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Executive Summary
Computationally intensive workloads – for example, those that employ artificial 
intelligence (AI) and machine learning (ML) algorithms – are increasingly migrating 
from data centers to embedded systems at the network’s edge. To satisfy the 
demands of these workloads, the developers of embedded and edge-based systems 
often employ SoC FPGAs resulting in a sophisticated mix of hardware and software.

An Intel® SoC FPGA includes a hard processor subsystem and hard peripheral 
functions such as transceivers. Meanwhile, accelerators and other custom functions 
can be implemented in the device’s programmable fabric. The new Intel Agilex® 5 
SoC FPGA E-Series deliver the excellent performance per watt characteristics 
needed to meet the demanding requirements of today’s embedded and edge 
applications.

In a traditional design flow for an embedded system, the main portion of the software 
development cannot commence until the hardware is available in the form of 
integrated circuits (ICs), evaluation boards, development boards, and ultimately, 
the customer’s circuit boards. Due to the market pressure to release a final product 
faster, developers need to start software development as early as possible, even 
before the hardware in silicon and boards becomes available.

The solution is to create a virtual representation of the hardware called a virtual 
platform or a digital twin. The virtual platform mirrors its physical counterpart with 
such fidelity that both can run the same compiled binary software files providing 
the same results in the software’s execution. Through a program called a simulator, 
the software can be developed, debugged, and verified on the virtual platform up 
to a year in advance of the physical hardware becoming available. 

Intel uses the Intel Simics® simulator as its virtual platform simulator. The Intel 
Simics simulator has many valuable features that enable the creation of virtual 
platforms involving multiple processors, network connectivity, serial consoles, and 
others. The Intel Simics simulator can also be used with virtual platforms featuring 
models of Intel Agilex 5 SoC FPGAs E-Series to accelerate the embedded software 
development for systems that use these devices, providing developers with a vehicle 
to exercise their software similarly to how they would do so with real hardware.

Table of Contents
Executive Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1

Industry Challenges for Embedded 
Systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1

Intel Agilex 5 SoC FPGA E-Series  .  .  .2

Virtual Platform Value 
Proposition   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .3

Virtual Platforms, SoCs, and SoC 
FPGAs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .3

The Intel Simics Simulator  .  .  .  .  .  .  .  .  .  .  .4

The Intel Simics Simulator for Intel 
FPGAs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .6

Intel Simics Simulation Example   .  .  .  . 7

Conclusion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .8

Learn More  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .8

References   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .8

Authors

Kalen Brunham
Principal Engineer Intel

Rolando Santoyo Rincon
Factory Embedded Applications 

Engineer

Findlay Shearer
Product Marketing Manager 

Intel  Corp.

Creating virtual platforms for Agilex™ 5 SoC FPGA E-Series is now possible using the 
powerful and proven Intel Simics simulator.

Industry Challenges for Embedded Systems
In the not-so-distant past, one definition of an embedded system was “something 
you didn’t even know existed until it stopped working.” Although this may seem a 
little flippant, it wasn’t far from the truth because many embedded systems in the 
past were implemented as standalone devices with little connectivity to the outside 
world. These embedded devices were often based on simple 8-bit microcontrollers 
performing relatively low-level monitoring and control activities on a local device 
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Intel Agilex 5 SoC FPGAs E-Series 
ASIC SoCs of fer the lowest power and the highest 
performance. However, they are extremely expensive and 
time - consuming to develop. Also, any algor ithms 
implemented in the form of hardware accelerators are 
effectively “frozen in silicon.” This is problematic in 
applications and markets where standards and protocols are 
constantly evolving, which is the case with most of today’s 
high-end applications and markets.

B y  c o m p a r i s o n ,  a l g o r i t h m s  i m p l e m e n t e d  i n  t h e 
programmable fabric in FPGAs can be quickly and easily 
modified to address any changes in standards and protocols. 
Functions implemented in the programmable fabric can 
execute tasks in a massively parallel fashion, thereby 
providing high bandwidth while consuming relatively low 
power. These capabilities are complemented by the hard 
processor subsystems in SoC FPGAs, which – amongst other 
tasks – can be used to provide command and control 
functionality for the hardware accelerators implemented in 
the programmable fabric.

In 2019, Intel introduced Intel Agilex 7 FPGAs and SoC FPGAs 
to ser vice the ex treme capacit y and per formance 
requirements demanded by the network core and data 
centers. Following the tremendous market acceptance of 
the Intel Agilex 7 device families, Intel continues to innovate 
by bringing the high-performance capabilities of Intel Agilex 
7 devices into new mid-range Intel Agilex 5 FPGAs and SoC 
FPGAs. In addition to all the functions provided by Intel Agilex 
5 FPGAs, their SoC FPGA counterparts also include a hard 
processor subsystem (HPS).

All members of the new Intel Agilex 5 device family – 
including the performance-optimized D-Series and the 
power-optimized E-Series—are manufactured on Intel 7 
technology, have a monolithic construction, and come in 
smaller sizes, both in terms of numbers of logic elements 
(LEs) and physical packages, which allows them to deliver 
the excellent performance per watt characteristics needed 
to meet embedded and edge application requirements. For 
these discussions, we will focus on the power-optimized Intel 
Agilex 5 SoC FPGA E-Series.

or system. For example, a small, standalone embedded 
system might spend its days monitoring the temperature of 
a machine like a pump, shutting the device down if the 
temperature exceeded a specified level.

Things have changed dramatically over the years. Today, 
almost any electronic system that isn’t either a desktop 
computer or a server may be considered an embedded 
system or include one or more embedded systems. Also, 
such systems are almost invariably connected – to each other 
or to a local fog or remote cloud – by wired means, such as 
Ethernet, or wireless means, such as Bluetooth and Wi-Fi.

Computationally intensive workloads—for example, those 
that employ AI and ML algorithms – are increasingly migrating 
from data centers to embedded systems at the network’s 
edge, where localized concurrent processing and analysis 
are needed to meet demanding system-level latency 
requirements. At the same time, power is more constrained 
in many embedded and edge applications, meaning the 
implementation technology must be power-efficient while 
providing the required performance attributes.

To satisfy the demands of these computationally intensive 
workloads, embedded and edge-based systems often employ 
custom-designed application-specific integrated circuit 
(ASIC) SoCs or SoC FPGAs. An ASIC SoC includes one or 
more processors, on-chip memory, hardware accelerators, 
and various peripheral, communications, and interface 
functions. An SoC FPGA includes a hard processor 
subsystem and other hardened functions such as transceivers 
and external memory interfaces. However, hardware 
accelerators and other custom functions can be implemented 
in the device’s programmable fabric, providing a more flexible 
solution than an ASIC.

The software content of embedded systems has increased 
exponentially over the years. As a result, on average, there 
are now five software developers for every hardware design 
engineer on an embedded project.1 Even when all aspects of 
hardware development are considered – including 
architectural explor ation , logic al design , physic al 
implementation, verification, and more – engineering is 
currently dedicating more than 50% of the total development 
effort to software.1

A large part of this software development effort is devoted 
to debugging tasks. On average, embedded software 
developers spend 20% of their time architecting and 
designing the code they are going to write, 30% of their time 
writing the code they just thought about, and the remaining 
50% of their time debugging the code they just wrote.2 What 
all of this means is that the later embedded software 
developers manage to start developing, the longer it will take 
to complete the project.

Common challenges for any company creating embedded 
systems are that competition is intense, market windows are 
shrinking, and getting one’s product with high-quality 
software and hardware to the market in a timely fashion is 
critical to the company’s success, or even the company’s 
continued existence in certain cases. Because of these 
challenges, finding solutions that accelerate the software 
development process is imperative.

Figure 1 .  High-level visualization of an Intel Agilex 5 SoC 
FPGA E-Series.
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The programmable logic fabric in Intel Agilex 5  SoC FPGAs 
E-Series is based on the same architecture used in the high-
performance Intel Agilex 7 device family. These devices also 
feature multiple input/output (I/O) capabilities that can 
handle nearly any I/O task needed in equipment used in 
embedded and edge applications, including high-speed 
SerDes transceivers, high-speed general-purpose I/O (GPIO) 
banks, high-voltage I/O (HVIO) banks, and hard memory 
controllers for DDR4, LPDDR4, DDR5, LPDDR5, and QDR-
IV SRAM.

The upgraded HPS in Intel Agilex 5 SoC FPGAs E-Series 
incorporates two 32/64-bit Arm Cortex*-A76 and two 32/64-
bit Arm Cortex-A55 processor cores. The Arm Cortex-A76 
cores operate at clock speeds as high as 1.8 GHz, while the 
Arm Cortex-A55 cores operate at clock speeds as fast as 1.5 
GHz. In addition to L1, L2, and L3 caches, this upgraded HPS 
also includes a floating-point unit (FPU) and a system 
memory management unit (SMMU) that enables system-
wide hardware virtualization and supports advanced 
operating system (OS) implementations such as Linux*.

Intel Agilex 5 SoC FPGAs E-Series also incorporate MIPI* IP 
to support a wide range of video applications. Furthermore, 
the hard Ethernet MACs in these devices implement Time 
Sensitive Networking (TSN) endpoint functionality compliant 
with the IEEE 802.1AS-2020, Qav, Qbv, Qbu, and IEEE 
802.3br standards.

Virtual Platform Value Proposition
The key value proposition associated with virtual platforms 
is that they allow software to be developed and tested on 
virtual hardware before physical hardware becomes available.

The virtual platform, along with the Intel Simics simulator, 
provides access to hardware internals for observation, fault 
injection, early hardware/software integration, and software 
debugging, allowing a smooth transition once the physical 
hardware becomes available. This is made possible because 
the Intel Simics simulation can run the same software binary 
as the actual hardware. Using virtual platforms can also bring 
immediate benefits during post-silicon activities as they can 
facilitate software maintenance and continuous integration 
processes without requiring large board farms.

Virtual Platforms, SoCs, and SoCs FPGAs
As previously noted, one aspect of embedded systems based 
on ASIC SoCs is that these devices take a long time to be 
created – several years, in some cases. The SoC development 
process involves the creation of the device itself along with 
the reference software stack that will be run on this device. 
The challenge for the developers of these systems is to make 
the entire development cycle as short as possible. Based on 
this, the three main facets of an SoC development cycle are 
hardware, software, and integration and test, where the latter 
involves ensuring that the hardware and software work 
together as planned and identifying, debugging, and resolving 
any problems.

The hardware portion of the SoC involves architecting, 
designing, and building the silicon chip itself. This is followed 
by creating evaluation boards and development boards based 
on this device. The software portion includes porting the 
bootloader and the OS to the SoC and developing low-level 
firmware, middleware, libraries, software development kits 
(SDKs), application programming interfaces (APIs), and 
application software.

In a traditional development cycle as seen in Figure 2a, 
software development cannot commence until the first 
silicon has been returned from the foundry and packaged 
and verified. Similarly, integration and testing cannot 
commence until after the software is well-progressed in its 
development. All of this increases the duration of the 
development cycle, thereby delaying the product’s 
presentation to the market.3

Figure 2 .  Traditional vs. virtual platform-based 
development cycles.3

In software development, the term “shift-left” is used to 
describe the concept of moving software development and 
integration and test so both occur earlier in the development 
cycle. The way this is achieved is to create a simulation model 
of the SoC FPGA and to use this model as part of a virtual 
platform, which allows software development to commence 
in advance of the silicon becoming available. This is seen in 
Figure 2b.3

Many people think of SoC FPGAs as being readily available 
“off-the-shelf” parts. On this basis, they may question the 
need for the use of virtual platforms with these components. 
However, ease of access to these devices is true only after 
they are in full production. Consider a new component, such 
as the Intel Agilex 5 SoC FPGA E-Series, for example. These 
devices won’t move into full production until 2024. Early 
access to a simulation model and corresponding virtual 
platform means that software developers can commence 
work anywhere from nine to twelve months in advance of a 
new FPGA becoming physically available. Even when a new 
family of FPGAs becomes available, their corresponding 
evaluation and development boards usually lag by one or two 
more quarters. This reinforces the need to employ virtual 
platforms with SoC FPGAs.

3



White Paper   |   Accelerating Embedded Software Development with the Intel® Simics® Simulator for Altera® FPGAs

Figure 3 .  Continuous integration flow using virtual 
platforms.4

Figure 4 .  Using the Intel Simics simulator to create virtual platforms representing individual or multiple machines.

Virtual platforms can also be used in post-silicon activities 
as part of the software continuous development and 
integration process, supported by the automation capabilities 
of the simulators. During this stage in the development cycle, 
even after the hardware is available, the physical boards are 
typically limited and must be shared among all members of 
the development and validation teams, creating a bottleneck 
in the process. This constraint doesn’t apply to the use of a 
virtual platform since each team member can have their own 
simulator installation on their own computer, thereby 
providing an additional advantage for using the virtual 
platform.

Virtual platforms are not expected to fully replace the need 
for testing on physical hardware. Instead, virtual platforms 
are used for the first level of continuous integration loops to 
provide fast feedback to developers. Once testing proves 
successful on the virtual platforms, it migrates to real 
hardware. As illustrated in Figure 3, this strategy implies that 
the virtual platform modeling needs to be precise enough to 
support positive and negative testing. Otherwise, errors may 
remain hidden.4 This strategy reduces the use of physical 
boards, thereby diminishing the bottleneck caused when 
this resource is shared.
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A key aspect of simulation is that it often provides better 
“visibility”, meaning the ability to observe the contents of 
r e g i s te r s a n d ot h e r s i g n a l s ,  c o u p l e d w i t h b e t te r 
“controllability”, meaning the ability to inject faults, into the 
virtual platform than is available in the real world with a 
physical system.

Virtual platforms of this type can be used by software 
developers up to a year ahead of the silicon becoming 
available. In turn, this results in a significantly reduced time 
to market since the software development can be started 
earlier. According to a study by the IBM Systems Science 
Institute,5 the cost of fixing defects increases dramatically 
as they move further along in the development lifecycle. As 
well as speeding the availability of the software, one of the 
main advantages of shift-left integration and testing is that 
it allows bugs to be detected and addressed as early as 
possible in the development process. Furthermore, testing 
and debugging the software on the virtual platform greatly 
eases the act of transitioning to the real system when it 
eventually becomes available. 

The Intel Simics Simulator
The Intel Simics simulator is a full-system, cycle-accurate 
simulator that provides the technology to build fast, virtual 
platforms that can run the same production binaries as real-
world physical hardware. The Intel Simics simulator is used 
extensively for pre-silicon and post-silicon software 
development, testing, and system integration at Intel and by 
Intel’s customers and partners.

As illustrated in Figure 4a, a virtual platform may involve only 
a single target machine. This simulated hardware could be a 
standalone processing device such as a microprocessor, 
application processor, microcontroller, ASIC SoC, or SoC 
FPGA. Alternatively, the virtual platform may embrace a 
circuit board carrying the processing device along with other 
components such as memory devices (e.g., SRAM and DDR), 
storage devices (e.g., SD card, NAND, and QSPI), Ethernet 
ports, and communications devices (e.g., I2C, I3C, and USB), 
and others.
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In fact, a virtual platform may involve multiple target machines that communicate with each other via GPIOs and communications 
interfaces such as I2C, I3C, and USB as illustrated in Figure 4b. Yet another possibility is for multiple target machines to 
communicate with each other and with the host operating system by means of a simulated network as illustrated in Figure 5. 
The Intel Simics simulator supports the DHCP, DNS, FTP, and TFTP network protocols, and its service node allows it to 
connect to real networks using forwarding ports.

The Intel Simics simulator is provided with the Simics command line interface (CLI) which is a text console interface that allows 
the user to control the simulation flow and interact with the simulator through supported commands. Alternatively, the Intel 
Simics simulator also supports the Ashling RiscFree* Integrated Development Environment (IDE) that facilitates the debug 
task on the target software from a graphical user interface (GUI).

Once the integration of the software and hardware has been verified on the virtual platform, the same embedded software 
binaries – including bootloaders, the OS, and user applications – can be loaded onto the physical platform when available, as 
seen in Figure 6.

The Intel Simics simulator supports automation tasks through scripting. This also provides some powerful debug capabilities 
that facilitate the debug of software problems since this allows users to see the system as an open box.   

Figure 5 .  Using the Intel Simics simulator to create a virtual platform representing multiple 
machines connected via a simulated network.

Figure 6 .  The same software binary files can be run on both virtual and physical platforms.
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The Intel Simics Simulator for Intel FPGAs
The Intel Simics simulator for Intel FPGAs supports running on a Linux system host PC along with the Ashling RiscFree IDE. 
It is shipped today with the Intel Agilex 5 SoC FPGA E-Series Universal Virtual Platform, which instantiates the Intel Agilex 5 
SoC FPGA E-Series device Simics model that can run the Linux OS and the Zephyr* RTOS, along with the Arm Trusted 
Firmware bootloader. Intel plans on working with its ecosystem operating system vendor partners to provide additional OS 
offerings that can be simulated using the Intel Simics simulator in the future.

The virtual platform includes a wrapper called target script, in which the system component is instantiated. In this script, the 
values of user-configurable parameters are defined. Also, any initial simulation setup and any automation task is performed 
here.

At the time of this writing, the Intel Agilex 5 SoC FPGA E-Series Universal Virtual Platform includes the following components 
as illustrated in Figure 7:

• HPS:  A model of the Intel Agilex 5 SoC FPGA E-Series HPS. This component also models all the components in  
 subsystems that integrate the HPS.

• qsys_top:  This is related to the view of the design that is being modeled and corresponds to the view seen from the   
 Intel Platform Designer under the GHRD. Under this component are instantiated other components such as  
 the HPS (if available), FPGA fabric design, other individual IPs, etc.

• FPGA:  Top-level view of the hardware design (GHRD) that is being modled from the FPGA device perspective   
 corresponding to the Intel Quartus Prime project. This instantiates the qsys_top component.

• Board:  A model of a board that contains an Intel Agilex 5 SoC FPGA E-Series. This model integrates the FPGA   
 model with board components such as flash devices, Ethernet PHY, and connectors.

• System:  A model that represents the complete system. A system model can contain one or more board models.

Figure 7 .  Simics virtual platform for Intel Agilex 5 SoC FPGAs E-Series.
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A more detailed block diagram depicting the architecture of the Intel Agilex 5 SoC FPGA E-Series Universal Virtual Platform 
is shown in figure 8.

Figure 8 .  Intel Simics simulator virtual platform for Intel Agilex 5 SoC FPGAs E-Series.

Figure 9 .  Intel Simics simulation using RiscFree IDE
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A Simulation Example
Figure 9 shows an example of an Intel Simics simulation with the Intel Agilex 5 SoC FPGA E-Series Universal Virtual Platform 
using the Ashling RiscFree IDE. In this simulation, the virtual platform is being configured to boot from an SD card using 
binaries that exercise the U-Boot SPL -> Arm Trusted Firmware -> U-Boot -> Linux flow. When the simulation reaches the 
Linux prompt, a user mode application written in the C programming language is executed. 
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The RiscFree IDE can be used to debug the application by 
loading the corresponding symbols file. Figure 9 shows some 
of the windows in the debug view of the RiscFree IDE. Here, 
it can be observed that the simulation has hit a breakpoint 
showing the line in the source code at which it stopped. The 
IDE also shows the stack frame along with a variable window 
that allows the user to observe the current values of the 
variables used in the application. The RiscFree IDE allows 
the simulation flow to be controlled through standard step-in/
step-out/step-over/run buttons along with access to the 
Simics CLI to enter commands to control the simulation and 
support the debug process.

Figure 10 shows the output of the serial console associated 
with the same simulation. This reflects the final portion of 
the Linux boot process in which we are logging in as root, 
after which we bring the application to the file system using 
the tftp command and then execute the application.

Figure 10 .  Serial console from the Intel Simics simulation 

At the time of this screen capture, the application has 
commenced its execution and displayed an initial message. 
This illustration demonstrates that the output observed in 
the serial console is the same as the one we would see with 
real hardware if this were already available.

Conclusion
Virtual platforms enable the development and testing of 
ASIC SoC and SoC FPGA software before silicon exists and 
before testing on physical hardware.

The use of virtual platforms for ASIC SoC designs is common 
practice at large engineering companies such as Intel. With 
the release of the Intel Simics simulator for Intel FPGAs, 
developers targeting Intel Agilex 5 SoC FPGAs E-series can 
leverage this industrial strength technology to begin 
developing and testing their software up to a year before 
hardware is available, thereby enabling a “shift left” in the 
development process as compared to a strict waterfall 
development model.

Learn More
• Simics Simulator for Intel FPGA User Guide

• Simics Simulator for Intel FPGA Intel Agilex 5 E-Series 
Virtual Platform User Guide

• Linux GSRD Simics Virtual Platform for Intel Agilex 5 SoC 
FPGAs E-Series Rocketboards page

• Zephyr GSRD for Intel Agilex 5 SoC FPGAs E-Series 
Simics Virtual Platform Rocketboards page
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