve months in advance of a
new FPGA becoming physically available. Even when a new
family of FPGAs becomes available, their corresponding
evaluation and development boards usually lag by one or two
more quarters. This reinforces the need to employ virtual
platforms with SoC FPGAs.

3

White Paper | Accelerating Embedded Software Development with the Intel® Simics® Simulator for Altera® FPGAs

Figure 3 . Continuous integration flow using virtual
platforms.4

Figure 4 . Using the Intel Simics simulator to create virtual platforms representing individual or multiple machines.

Virtual platforms can also be used in post-silicon activities
as part of the software continuous development and
integration process, supported by the automation capabilities
of the simulators. During this stage in the development cycle,
even after the hardware is available, the physical boards are
typically limited and must be shared among all members of
the development and validation teams, creating a bottleneck
in the process. This constraint doesn’t apply to the use of a
virtual platform since each team member can have their own
simulator installation on their own computer, thereby
providing an additional advantage for using the virtual
platform.

Virtual platforms are not expected to fully replace the need
for testing on physical hardware. Instead, virtual platforms
are used for the first level of continuous integration loops to
provide fast feedback to developers. Once testing proves
successful on the virtual platforms, it migrates to real
hardware. As illustrated in Figure 3, this strategy implies that
the virtual platform modeling needs to be precise enough to
support positive and negative testing. Otherwise, errors may
remain hidden.4 This strategy reduces the use of physical
boards, thereby diminishing the bottleneck caused when
this resource is shared.

Pre-CI Test

Developer writes
new code

Build system

CI Loop 1: Unit test

CI Loop 2: Subsystem-level test

CI Loop 3: System-level test (VP)

CI Loop 4: System-level test on hardware

Good to Deliver

Suitable for
testing on

virtual platform

A key aspect of simulation is that it often provides better
“visibility”, meaning the ability to observe the contents of
r e g i s te r s a n d ot h e r s i g n a l s , c o u p l e d w i t h b e t te r
“controllability”, meaning the ability to inject faults, into the
virtual platform than is available in the real world with a
physical system.

Virtual platforms of this type can be used by software
developers up to a year ahead of the silicon becoming
available. In turn, this results in a significantly reduced time
to market since the software development can be started
earlier. According to a study by the IBM Systems Science
Institute,5 the cost of fixing defects increases dramatically
as they move further along in the development lifecycle. As
well as speeding the availability of the software, one of the
main advantages of shift-left integration and testing is that
it allows bugs to be detected and addressed as early as
possible in the development process. Furthermore, testing
and debugging the software on the virtual platform greatly
eases the act of transitioning to the real system when it
eventually becomes available.

The Intel Simics Simulator
The Intel Simics simulator is a full-system, cycle-accurate
simulator that provides the technology to build fast, virtual
platforms that can run the same production binaries as real-
world physical hardware. The Intel Simics simulator is used
extensively for pre-silicon and post-silicon software
development, testing, and system integration at Intel and by
Intel’s customers and partners.

As illustrated in Figure 4a, a virtual platform may involve only
a single target machine. This simulated hardware could be a
standalone processing device such as a microprocessor,
application processor, microcontroller, ASIC SoC, or SoC
FPGA. Alternatively, the virtual platform may embrace a
circuit board carrying the processing device along with other
components such as memory devices (e.g., SRAM and DDR),
storage devices (e.g., SD card, NAND, and QSPI), Ethernet
ports, and communications devices (e.g., I2C, I3C, and USB),
and others.

User Application Code

SDKs, APIs, Libraries,
Middleware, Firmware...

Target OS

Target Machine
(Simulated Hardware)

User Application Code

SDKs, APIs, Libraries,
Middleware, Firmware...

Target OS

Target Machine
(Simulated Hardware)

User Application Code

SDKs, APIs, Libraries,
Middleware, Firmware...

Target OS

Target Machine
(Simulated Hardware)

Intel® Simics® Simulator Process Intel® Simics® Simulator Process

Host OS

Host Hardware

Host OS

Host Hardware

(a) Single virtual machine (b) Multiple virtual machines communicating directly

4

White Paper | Accelerating Embedded Software Development with the Intel® Simics® Simulator for Altera® FPGAs

In fact, a virtual platform may involve multiple target machines that communicate with each other via GPIOs and communications
interfaces such as I2C, I3C, and USB as illustrated in Figure 4b. Yet another possibility is for multiple target machines to
communicate with each other and with the host operating system by means of a simulated network as illustrated in Figure 5.
The Intel Simics simulator supports the DHCP, DNS, FTP, and TFTP network protocols, and its service node allows it to
connect to real networks using forwarding ports.

The Intel Simics simulator is provided with the Simics command line interface (CLI) which is a text console interface that allows
the user to control the simulation flow and interact with the simulator through supported commands. Alternatively, the Intel
Simics simulator also supports the Ashling RiscFree* Integrated Development Environment (IDE) that facilitates the debug
task on the target software from a graphical user interface (GUI).

Once the integration of the software and hardware has been verified on the virtual platform, the same embedded software
binaries – including bootloaders, the OS, and user applications – can be loaded onto the physical platform when available, as
seen in Figure 6.

The Intel Simics simulator supports automation tasks through scripting. This also provides some powerful debug capabilities
that facilitate the debug of software problems since this allows users to see the system as an open box.

Figure 5 . Using the Intel Simics simulator to create a virtual platform representing multiple
machines connected via a simulated network.

Figure 6 . The same software binary files can be run on both virtual and physical platforms.

User Application Code

SDKs, APIs, Libraries,
Middleware, Firmware...

Target OS

Target Machine
(Simulated Hardware)

User Application Code

SDKs, APIs, Libraries,
Middleware, Firmware...

Target OS

Target Machine
(Simulated Hardware)

User Application Code

SDKs, APIs, Libraries,
Middleware, Firmware...

Target OS

Target Machine
(Simulated Hardware)

Intel® Simics® Simulator ProcessIntel® Simics® Simulator Process

Host OS

Host Hardware

Simulated Network

“Real” Hardware

1. Same embedded
software binaries.

2. Same functionality.

3. Same result from
instruction execution.

Virtual Platform (Target System) in Host PC

Bootloaders OS

Applications

5

White Paper | Accelerating Embedded Software Development with the Intel® Simics® Simulator for Altera® FPGAs

The Intel Simics Simulator for Intel FPGAs
The Intel Simics simulator for Intel FPGAs supports running on a Linux system host PC along with the Ashling RiscFree IDE.
It is shipped today with the Intel Agilex 5 SoC FPGA E-Series Universal Virtual Platform, which instantiates the Intel Agilex 5
SoC FPGA E-Series device Simics model that can run the Linux OS and the Zephyr* RTOS, along with the Arm Trusted
Firmware bootloader. Intel plans on working with its ecosystem operating system vendor partners to provide additional OS
offerings that can be simulated using the Intel Simics simulator in the future.

The virtual platform includes a wrapper called target script, in which the system component is instantiated. In this script, the
values of user-configurable parameters are defined. Also, any initial simulation setup and any automation task is performed
here.

At the time of this writing, the Intel Agilex 5 SoC FPGA E-Series Universal Virtual Platform includes the following components
as illustrated in Figure 7:

• HPS: A model of the Intel Agilex 5 SoC FPGA E-Series HPS. This component also models all the components in
 subsystems that integrate the HPS.

• qsys_top: This is related to the view of the design that is being modeled and corresponds to the view seen from the
 Intel Platform Designer under the GHRD. Under this component are instantiated other components such as
 the HPS (if available), FPGA fabric design, other individual IPs, etc.

• FPGA: Top-level view of the hardware design (GHRD) that is being modled from the FPGA device perspective
 corresponding to the Intel Quartus Prime project. This instantiates the qsys_top component.

• Board: A model of a board that contains an Intel Agilex 5 SoC FPGA E-Series. This model integrates the FPGA
 model with board components such as flash devices, Ethernet PHY, and connectors.

• System: A model that represents the complete system. A system model can contain one or more board models.

Figure 7 . Simics virtual platform for Intel Agilex 5 SoC FPGAs E-Series.

Host Hardware

Host OS

Intel® Simics® Simulator Process

System

Board

FPGA

qsys_top

FPGA
Fabric HPS

Dual Arm Cortex*-A76 cores
Dual Arm Cortex-A55 cores
L1, L2, L3 caches
On-chip RAM (OCRAM)

USB disks

I2C and I3C devices

Ethernet Port and PHY

Memory (SD Card, NAND, QSPI)
Loopback (GPIOs to GPIOs)

GPIOs

6

White Paper | Accelerating Embedded Software Development with the Intel® Simics® Simulator for Altera® FPGAs

A more detailed block diagram depicting the architecture of the Intel Agilex 5 SoC FPGA E-Series Universal Virtual Platform
is shown in figure 8.

Figure 8 . Intel Simics simulator virtual platform for Intel Agilex 5 SoC FPGAs E-Series.

Figure 9 . Intel Simics simulation using RiscFree IDE

SPI
Flash

USB HS
Disk

USB HS
Disk

USB SS
Disk

Fabric example design
(On-Chip Memory)

Fabric example design
(On-Chip Memory)

Peripheral Sub-system FPGA Fabric

Target Script

System

Board

FPGA

qsys_top
(soc_inst)

HPS Sub-system
(hps_subsys)H2F H2FLW

USB OTG

USB 3.1
Gen 1

SPI H2F Bridge

I2C

I3C
GPIO 0
GPIO 1

XG MAC/TSN UART

Simics
Serial

Console

MPU

Power
mgr

OCRAM

SD/eMMC
controller

NAND
controller

HPS (agilex_hps)

QSPI
ctrl

Combo Phy

Devices
I3C

EEPROMs
I2C

EEPROMs
I2C

0 1
loopback

Marvell
ETH Phy

Ethernet
Port

Service node
10.10.0.0 Eth switch

Network

Connect with host PC

Parameters RunTime
CLI

SD Card
memory

NAND
memory

QSPI
memory

SDM EMIF SDRAM

A Simulation Example
Figure 9 shows an example of an Intel Simics simulation with the Intel Agilex 5 SoC FPGA E-Series Universal Virtual Platform
using the Ashling RiscFree IDE. In this simulation, the virtual platform is being configured to boot from an SD card using
binaries that exercise the U-Boot SPL -> Arm Trusted Firmware -> U-Boot -> Linux flow. When the simulation reaches the
Linux prompt, a user mode application written in the C programming language is executed.

7

White Paper | Accelerating Embedded Software Development with the Intel® Simics® Simulator for Altera® FPGAs

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service activation. Performance varies depending on system
configuration. Check with your system manufacturer or retailer or learn more at www.intel.com.

Intel reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information,
product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any
published information and before placing orders for products or services.

No product or component can be absolutely secure.

Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. *Other names and brands may be claimed as the property of others.

WP-01329-1.0

The RiscFree IDE can be used to debug the application by
loading the corresponding symbols file. Figure 9 shows some
of the windows in the debug view of the RiscFree IDE. Here,
it can be observed that the simulation has hit a breakpoint
showing the line in the source code at which it stopped. The
IDE also shows the stack frame along with a variable window
that allows the user to observe the current values of the
variables used in the application. The RiscFree IDE allows
the simulation flow to be controlled through standard step-in/
step-out/step-over/run buttons along with access to the
Simics CLI to enter commands to control the simulation and
support the debug process.

Figure 10 shows the output of the serial console associated
with the same simulation. This reflects the final portion of
the Linux boot process in which we are logging in as root,
after which we bring the application to the file system using
the tftp command and then execute the application.

Figure 10 . Serial console from the Intel Simics simulation

At the time of this screen capture, the application has
commenced its execution and displayed an initial message.
This illustration demonstrates that the output observed in
the serial console is the same as the one we would see with
real hardware if this were already available.

Conclusion
Virtual platforms enable the development and testing of
ASIC SoC and SoC FPGA software before silicon exists and
before testing on physical hardware.

The use of virtual platforms for ASIC SoC designs is common
practice at large engineering companies such as Intel. With
the release of the Intel Simics simulator for Intel FPGAs,
developers targeting Intel Agilex 5 SoC FPGAs E-series can
leverage this industrial strength technology to begin
developing and testing their software up to a year before
hardware is available, thereby enabling a “shift left” in the
development process as compared to a strict waterfall
development model.

Learn More
• Simics Simulator for Intel FPGA User Guide

• Simics Simulator for Intel FPGA Intel Agilex 5 E-Series
Virtual Platform User Guide

• Linux GSRD Simics Virtual Platform for Intel Agilex 5 SoC
FPGAs E-Series Rocketboards page

• Zephyr GSRD for Intel Agilex 5 SoC FPGAs E-Series
Simics Virtual Platform Rocketboards page

References
1 Software and System Development using Virtual

Platforms. Daniel Aarno, Jocob Engblom

² https://bit.ly/3JXNX3a

³ D. Aarno and J. Engblom, Sof tware and system
development using virtual platforms: Full-system
simulation with Wind River Simics, Waltham, MA: Elsevier,
Morgan-Kaufmann, 2015

4 Kalen Brunham and J. Engblom, Challenges and Solutions
for Creating Virtual Platforms of FPGA and SASIC
Designs, Design and Verification Conference and
Exhibition Europe, Munich, Germany 2022

5 IBM Systems Science Institute (2004). The impact of
defects on productivity. IBM.

8

https://cdrdv2.intel.com/v1/dl/getContent/771753
https://cdrdv2.intel.com/v1/dl/getContent/772671
https://cdrdv2.intel.com/v1/dl/getContent/772671
https://www.rocketboards.org/foswiki/Documentation/Agilex5SoCSimicsVirtualPlatformsReferenceGuide
https://www.rocketboards.org/foswiki/Documentation/Agilex5SoCSimicsVirtualPlatformsReferenceGuide
https://www.rocketboards.org/foswiki/Documentation/Agilex5SoCSimicsVirtualPlatformsZephyr
https://www.rocketboards.org/foswiki/Documentation/Agilex5SoCSimicsVirtualPlatformsZephyr

