

Copyright © 2023 Intel Corporation. All rights reserved.

Linux* Stacks for Intel® Trust Domain

Extension 1.5

v0.2

October 2023

Document Number: 355388-001

2 Document Number: 355388-001

Contents

1 Introduction ... 8

1.1 Overview .. 8

1.2 Terminology .. 12

1.3 Using this White Paper .. 13

1.4 Document Formatting ... 14

2 Hardware and BIOS ... 15

2.1 Hardware .. 15

2.2 BIOS ... 16

3 Build and Installation .. 19

3.1 Components .. 19

3.2 Building Stacks ... 21

3.2.1 Build Packages .. 22

3.2.2 Create Guest Image...23

3.3 Install IaaS Host ... 26

3.3.1 Install Packages Manually .. 27

3.3.2 Deploy via Ansible .. 29

3.3.3 Reboot with the Intel TDX kernel .. 30

3.4 Manage the TD ... 31

3.4.1 Overview ... 31

3.4.2 Boot TD Guest .. 35

3.4.3 Use VirtIO Device .. 40

3.5 Validation .. 41

3.5.1 Overview ... 41

3.5.2 PyCloudStack ... 43

3.5.3 Intel TDX Tests ... 47

4 Measurement & Attestation .. 52

4.1 TEE, TCB, Quote .. 52

3 Document Number: 355388-001

4.2 TDX Measurement ... 53

4.2.1 TD Report ... 53

4.2.2 MRTD and RTMR .. 54

4.2.3 Pre-Boot Measurement ... 54

4.2.4 Pytdxattest Tool ...55

4.2.5 Linux Runtime Measurement ...56

4.3 Attestation .. 57

4.3.1 Overview .. 57

4.3.2 Set Up DCAP Repository on Host ...59

4.3.3 Set Up PCCS on Host .. 60

4.3.4 Set Up Quote Generation Service on Host ... 62

4.3.5 Generate Quote in TD .. 64

4.3.6 Verify Quote on Host .. 67

4.3.7 Setup containerized PCCS and QGS on RHEL 9 host69

5 TD Migration ... 71

5.1 Overview ... 71

5.2 Prerequisite .. 72

5.3 TD migration guide .. 73

5.3.1 TD migration using QEMU .. 73

5.3.2 TD migration using Libvirt ... 79

5.4 Reference ... 80

6 TD Preserving .. 82

6.1 Prepare new TDX module .. 82

6.2 Trigger TD Preserving ... 82

7 vTPM ... 83

7.1 Installation .. 83

7.2 Launch TD with vTPM enabled .. 83

7.3 Verify vTPM features ... 84

7.4 Keylime Attestation .. 85

4 Document Number: 355388-001

7.4.1 Keylime Installation ... 85

7.4.2 Configuration .. 86

7.4.3 Start Keylime Components .. 87

8 Full Disk Encryption ... 88

8.1 Workflow ... 88

8.2 Prepare Encryption Image ... 90

9 Develop and Debug ... 91

9.1 Override the Intel TDX module .. 91

9.2 Off-TD Debug via GDB from the Host .. 93

9.3 Check Memory Encryption .. 94

9.4 Troubleshooting ...96

9.4.1 Failed to boot non-TDX host kernel with TDX enabled in BIOS, hit

machine check xxxxxxxx00061136 ...96

10 Virtual Machine Administrator ... 97

10.1 Run AI Workload with Intel AMX .. 97

11 Disclaimer ...99

12 References .. 101

5 Document Number: 355388-001

Figures

FIGURE 1: INTEL® TDX ARCHITECTURE ... 8
FIGURE 2: INTEL TDX COMPONENT INTERFACES .. 9
FIGURE 3: LINUX STACK FOR INTEL TDX 1.5 .. 10
FIGURE 4: OVERALL WORKFLOW .. 14
FIGURE 5: 8+0 DIMM POPULATION FOR INTEL TDX .. 15
FIGURE 6: 16+0 DIMM POPULATION FOR INTEL TDX .. 16
FIGURE 7: BIOS SETTINGS FOR INTEL TDX 1.5 ON SPR ... 16
FIGURE 8: BIOS SETTINGS FOR INTEL TDX 1.5 ON EMR .. 17
FIGURE 9: LINUX STACK FOR INTEL TDX 1.5 OVERVIEW ... 19
FIGURE 10: END-TO-END HOST AND GUEST STACK FOR LINUX AND INTEL TDX .. 21
FIGURE 11: BUILD PROCESS FOR INTEL TDX PACKAGES ... 22
FIGURE 13: CREATE INTEL TDX UBUNTU GUEST IMAGE... 24
FIGURE 12: CREATE INTEL TDX RHEL GUEST IMAGE.. 25
FIGURE 14: DEPLOY TDX HOST STACK VIA ANSIBLE ... 29
FIGURE 15: TD GUEST BOOT PROCESS ... 31
FIGURE 16: DETAILED BOOT FLOW FOR DIFFERENT TD BOOT ... 33
FIGURE 17: ENABLE SECURE BOOT .. 38
FIGURE 18: TDX GUEST ATTACK SURFACE .. 40
FIGURE 19: INTEL TDX E2E FULL STACK VALIDATION.. 42
FIGURE 20: PYCLOUDSTACK FRAMEWORK .. 43
FIGURE 21: VALIDATION SCENARIOS FOR VMM AND LIBVIRT ... 44
FIGURE 22: ABSTRACT COMMON OPERATIONS FOR CLOUD STACK ... 44
FIGURE 23: MEASUREMENT AND ATTESTATION FOR TEE ... 52
FIGURE 24: INTEL TDX MEASUREMENT .. 53
FIGURE 25: TD MEASUREMENT PROCESS ... 55
FIGURE 26: ENABLE IMA EXTEND HASH TO RTMR ... 56
FIGURE 27: INTEL TDX ATTESTATION FLOW .. 59
FIGURE 28: SETUP PCCS ... 61
FIGURE 29: SET UP DCAP SOFTWARE ON THE TDX HOST ... 63
FIGURE 30: QUOTE GENERATION .. 65
FIGURE 31: APPROACHES TO GENERATE INTEL TDX QUOTE ... 66
FIGURE 32: VERIFY QUOTE... 68
FIGURE 33: TD MIGRATION .. 71
FIGURE 34: TD MIGRATION COMMUNICATION FLOW ... 72
FIGURE 35: TD MIGRATION WORKFLOW ... 73
FIGURE 36: FULL DISK ENCRYPTION IN TDX GUEST ... 88
FIGURE 37: BIOS SEARCH TDX MODULE FROM ESP .. 91
FIGURE 38: OFF-TD DEBUG VIA GDB .. 93

6 Document Number: 355388-001

TABLES

TABLE 1: INTEL TDX BIOS CONFIGURATIONS .. 17
TABLE 2: LINUX STACK FOR INTEL TDX COMPONENTS ... 19
TABLE 3: BOOT TYPES FOR TD GUEST .. 32
TABLE 4: START-QEMU.SH PARAMETERS .. 35
TABLE 5: LINUX STACK FOR INTEL TDX VALIDATIONS... 42
TABLE 6: TDX STACK TESTS .. 47
TABLE 7: RTMR DEFINITIONS ... 54
TABLE 8: PRE-MIGRATION RESULT CODE.. 80
TABLE 9: PRE-MIGRATION POLICY .. 80

7 Document Number: 355388-001

Revision History

Revision

Number

Description Date

0.1 Initial Version 21th

September

2023

0.2 1. Support RHEL 9 host OS. Obsolete RHEL 8

supports.

2. Support containerized QGS and PCCS for

remote attestation on RHEL 9.x host.

3. Update secure boot using distro grub and

shim.

4. Fix typos

13th October

2023

8 Document Number: 355388-001

1 Introduction

1.1 Overview

Intel® Trust Domain Extension (Intel® TDX) refers to an Intel technology that

extends virtual machine extensions (VMX) and Intel® Total Memory Encryption –

Multi-Key (Intel® TME-MK) with a new kind of virtual machine guest called a trust

domain (TD). A TD runs in a CPU mode that is designed to protect the

confidentiality of its memory contents and its CPU state from any other software,

including the hosting virtual machine monitor (VMM) [1]. Figure 1 shows an

architecture overview of Intel TDX.

Figure 1: Intel® TDX architecture

The white paper or specifications for Intel TDX can be found at Intel® Trust Domain

Extensions. The major component interfaces are defined in the specifications

referenced in Figure 2: Intel TDX Component Interfaces.

https://github.com/intel/tdx-tools/wiki/API-&-Specifications
https://github.com/intel/tdx-tools/wiki/API-&-Specifications

9 Document Number: 355388-001

Figure 2: Intel TDX Component Interfaces

Linux* Stacks for Intel® TDX is an end-to-end hypervisor cloud stack that includes

Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) components to

produce the following minimal use cases:

• Launch Intel® TDX guest VM (i.e., a TD) to run general computing workloads.

• Do launch-time measurement within the Intel® TDX guest VM.

• Do runtime attestation with the quote generated by Intel® Software Guard

Extensions (Intel® SGX)-based Quote Generation Service (QGS) on the IaaS

host.

Linux* Stacks for Intel® TDX 1.5 can run on both Sapphire Rapids and Emerald

Rapids platforms. Compared with Linux* Stacks for Intel® TDX 1.0, the new version

adds the following new features:

• TD live migration – allow to migrate a running TD from source platform to

destination platform.

• TD preserving – allow an existing TD to keep running unmodified after a TDX

module update.

• vTPM support – provide a virtual TPM 2.0 compliant device for TD. It works

with tpm2-tools, IMA, and Keylime.

10 Document Number: 355388-001

Figure 3: Linux Stack for Intel TDX 1.5

The open-source code for Linux Stack for Intel TDX 1.5 can be found at:

https://github.com/intel/tdx-tools.

NOTE: tdx-tools has multiple release tags. Please make sure to use the correct

release tag which matches the release version. The release tag and kernel version

mapping can be found on tdx-tools wiki.

This document introduces:

• The deployment, cloud stack test, and other common uses for those who

want to validate confidential workloads or tune performance.

• The debug and development methods for those who want to integrate Linux

Stacks for Intel TDX in their IaaS/PaaS framework.

This document also introduces updates related to TDX 1.5:

https://github.com/intel/tdx-tools
https://github.com/intel/tdx-tools/tags
https://github.com/intel/tdx-tools/wiki#1-overview

11 Document Number: 355388-001

• BIOS configuration for TDX on Emerald Rapids.

• End-to-end attestation for TDX on Emerald Rapids.

• TD migration introduction and usage guide.

• TD preserving introduction and usage guide.

• vTPM stack introduction and usage guide.

Linux* Stacks for Intel® TDX 1.5 discussed in this document supports Ubuntu 22.04

host and guest OS. It also supports RHEL 9 host OS.

12 Document Number: 355388-001

1.2 Terminology

TERM DESCRIPTION
ACM Authenticated Code Module

CCEL Virtual Firmware Confidential Computing

Event Log Table

CFV Configuration Firmware Volume

CMR Convertible Memory Ranges

CPLD Complex Programmable Logic Device

CRB Customer Reference Board

DCAP Data Center Attestation Primitives

DIMM Dual In-line Memory Module

ECC Error Correction Code memory

EMR Emerald Rapids

ESP EFI System Partition

FV Firmware Volume

GPA Guest Physical Address

GVA Guest Virtual Address

HOB Hand Off Block

HVC Hypervisor Virtual Console

IFWI Integrated Firmware Image

IBV Independent BIOS Vendor

IMA Linux Integrity Measurement Architecture

Intel SGX Intel® Software Guard Extensions (Intel® SGX)

Intel TDX Intel® Trust Domain Extension (Intel® TDX)

LIV server Live server; used for attestation with

production CPU SKUs

LUKS Linux Unified Key Setup

MigTD Migration TD; a service TD to assist TD

migration

MOK Machine Owner Key

MRTD Measurement of Trust Domain

OVMF Open-source Virtual Machine Firmware

PCR Platform Configuration Register

PCS Provisioning Certification Service

PCCS Provisioning Certificate Caching Service

PK/KEK/DB Platform Key/Key Exchange Key/Database Key

QGS Quote Generation Service

QMP QEMU Monitor Protocol

13 Document Number: 355388-001

QVE Quote Verification Enclave

QVL Quote Verification Library

RTMR Runtime Measurement Register

SBX server Sandbox server; used for attestation with pre-

production CPU SKUs

SEAM Secure Arbitration Mode

SPR Sapphire Rapids

SVN Security Version Number

TCB Trusted-Computing Base

TCG Trusted Computing Group

TDVF Trust Domain Virtual Firmware

TD Trust Domain, hardware-isolated Virtual

Machines (VMs) deployed by Intel TDX

TDX-CI TDX Crypto Integrity

TDX-LI TDX Logical Integrity

TEE Trusted Execution Environment

VMM Virtual Machine Monitor

VMX Intel Virtual Machine Extensions

vTPM Virtual Trusted Platform Module

vTPM-TD A service TD providing TPM device to TD

1.3 Using this White Paper

This white paper consists of TDX knowledge and a set of instructions to show how

to build, install, and use the software stack. The content in this document is relevant

for multiple personas playing a role in so setup and maintenance of a confidential

system. We have identified the following personas:

• Hardware IT Administrator

• Host OS Administrator

• Virtual Machine Administrator

Figure 4: Overall workflow shows the workflow that is described in this white paper

and the personas for which the individual steps are most relevant.

14 Document Number: 355388-001

Figure 4: Overall workflow

This guide is organized in a linear manner. So reading all sections in order will make

logical sense to a developer who is interested in all topics. Alternatively, you can

jump directly to the sections that are most relevant to your persona.

• For hardware IT administrators, please start with chapter 2.

• For host OS administrators, please check chapter 3 – 9.

o Chapter 3: TDX stack installation and basic validation

o Chapter 4: TDX remote attestation

o Chapter 5-9: TDX advanced features and solutions

• For virtual machine administrators, please start with chapter 10.

1.4 Document Formatting

In this white paper, for code section, a line starting with “$ #” is a comment

explaining the purpose of a command. A line starting with “$” is a command for

users to perform. If there is no prefix, that is an output from a command.

$ # This is a comment of below command

$ This is a command to execute

This is the output of above command

“Note” sections are used throughout the white paper to remind users of things they

need to pay attention to.

15 Document Number: 355388-001

2 Hardware and BIOS

2.1 Hardware

Linux Stacks for Intel TDX needs the following hardware support that enables Intel

TDX:

• Intel TDX-enabled CPU SKU. Contact Intel sales representative for details.

• Board configurations via hardware jumper or CPLD (complex programmable

logic device). Contact your ODM/OEM vendor.

• DDR5 DIMM (Dual in-line memory module) with the type of 9 × 4 and 10 × 4

ECC (error correction code memory)

• DDR5 RDIMMs with integrity protection.

• DIMM population:

o It is recommended that all channel 0 slots have at least 1 DIMM

populated. There are a total of 8 DIMMs per socket. The DIMM

population must be symmetric across the integrated memory

controllers.

Figure 5: 8+0 DIMM Population for Intel TDX

16 Document Number: 355388-001

o Intel TDX also supports the full DIMM population 16+0:

Figure 6: 16+0 DIMM Population for Intel TDX

2.2 BIOS

Specific BIOS configurations are needed to support Intel TDX. Contact your Intel

sales representative or IBV (independent BIOS vendor) for details. The following

settings are examples for reference:

Figure 7: BIOS settings for Intel TDX 1.5 on SPR

17 Document Number: 355388-001

Figure 8: BIOS settings for Intel TDX 1.5 on EMR

 Table 1: Intel TDX BIOS Configurations

BIOS Setting Notes

Volatile Memory = 1LM Intel TDX and CMR (Convertible Memory Ranges) logical

integrity, isolation, and cryptographic integrity are only

available with directly attached DDR5 memory.

NOTE: Please skip this setting if it doesn’t exist in BIOS

menu.

Total Memory Encryption

(Intel TME) = Enable

Intel TDX technology depends on Intel® Total Memory

Encryption (Intel® TME).

Total Memory Encryption

(Intel TME) Bypass =

Auto

4th generation Intel Xeon Scalable processors introduce

an Intel TME bypass mode to allow memory outside of

Intel TME multi-tenant virtual machines, Intel SGX

enclaves, and Intel TDX Trust Domains to be unencrypted

to improve the performance of nonconfidential software.

Total Memory Encryption

Multi-Tenant (TME-MT) =

Enable

128 Intel TME – Multi-Tenant encryption keys. Intel TDX

depends on TME-MT.

Memory Integrity = Disable 4th generation Intel Xeon Scalable processor E-stepping

does not support Intel TDX-CI, but only supports Intel

TDX-LI.

Intel TDX = Enable Intel TDX must be enabled.

TDX Key Split = <Non-zero

Value)

Key split between Intel TME multi-tenant and Intel TDX.

Software Guard Extension =

Enable

Intel TDX depends on Intel SGX technology for hardware

TCB and remote attestation.

18 Document Number: 355388-001

Note: The configuration or the menus might be different on your BIOS. Contact the

IBV or OEM/ODM for the correct settings.

19 Document Number: 355388-001

3 Build and Installation

In this chapter, we assume that the hardware and BIOS settings are ready for Intel

TDX. We will introduce tasks for host OS administrators – how to build both host

and guest packages, how to install the packages, how to create guest image for TD

boot and how to validate end-to-end scenarios using Intel TDX tests.

3.1 Components

Linux Stack for Intel TDX is a vertical end-to-end stack including a series of

components which are listed in Table 2: Linux Stack for Intel TDX Components.

Figure 9: Linux Stack for Intel TDX 1.5 overview

There are multiple components in the Linux stack for both the host and guest OS.

Table 2: Linux Stack for Intel TDX Components

20 Document Number: 355388-001

Components Description Source

Intel TDX

Module

An attested software module

running in SEAM Root Mode.

Intel Trust Domain Extensions

TDX Loader A SEAM module intended

to install an Intel TDX

module into SEAM range.

Intel Trust Domain Extensions

Intel TDX Host

Kernel

The host kernel with Intel TDX

patches being upstreamed.

https://github.com/intel/tdx/tree/kv

m

Intel TDX QEMU QEMU with Intel TDX patches

being upstreamed.

https://github.com/intel/qemu-tdx

Intel TDX Libvirt Libvirt with Intel TDX patches

being upstreamed.

https://github.com/intel/libvirt-

tdx/tree/for_qemu_upstream

TDVF Virtual firmware (aka OVMF)

with Intel TDX features already

upstreamed.

https://github.com/tianocore/edk2

TDVF-vTPM Virtual firmware (aka OVMF)

for vTPM.

https://github.com/tianocore/edk2

vTPM TD A service TD providing TPM

service to TD.

https://github.com/intel/vtpm-td

Migration TD A service TD assisting TD live

migration.

https://github.com/intel/MigTD

DCAP Intel SGX-based DCAP (data

center attestation primitives)

for the platform certificate

after registration.

https://github.com/intel/SGXDataC

enterAttestationPrimitives

QGS QGS provides the functionality

of Intel TDX quote generation

within an Intel SGX-based

quote enclave. It is part of the

DCAP running on the IaaS host

or legacy VM.

https://github.com/intel/SGXDataC

enterAttestationPrimitives

Intel TDX Guest

Kernel

The guest kernel with Intel

TDX patches being

upstreamed.

https://github.com/intel/tdx/tree/g

uest-upstream

Grub2 The bootloader grub2 with

Intel TDX patches already

upstreamed.

https://github.com/intel/grub-

tdx/tree/2.06-upstream-v4

Shim The bootloader shim with Intel

TDX patches already

upstreamed.

https://github.com/intel/shim-tdx

Intel TDX

Attestation

Agent

A reference implementation of

Intel TDX attestation agent to

https://github.com/intel/SGXDataC

enterAttestationPrimitives

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://github.com/intel/tdx/tree/kvm
https://github.com/intel/tdx/tree/kvm
https://github.com/intel/qemu-tdx
https://github.com/intel/libvirt-tdx/tree/for_qemu_upstream
https://github.com/intel/libvirt-tdx/tree/for_qemu_upstream
https://github.com/tianocore/edk2
https://github.com/tianocore/edk2
https://github.com/intel/vtpm-td
https://github.com/intel/MigTD
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/tdx/tree/guest-upstream
https://github.com/intel/tdx/tree/guest-upstream
https://github.com/intel/grub-tdx/tree/2.06-upstream-v4
https://github.com/intel/grub-tdx/tree/2.06-upstream-v4
https://github.com/intel/shim-tdx
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives

21 Document Number: 355388-001

call TDVMCALL.getQuote().

It is part of DCAP.

PyTdxAttest A Python measurement library

that dumps RTMRs, the CCEL

ACPI table, and verifies the

RTMRs via replaying the TD

event log.

https://github.com/intel/tdx-tools

NOTE:

1. Some of the components have completed patch upstreaming such as Grub,

Shim, and TDVF, while others are still in progress.

2. TDVF-vTPM, vTPM-TD, Migration TD are new components of the Linux

Stack for Intel TDX 1.5.

3.2 Building Stacks

For end-to-end stack setup and validation, tdx-tools provides downstream

patches and a build tool to construct the whole stack in just a few simple steps.

The supported distros’ versions are as follows for both host and guest packages:

• RHEL 9.x (the latest version)

• Ubuntu 22.04

The building process is demonstrated in Figure 108.

Figure 10: End-to-End Host and Guest Stack for Linux and Intel TDX

https://github.com/intel/tdx-tools

22 Document Number: 355388-001

The end-to-end stack building includes two steps on any Linux development

machine:

• Step 1: Build packages

• Step 2: Create guest image

3.2.1 Build Packages

A build.sh script is provided by tdx-tools to download the upstream source,

apply Intel TDX patches from the directory <build>/common, and do package

building.

Note: When obtaining tdx-tools, please make sure to use the correct tag which

matches the release version.

Figure 119 shows the file structure of tdx-tools build tool. Also it shows the sub

directories that will be generated by running build tool.

Figure 11: Build process for Intel TDX packages

The kernel config is provided in the kernel package directory with Intel TDX

configurations. For example, RHEL-9 will use the path build/rhel-9/intel-mvp-

tdx-kernel/tdx-kernel.spec. All kernel configurations have been optimized for

TDX performance.

Below is an example using Ubuntu 22.04 to build the entire repo with all the

packages using the command ./pkg-builder build-repo.sh. Not that this

command assume Docker is installed and running.

23 Document Number: 355388-001

NOTE: The building process may take more than 1 hour or longer depending on the

resource of building server.

$ # Follow https://docs.docker.com/engine/install/ to setup Docker.

$ # Add current user into docker group

$ sudo usermod -G docker -a $USER

$ # Restart docker service

$ sudo systemctl restart docker

$ # Clone tdx-tools repository with correct tag.

$ # Here, we assume the repository versuion with tag 2023ww27 should be cloned.

$ git clone git@github.com:intel/tdx-tools.git --branch 2023ww27

$ cd build/ubuntu-22.04/

$

$ # Build the all packages via build-repo.sh, and running it within pkg-builder

$ # container to avoid any issues of build environment

$./pkg-builder build-repo.sh

Below is an example of how to build individual packages on Ubuntu 22.04.

$ # If want to build individual package like intel-mvp-tdx-kernel

$./pkg-builder intel-mvp-tdx-kernel/build.sh

After the packages have been built successfully, two repositories are generated:

1. build/ubuntu-22.04/host_repo: includes the Intel TDX host kernel, Intel

TDX QEMU, Intel TDX Libvirt, and TDVF.

2. build/ubuntu-22.04/guest_repo : includes the Intel TDX guest kernel,

grub2, and shim.

3.2.2 Create Guest Image

For both TD grub boot and TD secure boot, it requires a guest image with Intel TDX

guest kernel, Intel TDX grub2, and shim packages installed.

The image creation process is a little different for the different distros. Please see

below details.

NOTE: Please run Ubuntu guest image tool on Ubuntu host, and run RHEL guest

image tool on RHEL host.

• Ubuntu 22.04

Ubuntu provides EFI enabled guest/cloud images at https://cloud-

images.ubuntu.com/ . Use <tdx-tools>/build/ubuntu-22.04/guest-

image/create-ubuntu-image.sh as follows:

$ # Prerequisite: build the Ubuntu packages via build-repo.sh

$

https://docs.docker.com/engine/install/
https://cloud-images.ubuntu.com/
https://cloud-images.ubuntu.com/

24 Document Number: 355388-001

$ cd build/ubuntu-22.04/guest-image

$

$ # Install guest repo packages into guest image. Please provide guest repo

$ # directory which is generated in the Build Packages chapter

$./create-ubuntu-image.sh -r $GUEST_REPO

The $GUEST_REPO is the path to guest repo, which has the following file hierarchy.

 guest_repo/

 |- all/

 |- amd64/

Figure 12: Create Intel TDX Ubuntu Guest Image

NOTE: The guest image can be further customized using below options of create-

ubuntu-image.sh:

Usage: create-ubuntu-image.sh [OPTION]...

 -h Show this help

 -c Create customize image (not from Ubuntu official cloud

image)

 -f Force to recreate the output image

 -n Guest host name, default is "tdx-guest"

 -u Guest user name, default is "tdx"

 -p Guest password, default is "123456"

 -s Specify the size of guest image

 -o <output file> Specify the output file, default is tdx-guest-ubuntu-

22.04.qcow2.

25 Document Number: 355388-001

 Please make sure the suffix is qcow2. Due to

permission consideration,

 the output file will be put into /tmp/<output file>.

 -r <guest repo> Specify the directory including guest packages,

generated by build-repo.sh

• RHEL 9.x

The tdx-tools repository provides <tdx-tools>/build/rhel-9/guest-

image/create-redhat-image.sh to create a guest image of RHEL 9. Figure 1111:

Build shows the process of how to create a RHEL guest image.

Figure 13: Create Intel TDX RHEL Guest Image

Please prepare a RHEL 9 ISO for guest image build. The following command will

create a qcow2 guest image with TDX enabled in /tmp/$GUEST_NAME.

$ # Build a guest image named by $GUEST_NAME, from the iso file $GUEST_ISO,

installing TDX kernel from repo $GUEST_REPO.

$./create-redhat-image.sh -l $GUEST_ISO -r $GUEST_REPO -o $GUEST_NAME

If you already have a qcow2 image $GUEST_QCOW2, you can build a guest image from

it directly with the following command.

$./create-redhat-image.sh -q $GUEST_QCOW2 -r $GUEST_REPO -o $GUEST_NAME

NOTE: The guest image can be further customized using below options of create-

redhat-image.sh:

26 Document Number: 355388-001

 -r <guest repo> Specify the directory including guest packages,

generated by build-repo.sh or remote repo

 -l Location of the iso file if the guest image is

installed from it

 -q Location of the qcow2 file if the guest image is based

on it

Test suite

 -t Install test suite

Optional

 -v <kernel version> Specify the version of the guest kernel, like 6.2.16-

mvp30v3+7-generic of

 linux-image-unsigned-6.2.16-mvp30v3+7-generic. If the

guest repo is remote,

 the option is necessary.

 -a Auth file that will be placed in /etc/apt/auth.conf.d

 -h Show this help

 -f Force to recreate the output image

 -n Guest host name, default is "tdx-guest"

 -u Guest user name, default is "tdx"

 -p Guest password, default is "123456"

 -s Specify the size of guest image, Optional suffixes

 'k' or 'K' (kilobyte, 1024), 'M' (megabyte, 1024k),

'G' (gigabyte, 1024M),

 'T' (terabyte, 1024G), 'P' (petabyte, 1024T) and 'E'

(exabyte, 1024P) are

 supported. 'b' is ignored.

 -o <output file> Specify the output file, default is tdx-guest-ubuntu-

22.04.qcow2.

 Please make sure the suffix is qcow2. Due to

permission consideration,

 the output file will be put into /tmp/<output file>.

 -b Debug Mode

 - enable root login

Customization

 -i Customized script run by virt-customize before

invoking cloud-init (the script is interpreted by /bin/sh)

 -d Customized script run by virt-customize after invoking

cloud-init (the script is interpreted by /bin/sh)

 -g Customized cloud-config appended to the user-data

 -x Customized script appended to the user-data (running

after all runcmd in cloud-config)

3.3 Install IaaS Host

Perform the following steps to deploy the packages on IaaS host.

NOTE: If it’s the first-time installing Intel TDX SW stack, please make sure Intel TDX

is disabled in the BIOS before installing the SW packages. Once the Intel TDX

packages have been installed, set the Intel TDX kernel as the default in grub, reboot,

and enable Intel TDX in the BIOS.

27 Document Number: 355388-001

If it’s the first time installing the Linux Stack for Intel TDX on a host, the overall steps

of installing IaaS host will be like:

1. Disable Intel TDX in BIOS.

2. Install packages on the host.

3. Set the installed TDX kernel as default kernel.

4. Reboot and enable Intel TDX in BIOS.

3.3.1 Install Packages Manually

For RHEL 9.x host

• Move the generated host repo to a directory that will be used in the repo file.

$ sudo mkdir -p /srv/

$

$ # Building the RPM packages via steps explained before, the RPM package will be

$ # generated in <tdx-tools>/build/rhel-9/host_repo/

$ # Download TDX module packages and decompresse it to build/rhel-8/host-repo/

$ # Re-generate repo

$ tar -xf tdx-module.tar.gz -C build/rhel-9/host_repo/x86_64

$ createrepo_c build/rhel-9/host_repo/

$ # move the repo to /srv/tdx-host for later usage

$ sudo mv build/rhel-9/host_repo/ /srv/tdx-host

• Set up the host repository. Generate the file /etc/yum.repos.d/tdx-

host-local.repo and add the following content (the priority of the repo

should be set 1, i.e. the highest according to the Yum doc).

$ cat /etc/yum.repos.d/tdx-host-local.repo

[tdx-host-local]

name=tdx-host-local

baseurl=file:///srv/tdx-host

enabled=1

gpgcheck=0

module_hotfixes=true

priority=1

• Add the EPEL repo. It provides the packages of capstone and libcapstone

required by Intel TDX QEMU.

$ sudo dnf install https://dl.fedoraproject.org/pub/epel/epel-release-latest-

8.noarch.rpm

• Install the host packages.

$ sudo dnf install kernel qemu-kvm ovmf libvirt tdx-module-production

https://wiki.centos.org/PackageManagement/Yum/Priorities

28 Document Number: 355388-001

• If you get an error about qemu-kvm conflicts, remove the existing qemu-kvm

package with the following command, and then re-run the command above to

install host packages.

$ sudo dnf remove qemu-kvm

• Add numa_balancing=disable into grub menu.

$ vi /etc/default/grub

Add "numa_balancing=disable" in GRUB_CMDLINE_LINUX

GRUB_CMDLINE_LINUX=". . . numa_balancing=disable"

$ sudo grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

• Set TDX kernel as default kernel.

$ sudo grubby -set-default=/boot/vmlinuz-<kernel version>

For Ubuntu 22.04 host

• Install all Debian packages.

$ # Build the DEB packages via steps explained before, the RPM package will be

$ # generated in <tdx-tools>/build/ubuntu-22.04/host_repo/

$ cd host_repo

$ sudo apt -y --allow-downgrades install ./*.deb

• Add numa_balancing=disable into grub menu.

$ vi /etc/default/grub

Add "numa_balancing=disable" in GRUB_CMDLINE_LINUX_DEFAULT

GRUB_CMDLINE_LINUX_DEFAULT=". . . numa_balancing=disable"

$ sudo update-grub

• Set TDX kernel as default kernel.

$ grep -A100 submenu /boot/grub/grub.cfg | grep menuentry | grep <TDX kernel

version>

$ # Use the string in above output, such as "gnulinux-6.2.16-v5.0.mvp40-

$ # generic-advanced-34db9317-bf73-44c3-8425-2fa83446e8d5" in

$ # /etc/default/grub file as value of “GRUB_DEFAULT"

$ vi /etc/default/grub

GRUB_DEFAULT="gnulinux-6.2.16-v5.0.mvp40-generic-advanced-34db9317-bf73-44c3-8425-

2fa83446e8d5"

$ sudo update-grub

29 Document Number: 355388-001

3.3.2 Deploy via Ansible

Use the Ansible-based “TDX Deployment Tool” to deploy the host stack to multiple

server nodes or guest stack to multiple TD VMs.

Figure 14: Deploy TDX host stack via Ansible

NOTE: Current Ansible script only support deployment on Ubuntu 22.04.

Before using the script, there are a couple pre-requisites:

1. Build the host *.deb repositories. Refer to section 3.2.1 Build Packages. The

final built files will be at <tdx-tools>/build/ubuntu-22.04/host_repo.

2. Copy all *.deb packages to <tdx-tools>/deploy/tdx_stack/tdx_repo/

$ cp build/ubuntu-22.04/host_repo/*.deb deploy/tdx_stack/tdx_repo/

3. Prepare Ansible inventory host file and enable password-less login on all

managed nodes, please refer to this tutorial.

$ # The content of an example inventory file

$ cat deploy/tdx_stack/hosts

tdx@10.0.0.2

tdx@10.0.0.3

tdx@10.0.0.4

$ # Enable the SSH password less login

$

$ ssh-copy-id tdx@10.0.0.2

...

$ ssh-copy-id tdx@10.0.0.3

...

$ ssh-copy-id tdx@10.0.0.4

4. Setup Docker container for Ansible to create the build image.

https://docs.ansible.com/ansible/latest/inventory_guide/intro_inventory.html#how-to-build-your-inventory

30 Document Number: 355388-001

$./docker-playbook.sh rebuild

5. Run playbook in Docker for auto deployment process on all managed nodes.

$ # Please make sure all pre-built packages are in the directory of <tdx-

tools>/deploy/tdx_stack/tdx_repo/.

$./docker-playbook.sh -i hosts tdx_stack/tdx_host_install.yml -K

3.3.3 Reboot with the Intel TDX kernel

After installing the Intel TDX kernel and host packages successfully, reboot the

system into the BIOS menu and enable Intel TDX. Refer to Section 2.2 on the BIOS

settings. To verify that Intel TDX is enabled use the script check-tdx-host.sh after

the system is booted. Alternatively, the below steps can also be used to determine

that Intel TDX has been successfully enabled.

• Check whether TDX Module is initialized. The expected output is “TDX

module initialized”.

$ sudo dmesg | grep -i tdx

...
tdx: TDX module initialized.

• Check Intel TME enable status, expecting a return code of 1.

$ sudo rdmsr -f 1:1 0x982

1

• Check Intel TME max keys.

$ sudo rdmsr -f 50:36 0x981

• Check the Intel SGX and MCHECK status, expecting a code of 0.

$ sudo rdmsr 0xa0

0

• Check the Intel TDX Status, expecting a code of 1.

$ sudo rdmsr -f 11:11 0x1401

1

NOTE: All the above checking steps should be successful with expected result

returned before moving forward to the next steps.

• Check the number of Intel TDX keys.

$ sudo rdmsr -f 63:32 0x87

1

• Check the information for the Intel TDX module.

$ cat /sys/firmware/tdx/tdx_module/*

https://github.com/intel/tdx-tools/blob/main/utils/check-tdx-host.sh

31 Document Number: 355388-001

3.4 Manage the TD

Like a normal virtual machine, a TD can be launched by QEMU via command line or

orchestrated by Libvirt via XML templates. This chapter introduces how to manage

the lifecycle of a TD for diverse boots such as secure boot, direct boot, and grub

boot.

NOTE: Please make sure to use the correct tag of tdx-tools which matches the

release version.

3.4.1 Overview

You can boot a TD guest either by using the QEMU command line or by using a

Libvirt XML template and virsh commands. Libvirt translates the XML template to

QEMU commands and calls QEMU-kvm to complete the VM boot. Similarly, you

can call QEMU-kvm directly with parameters to boot a VM.

"Direct boot" is a boot process where the system boots directly into the OS without

an intermediate boot loader. "Grub boot" involves using the Grub bootloader, which

provides advanced boot menu options, allowing you to select different operating

systems and customize boot configurations.

The following diagram illustrates the TD boot type and boot process.

Figure 15: TD Guest Boot Process

32 Document Number: 355388-001

The following table explains the different boot types:

Table 3: Boot Types for TD Guest

Boot Type Description Difference from a non-

confidential VM

Direct Boot Boot the guest by explicitly specifying

a kernel binary via the QEMU

launching parameter "-kernel", by

specifying the initrd binary via QEMU

launching parameter "-initrd", and by

specifying the kernel command via

the QEMU launching parameter “-

append".

Bootloaders such as shim/grub are

not involved in direct boot.

No differences on QEMU

launch parameters for

confidential VM, but

requires TDVF/OVMF to do

measured boot and record

the measurement into an

RTMR (Runtime

Measurement Register).

Grub Boot Boot the guest without "-kernel" and

"-append" in QEMU launching

params. The OVMF/TDVF searches

for and starts the bootloader from the

ESP.

No differences on QEMU

launch parameters for

confidential VM, but

requires Intel TDX Grub2 to

do measured boot and

record the measurement

into an RTMR.

Measured Boot It is the process of measuring and

storing securely (i.e., using a TPM)

the next stage object in the boot

process by the UEFI BIOS,

bootloader, kernel, etc.

In a Trusted Platform

Module (TPM) defined by

the Trusted Computing

Group (TCG), the secure

register is a PCR. With Intel

TDX, an RTMR is used for

this purpose.

Secure Boot Secure boot is a security standard

developed by members of the PC

industry to ensure that a device is

booted using only software that is

trusted by the original equipment

manufacturer (OEM). The Secure

boot certificate should be protected

by measured boot.

For non-confidential VMs,

the secure boot certificate

can be enrolled in the

runtime of a guest VM.

However, in TD, the secure

boot certificate must be

enrolled in the TDVF offline

before boot for the

consistent measurement in

MRTD (measurement of

trust domain)

The detailed boot flow for different TD boot methods can be found in Figure 1614:

Detailed boot flow for different TD boot

33 Document Number: 355388-001

Figure 16: Detailed boot flow for different TD boot

In Figure 1614: Detailed boot flow for different TD boot:

Measured Boot

1. In OVMF, the image handler DxeTpmMeasureBootHandler will be triggered

when loading EFI image via CoreLoadImageCommon().

2. In OVMF, DxeTpmMeasureBootHandler measures the objects like FV,

QEMU CFG, VMM Hob, Variable into TCG PCR Register. In TD, if vTPM

doesn’t exist, the measurement will also be extended to RTMR .

3. In boot loader ShimX64.efi, TpmMeasureVariable()measures the secure

boot’s certificates into TCG PCR or TDX RTMR register.

4. Boot loader GrubX64.efi measures kernel binary and cmdline, initrd binary,

and grub’s module into TCG PCR or TDX RTMR register.

The mapping between TCG PCR register and RTMR is as below.

➢ PCR #1, #7  RTMR #0

➢ PCR #2-#6  RTMR #1

➢ PCR #8-#15  RTMR #2

Secure Boot

1. In OVMF, the image handler DxeImageVerificationHandler will be

triggered when loading EFI image via CoreLoadImageCommon().

34 Document Number: 355388-001

2. In OVMF, DxeImageVerificationHandler uses UEFI secure boot’s DB key

to verify the certificate from each time EFI image is loaded.

3. ShimX64.efi and GrubX64.efi will use UEFI secure boot’s DB key or Linux

secure boot’s MoK (Machine Owner Key) to verify the certificate of kernel,

kernel module etc.

4. All certificates, including UEFI secure boot and Linux secure boot, are

measured into RTMRs.

Direct Boot

1. In direct boot path, TryRunningQEMUKernel()starts and measures the

kernel binary.

2. In direct boot path, EFI stub of Linux kernel measures the kernel command

and initrd.

Refer to the measure log for direct boot for a sample of what the output should

look like.

Grub Boot

1. In grub boot, ShimX64.efi helps bring the UEFI secure boot to Linux secure

boot. Normally UEFI secure boot will use MSFT UEFI certificates2. But here it

needs a new key to sign customized kernel/grub/shim, please refer to section

3.4.2.3 Secure Boot

2. In grub boot, GrubX64.efi measures kernel binary,command and initrd.

Refer the measure log for grub boot.

2 https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-secure-

boot-key-creation-and-management-guidance?view=windows-11

https://github.com/intel/tdx-tools/blob/main/doc/measure_log_direct_boot.txt
https://github.com/intel/tdx-tools/blob/main/doc/measure_log_grub_boot.txt
https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-secure-boot-key-creation-and-management-guidance?view=windows-11
https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-secure-boot-key-creation-and-management-guidance?view=windows-11

35 Document Number: 355388-001

3.4.2 Boot TD Guest

3.4.2.1 Launch via QEMU

Since the QEMU parameter list is quite long and complicated, tdx-tools provides

the start-qemu.sh script to handle some parameters by default. It supports both

direct boot and grub boot of TD guest. The start-qemu.sh script offers various

command line options to meet customized requirements for TD boot. The options

are listed in Table 4: start-qemu.sh parameters:

Note: The parameters in start-qemu.sh may vary along with different Intel TDX

kernel and Intel TDX QEMU versions. Please make sure to use the correct tag of tdx-

tools which matches the release.

Table 4: start-qemu.sh parameters

Parameter Description
-i <guest image file> Guest image file name and location

-k <kernel file> Kernel binary name and location

-t [legacy | efi | td] VM type supported; default is "td"

-b [direct | grub] Boot type; default value is "direct", which requires

kernel binary specified via "-k"

-p <Monitor port> Monitor port for telnet. Refer to the usage of QEMU

Monitor

-f <SSH Forward port> Host port used for SSH forwarding of VM. Refer to

QEMU SSH port forwarding

-o <OVMF file> BIOS virtual firmware device file. Usually TDVF file is

at /usr/share/qemu/OVMF.fd. This file is used for TD

and EFI VM boot. For legacy VM is uses SEABIOS .

-m <11:22:33:44:55:66> MAC address of VM. If MAC address changes for a

TD guest, RTMR value will change and Intel TDX

measurement might fail.

-q [tdvmcall | vsock] TD quote generation supports using tdvmcall or

vsock. Choose the corresponding value to boot TD

guest.

-c <number> Number of vCPU; default value is 1.

-r <root partition> Root partition for direct boot; default is /dev/vda3

-e <extra kernel command> Extra kernel command needed in VM boot

-v Flag to enable vsock

-d Flag to enable "debug=on" for GDB guest. Refer to

chapter 9.2

-s Flag to use serial console instead of hypervisor virtual

console (HVC).

https://github.com/intel/tdx-tools/blob/main/start-qemu.sh
https://qemu-project.gitlab.io/qemu/system/monitor.html
https://qemu-project.gitlab.io/qemu/system/monitor.html
https://wiki.qemu.org/Documentation/Networking

36 Document Number: 355388-001

-h Show usage help

• Direct boot TD guest via QEMU command

This is an example of direct boot using start-qemu.sh. You need to provide

the guest image and kernel image as shown. Direct boot is used by default, so

it's not required to use “-b direct”.

$./start-qemu.sh -i <guest image> -k <kernel binary>

The guest kernel image can be extracted from guest kernel package with the

following steps.

$ dpkg -x /path/to/tdx-tools-2023ww27/build/ubuntu-22.04/guest_repo/linux-image-

unsigned-*.deb extracted

$ # The guest kernel image will be at extracted/boot/vmlinuz-*

• Grub boot TD guest via QEMU command

This is an example of grub boot using start-qemu.sh. You need to provide the

guest image and specify “-b grub” to use grub boot.

$./start-qemu.sh -i <guest image> -b grub

• Direct boot non-confidential guest via QEMU command

This is an example of how to direct boot a non-TD guest. Provide the guest

image and kernel image as shown. It requires using "-t efi" to boot non-

confidential guest via OVMF/TDVF or "-t legacy" to boot non-confidential

guest via legacy SeaBIOS.

$./start-qemu.sh -i <guest image> -k <kernel image> -t efi

$./start-qemu.sh -i <guest image> -k <kernel image> -t legacy

 You can safely exit the TD console using “CTRL+]”.

https://github.com/qemu/seabios

37 Document Number: 355388-001

3.4.2.2 Launch via Libvirt

Libvirt is a popular orchestrator to manage the VM guest via the virsh command.

tdx-tools provides both direct boot and grub boot XML templates for TD guest at

tdx-tools/doc/.

Template Description

tdx_libvirt_direct.xml.template TD guest direct boot

tdx_libvirt_grub.xml.template TD guest grub boot

NOTE: The templates may vary with a different kernel version or QEMU version.

Please make sure to use the correct tag of tdx-tools which matches the release

version.

To create the final VM’s XML from the template, update the XML template to refer

to the guest image, kernel image, and OVMF binary:

• Update OVMF binary path. It’s usually located at

/usr/share/qemu/OVMF.fd.

<loader>/path/to/OVMF.fd</loader>

• Update path of guest image.

<source file="/path/to/guest-image.qcow2"/>

• Update kernel image (This is only needed for direct boot use case. It’s not

needed for grub boot).

<kernel>/path/to/vmlinuz-jammy</kernel>

Unlike QEMU, Libvirt uses the concept of a domain to manage the VM lifecycle

across reboot cycle. Libvirt distinguishes between two different types of domains:

transient and persistent3.

• Transient domains only exist until the domain is shut down or when the host

server is restarted.

• Persistent domains last indefinitely.

This example uses a transient domain of TD:

$ virsh create tdx_libvirt_direct.xml

3 https://wiki.libvirt.org/VM_lifecycle.html

https://wiki.libvirt.org/VM_lifecycle.html

38 Document Number: 355388-001

 As a result, a TD should be running. Use the following command to check whether

this is the case:

$ virsh list

 Id Name State

--

 2 td-guest running

The TD guest console can be entered with the following command.

$ virsh console <TD guest name>

3.4.2.3 Secure Boot

Secure boot for a TD guest is almost the same as a traditional, non-confidential VM.

The major difference is that the OVMF.fd needs to be measured into MRTD

statically. The EFI variable is read-only in runtime with the TDX VM. Thus, it‘s not

possible to enroll the secure boot key into the EFI variable FV (firmware volume) via

a tool such as EnrollDefaultKey at runtime. The public key needs to be enrolled to

OVMF.fd and guest kernel image before booting TD.

Figure 17: Enable Secure Boot

The steps of enrolling the secure boot key are as follows:

• Step 1: Instead of using a Microsoft certificate, generate customized secure

boot keys and certificates.

#!/bin/bash

NAME="Test"

openssl req -new -x509 -newkey rsa:2048 -subj "/CN=$NAME DB/" -keyout DB.key \

https://github.com/tianocore/edk2/tree/master/OvmfPkg/EnrollDefaultKeys

39 Document Number: 355388-001

-out DB.crt -days 3650 -nodes -sha256

penssl x509 -in DB.crt -out DB.cer -outform DER

chmod 0600 *.key

Refer to the following to learn more about the different types of digital

certificates.

o Managing EFI Boot Loaders for Linux: Controlling Secure Boot

o UEFI Specification

• Step 2: Install the ovmfctl tool.

$ python3 -m pip install ovmfctl

• Step 3: Enroll key into OVMF.fd and generate OVMF.sb.fd.

$ ovmfctl --sb -i OVMF.fd --enroll-redhat --add-mok 4b2b73d1-8aad-4ed3-a4b0-
f596455a0fe4 DB.cer -o OVMF.sb.fd

• Step 4: Copy DB.crt and DB.key in TD guest image

$ sudo virt-copy-in -a <TD guest image> DB.key /opt/

$ sudo virt-copy-in -a <TD guest image> DB.crt /opt/

• Step 5: Boot TD and sign kernel image in TD

$./start-qemu.sh -i <TD guest image> -b grub

After TD boot, check whether sbsigntool is installed. Usually, sbsigntool is installed

in Ubuntu 22.04 automatically. If not, please install it using command:

 $ sudo apt-get install sbsigntool

• Step 6: Sign guest kernel image and make it default kernel

$ # Sign kernel image

$ sudo sbsign --key <path-to>/DB.key --cert <path-to>/DB.crt --output

/opt/vmlinuz-signed /boot/vmlinuz-<guest-kernel-version>

$ mv /boot/vmlinuz-<guest-kernel-version> /boot/vmlinuz-<guest-kernel-version>.bak

$ cp /opt/vmlinuz-signed /boot/vmlinuz-<guest-kernel-version>

$ # Make above signed kernel as default kernel

$ grep -A100 submenu /boot/grub/grub.cfg | grep menuentry | grep <TDX kernel

version>

$ # Use the string in above output, such as "gnulinux-6.2.16-v5.0.mvp40-

$ # generic-advanced-34db9317-bf73-44c3-8425-2fa83446e8d5" in

$ # /etc/default/grub file as value of “GRUB_DEFAULT"

$ vi /etc/default/grub

GRUB_DEFAULT="gnulinux-6.2.16-v5.0.mvp40-generic-advanced-34db9317-bf73-44c3-8425-

2fa83446e8d5"

$ sudo update-grub

• Step 7: Shutdown TD and copy the signed kernel image out to host.

$ sudo virt-copy-out -a <TD guest image> /opt/vmlinuz-signed .

http://www.rodsbooks.com/efi-bootloaders/controlling-sb.html
https://uefi.org/sites/default/files/resources/UEFI%20Spec%202.8B%20May%202020.pdf

40 Document Number: 355388-001

• Step 8: Boot TD using OVMF.sb.fd.

For direct boot:

$./start-qemu.sh -o OVMF.sb.fd -i <TD guest image> -k vmlinuz-signed

For grub boot:

$./start-qemu.sh -o OVMF.sb.fd -i <TD guest image>

After TD boots up, verify whether the secure boot is enabled using below command:

$ dmesg | grep -i "Secure Boot"

$ # It’s expected to see “Secure boot enabled”

3.4.3 Use VirtIO Device

Within a TD, the drivers are the largest threat attack surface by far. They access the

host-controlled PCI config space to perform MMIO and port IO. Refer to Figure 1816:

TDX Guest Attack Surface or se the detailed threat analysis at [2].

Figure 18: TDX Guest Attack Surface

To mitigate this risk there is a curated list of drivers that are enabled in the runtime

for the TD guest kernel. By default, all PCI and ACPI bus drivers are blocked unless

they are in the allow-list. The current default allow-list for the PCI bus is limited to the

following VirtIO drivers:

• virtio_net

41 Document Number: 355388-001

• virtio_console

• virtio_blk

• 9pnet_virtio

• virtio_vsock

Since most of the ACPI tables are not needed for an Intel TDX guest, the

implemented ACPI table allow-list limits them to a small, predefined list with a

possibility to pass additional tables via a command line option. The current allow-list

is limited to the following tables:

• XSDT

• FACP

• DSDT

• FACS

• APIC

• SVKL

• CCEL

3.5 Validation

3.5.1 Overview

The Linux Stack for Intel TDX provides end-to-end Intel TDX capability across

diverse infrastructures like hypervisor and Kubernetes.

42 Document Number: 355388-001

Figure 19: Intel TDX E2E Full Stack Validation

The end-to-end validation of the Linux Stack for Intel TDX covers the following

scopes.

Table 5: Linux Stack for Intel TDX Validations

Validation Scope Description

System Status IaaS Verify the hardware and BIOS status like Intel SGX, Intel

TME-MK, Intel TDX, Intel TDX module, etc.

IaaS Host IaaS Verify the functionality of IaaS components like

platform registration, QGS service, libvirt, and QEMU

configurations

VM Lifecycle PaaS Diverse boot types for TD VM guest, pre-boot

environment measurement, etc.

VM Environment PaaS CPUID, TSC, VirtIO devices, etc.

Workload PaaS Workloads run in docker container in a TD or workloads

run in a TD which is worker node of a Kubernetes

cluster.

43 Document Number: 355388-001

To support complex validation and automation scenarios, the pyCloudStack

framework is designed to support the scopes mentioned in Table 67 TDX Stack

Tests.

3.5.2 PyCloudStack

3.5.2.1 Overview

PyCloudStack abstracts the common objects, operations, and resources for diverse

cloud architectures. It supports hypervisor stacks based on libvirt or direct QEMU

commands, container stacks orchestrated by Kubernetes or directly by docker, and

supports running on local or remote IaaS hosts. It can be used to create an advanced

deployment CI/CD operator via a Python plugin for an ansible, end-to-end

validation, framework with customized components and configurations in a full

vertical stack.

The overall architecture diagram is illustrated as below:

Figure 20: PyCloudStack Framework

The framework supports scenarios for VM management via QEMU direct or via

libvirt.

44 Document Number: 355388-001

Figure 21: Validation Scenarios for VMM and Libvirt

• Scenario 1: QEMU managed VM directly via QMP (QEMU monitor protocol)4

• Scenario 2: Libvirt managed VM via VirtAPI5

The framework abstracts the common operations for host, virtual machine,

kubernetes, and container:

Figure 22: Abstract Common Operations for Cloud Stack

 Below are additional details for the VM use case.

• VMGuestFactory is designed to communicate and handle VM configurations

with test cases. For example, the size of a virtual machine can be specified by

indicating how many CPUs and how much memory is required.

VMGuestFactory usually works with VMParam and VMImage.

o VMParam operator provides predefined VM parameters for typical

configuration. It also provides the capability to customize VM

parameters.

4 https://wiki.QEMU.org/Documentation/QMP
5 https://github.com/virtapi/virtapi

https://wiki.qemu.org/Documentation/QMP
https://github.com/virtapi/virtapi

45 Document Number: 355388-001

o VMImage is designed to manage guest images for guest VMs so that

multiple guest distros can be supported. Guest images can be

customized based on test requirements.

• VMM operators are responsible for VM lifecycle management using given

configuration. VMM operator includes VMMLibvirt and VMMQEMU.

VMMLibvirt needs to work together with “virtXML” operator.

• virtXML is responsible for Libvirt XML template management. It helps you to

customize XML template for VMs.

For Kubernetes use case:

• cluster operator is designed to implement Kubernetes object management.

Registry is used to manage container images. With them working together,

you can create Kubernetes objects, such as deployment and service. Then

cloud workload can run in a Kubernetes cluster.

There are also some other common operators for Device management at the

bottom of the diagram.

• CMDRunner is designed to run commands on local host or remote targets via

ssh connection.

• DUT is designed to manage devices under test, such as CPU frequency of

host.

• MSR operator provides methods to read and write register.

Finally, with the PyCloudStack framework, functionality, stability, performance, and

interoperability tests are well supported.

3.5.2.2 Install PyCloudStack on TDX host

PyCloudStack has been uploaded to PyPI . Install PyCloudStack to the host via the

following command.

$ pip3 install pycloudstack

3.5.2.3 Example

Most of automation tests in the tdx-tools repo are based on the PyCloudStack

framework. Below are several examples:

• Example 1: Operate VM via Libvirt

from pycloudstack.vmguest import VMGuestFactory

https://pypi.org/project/pycloudstack/

46 Document Number: 355388-001

from pycloudstack.vmparam import VM_STATE_SHUTDOWN, VM_STATE_RUNNING,

VM_STATE_PAUSE, VM_TYPE_TD

vm_factory = VMGuestFactory(vm_image, vm_kernel)

LOG.info("Create TD guest")

inst = vm_factory.new_vm(VM_TYPE_TD, auto_start=True)

inst.wait_for_ssh_ready()

LOG.info("Suspend TD guest")

inst.suspend()

ret = inst.wait_for_state(VM_STATE_PAUSE)

assert ret, "Suspend timeout"

LOG.info("Resume TD guest")

inst.resume()

ret = inst.wait_for_state(VM_STATE_RUNNING)

assert ret, "Resume timeout"

• Example 2: Customize the VM

import logging

import psutil

Get host total cores and sockets, assign 80% vcpu and 80% memory to vm

total_core = psutil.cpu_count()

cores = int(total_core * 0.4)

memsize = int(psutil.virtual_memory().available / 1000 * 0.8)

vmspec = VMSpec(sockets=2, cores=cores, memsize=memsize)

inst = vm_factory.new_vm(VM_TYPE_TD, vmspec=vmspec, auto_start=True)

• Example 3: Run TensorFlow AI microbench boosted by AMX within TDVM

LOG.info("Create TD guest to test tensorflow")

td_inst = vm_factory.new_vm(vm_type, vmspec=VMSpec.model_large())

customize the VM image

td_inst.image.inject_root_ssh_key(vm_ssh_pubkey)

create and start VM instance

td_inst.create()

td_inst.start()

td_inst.wait_for_ssh_ready()

It may take up to 30 minutes to complete the test

LOG.info("====== The test running may take up to 30 minutes! ======")

command = '''

cd /root/models-2.5.0 && DNNL_MAX_CPU_ISA=AVX512_CORE_AMX OMP_NUM_THREADS=16

KMP_AFFINITY=granularity=fine,verbose,compact

python3 ./benchmarks/launch_benchmark.py

 --model-name dien --mode inference --precision bfloat16

 --framework tensorflow --data-location /root/dien

 --exact-max-length=100 --num-inter-threads 1 --num-intra-threads 16

 --batch-size 8 --graph-type=static

 --in-graph /root/dien_fp32_static_rnn_graph.pb

 --benchmark-only --verbose --

 '''

47 Document Number: 355388-001

runner = td_inst.ssh_run(command.split(), vm_ssh_key)

assert runner.retcode == 0, "Failed to execute remote command"

throughput should not be 0

patt_ok = r'Approximate accelerator performance in recommendations/second is

(\d*.\d*)'

match = re.search(patt_ok, '\n'.join(runner.stdout))

assert match is not None

images_per_s = match.group(1)

LOG.info('Throughput: %s recommendations/s', images_per_s)

assert float(images_per_s) > 0

3.5.3 Intel TDX Tests

Intel TDX tests from tdx-tools are designed to cover basic acceptance tests,

functionality, workload, and environment tests for Intel TDX. It also provides

interoperability tests by using AMX in an Intel TDX guest VM.

NOTE: The tests implementation depends on the PyCloudStack framework. The

test execution must be on an Intel TDX-enabled Linux platform with an Intel TDX-

enabled kernel with QEMU and Libvirt installed.

NOTE: Please make sure to use the correct tag of tdx-tools which matches the

release version so that the tests can work with different Intel TDX kernel and Intel

TDX QEMU versions.

3.5.3.1 Overview

The tests can be classified into 4 categories – Lifecycle, Environment, Workload and

Interoperability. Refer to the test list in the table below. Some of the tests require a

customized guest image before running the test. The required prerequisites are in

the next section.

Table 6: TDX Stack Tests

Category Test case Description

Lifecycle test_tdvm_lifecycle.py TD lifecycle management

test_multiple_tdvms.py Co-existence of multiple TDs

test_vm_coexists.py Co-existence 0f TD and legacy VM

test_max_cpu.py Boot TD with high CPU utilization

test_vm_shutdown_mode.py Different shutdown modes of Libvirt

test_acpi_reboot.py TD ACPI reboot

test_acpi_shutdown.py TD ACPI shutdown

test_vm_shutdown_qga.py VM shutdown via QEMU guest agent

test_vm_reboot_qga.py VM reboot via QEMU guest agent

48 Document Number: 355388-001

Environment test_tdvm_tsc.py TD TSC clock source and frequency

test_tdx_guest_status.py TDX initialization in TD guest

test_tdx_host_status.py Check TDX host status

test_tdvm_network.py Check network functions in TD

Workload test_workload_redis.py Redis workload running in TD

test_workload_nginx.py Nginx workload running in TD

Interoperability test_amx_docker_tf.py Run AI model with AMX in docker

container on TD

test_amx_vm_tf.py Run AI model with AMX in TD

A full example for a redis workload test case is as follows. You can find the complete

test case in tdx-tools/tests/tests/test_workload_redis.py.

def test_tdvm_redis(vm_factory, vm_ssh_pubkey, vm_ssh_key):

 """

 Run redis benchmark test

 Ref: https://redis.io/topics/benchmarks

 Use official docker images redis:latest

 Test Steps:

 1. start VM

 2. Run remote command "systemctl status docker" to check docker service's

status

 3. Run remote command "systemctl start docker" to force start docker service

 4. Run remote command "/root/bat-script/redis-bench.sh"

 to launch redis container and benchmark testing

 """

 LOG.info("Create TD guest to run redis benchmark")

 td_inst = vm_factory.new_vm(VM_TYPE_TD)

 # customize the VM image

 td_inst.image.inject_root_ssh_key(vm_ssh_pubkey)

 td_inst.image.copy_in(

 os.path.join(CURR_DIR, "redis-bench.sh"), "/root/")

 # create and start VM instance

 td_inst.create()

 td_inst.start()

 td_inst.wait_for_ssh_ready()

 command_list = [

 'systemctl start docker',

 '/root/redis-bench.sh -t get,set'

]

 for cmd in command_list:

 LOG.debug(cmd)

 runner = td_inst.ssh_run(cmd.split(), vm_ssh_key)

 assert runner.retcode == 0, "Failed to execute remote command"

49 Document Number: 355388-001

3.5.3.2 Prerequisites

A guest image is required for all the tests. Refer to 3.2.2 Create Guest Image to

generate a basic guest image. Additional prerequisites are required for some of the

tests. The first step is to start a VM using the guest image built above and go

through corresponding items required by tests. The next step is to shut down the

VM and use the guest image for further tests.

1. Install QEMU guest agent in guest image.

For Ubuntu 22.04 guest image:

$ sudo apt-get install qemu-guest-agent

2. Install docker in guest image.

For Ubuntu 22.04 guest image:

$ sudo apt-get install docker.io

3. For workload tests, make sure the latest docker image is in the guest image. It

needs both the docker image “nginx:latest” and “redis:latest”.

$ docker pull nginx:latest

$ docker pull redis:latest

4. Install intel-tensorflow-avx512 in guest image. Download the DIEN_bf16

model and put it under /root in the guest image.

For ubuntu 22.04 guest image:

$ pip3 install intel-tensorflow-avx512==2.11.0

$ wget https://storage.googleapis.com/intel-optimized-

tensorflow/models/v2_5_0/dien_bf16_pretrained_opt_model.pb

3.5.3.3 Setup Environment

1. Install required packages:

If your host distro is RHEL 9.x:

$ sudo dnf install python3-virtualenv python3-libvirt libguestfs-devel libvirt-

devel python3-devel gcc gcc-c++

50 Document Number: 355388-001

If your host distro is Ubuntu 22.04:

$ sudo apt install python3-virtualenv python3-libvirt libguestfs-dev libvirt-dev

python3-dev net-tools

2. Make sure the libvirt service is started. If not, start libvirt service. If the host is

Ubuntu 22.04 and AppArmor is enabled, set security_driver = "none"

in /etc/libvirt/qemu.conf and restart the libvirt service.

$ sudo systemctl status libvirtd

$ sudo systemctl restart libvirtd

3. Setup environment. Run the below command to setup the python

environment.

$ cd tdx-tools/tests/

$ source setupenv.sh

4. Create artifacts.yaml from template.

Refer template <tdx-tools>/tests/artifacts.yaml.template to

create <tdx-tools>/tests/artifacts.yaml. Update

the source and sha256sum to indicate the location of guest image and guest

kernel. See following example:

latest-guest-image-ubuntu:

 source: http://css-devops.sh.intel.com/download/tdx-guest/latest/td-guest-

ubuntu-22.04-test.qcow2.tar.xz

 sha256sum: http://css-devops.sh.intel.com/download/tdx-guest/latest/td-guest-

ubuntu-22.04-test.qcow2.tar.xz.sha256sum

latest-guest-kernel-ubuntu:

 source: http://css-devops.sh.intel.com/download/tdx-guest/latest/vmlinuz-jammy

 sha256sum: http://css-devops.sh.intel.com/download/tdx-guest/latest/vmlinuz-

jammy.sha256sum

5. Generate keys

Generate a pair of keys that will be used in test running.

$ ssh-keygen

The keys should be named "vm_ssh_test_key" and "vm_ssh_test_key.pub"

and located under tdx-tools/tests/tests/

51 Document Number: 355388-001

3.5.3.4 Run Tests

1. Run all tests:

$ sudo ./run.sh -s all

$ # NOTE:

$ # “sudo” is required since some tests need root permission.

$ # The user needs to be added into the libvirt group. e.g., for user "root"

$ # please run

$ sudo usermod -aG libvirt root

2. Run some case modules:
$./run.sh -c <test_module1> -c <test_module2>

For example, run the whole test module “test_tdvm_lifecycle.py”.

$./run.sh -c tests/test_tdvm_lifecycle.py

3. Run specific test cases:
$./run.sh -c <test_module1> -c <test_module1>::<test_name>

For example, run the test case “test_tdvm_lifecycle_virsh_start_shutdown” in

“tests/test_tdvm_lifecycle.py”

$./run.sh -c tests/test_tdvm_lifecycle.py::

test_tdvm_lifecycle_virsh_start_shutdown

4. User can specify guest image OS type with “-g”. Currently “rhel” and “ubuntu”

are supported. Ubuntu guest image will be used by default if “-g” is not

specified.

For example, run all the tests using an Ubuntu 22.04 guest image.

$ sudo ./run.sh -g rhel -s all

52 Document Number: 355388-001

4 Measurement & Attestation

 Remote attestation enables a relying party (either the owner of a workload or a user

of the services provided by a workload) to establish that the workload is running on

an Intel-TDX-enabled platform within a TD prior to providing data to the workload.

TD measurements collect the information of hardware, firmware and software

about TD, which will be extended to TD measurement registers and be part of TD

REPORT for remote attestation. In this section, it will introduce TDX measurement

and remote attestation process.

4.1 TEE, TCB, Quote

Typically, a TEE provides the evidence or measurements of its origin and current

state so that the evidence can be verified by another party either programmatically

or manually. It can decide whether to trust code running in the TEE. It is typically

important that such evidence is signed by hardware that can be vouched for by a

manufacturer, so that the party checking the evidence has strong assurances that it

was not generated by malware or other unauthorized parties. [3] The remote party

allows sending the secret or key to the TEE environment after successfully verifying

the evidence.

Figure 23: Measurement and Attestation for TEE

The trusted computing base (TCB) refers to all of a system's hardware, firmware,

and software components that provide a secure environment. For a confidential

VM, it includes hardware information such as CPU, SEAM firmware, and guest

53 Document Number: 355388-001

components such as OVMF, bootloader (shim/grub), and kernel. The other host

software such as QEMU VMM and Orchestrator Libvirt are out of TCB.

The hash-chained measurement on TCB will be extended to some secure registers

such as TPM PCR (platform configuration register). The values from several secure

registers construct to a report and are finally signed to be a quote by an attestation

key.

4.2 TDX Measurement

4.2.1 TD Report

Figure 24: Intel TDX Measurement

The API TDG.MR.REPORT in the Intel TDX module creates a

TDREPORT_STRUCT structure6 containing the TD measurements, initial

configuration of the TD that was locked at finalization (TDH.MR.FINALIZE), the

Intel TDX module measurements, and the REPORTDATA value [1]:

• The measurement of TDX module is recorded in the field MRSEAM.

• The measurement of TDVF/OVMF is record in the field MRTD.

• The measurement of TD-Hob, ACPI is record in the RTMR [0].

• The measurement of bootloaders like grub/shim is recorded in the field

RTMR [1].

6 https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Tdx.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/Tdx.h

54 Document Number: 355388-001

• The measurement of kernel and initrd is recorded in the field RTMR [2].

NOTE: for direct boot, there is no bootloader, so the measurement of kernel is

recorded in the field RTMR [1].

4.2.2 MRTD and RTMR

There are two types of measurement registers – MRTD and RTMR for Intel TDX:

• MRTD (TD measurement register) provides static measurement of TD build

process and the initial contents of TD

• RTMR (runtime measurement register) is an array of general-purpose

measurement registers to Intel TDX software to enable measuring additional

logic and data loaded into the TD at runtime. As designed, RTMR can be used

by the guest TD software to measure the boot process.

There are 4 RTMR registers:

Table 7: RTMR Definitions

Register Content Measured by
RTMR [0] Static configuration (CFV); Dynamic

Configuration (TD HOB, ACPI)

TDVF

RTMR [1] PCI option ROM, OS loader, OS kernel,

initrd, GPT, boot variable, boot

parameter

TDVF

RTMR [2] TD OS App OS applications
RTMR [3] Reserved

4.2.3 Pre-Boot Measurement

The pre-boot environment before the kernel includes the TDVF/OVMF phase of the

bootloader phase (shim and grub). The whole boot chain will be measured into

RTMR via EFI_CC_MEASUREMENT_PROTOCOL7.

7 https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/CcMeasurement.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Protocol/CcMeasurement.h

55 Document Number: 355388-001

Figure 25: TD Measurement Process

Similar to the TCG event log [4], EFI_CC_MEASUREMENT_PROTOCOL logs the events

into ACPI table CCEL 8 and the measurement hash is extended to the

corresponding RTMR register. The event logs in CCEL table can be replayed within

a TD guest to verify the RTMR value.

4.2.4 Pytdxattest Tool

Pytdxattest in tdx-tools provides a Python library and utilities for TD measurement

that can be used by tenant workloads, attestation agents, or validation tools:

• Get RTMR value from TDREPORT via Linux attestation driver.

• Get the full TD event log from CCEL ACPI table.

• Verify value of RTMR by replaying event logs.

Here are the step-by-step instructions to use Pytdxattest:

• Install

$ python3 -m pip install pytdxattest

• Run

o Get Event Log.

$ tdx_eventlogs

8 https://uefi.org/specs/ACPI/6.5/05_ACPI_Software_Programming_Model.html#cc-event-log-

acpi-table

https://github.com/intel/tdx-tools/tree/tdx-1.5/attestation/pytdxattest
https://uefi.org/specs/ACPI/6.5/05_ACPI_Software_Programming_Model.html#cc-event-log-acpi-table
https://uefi.org/specs/ACPI/6.5/05_ACPI_Software_Programming_Model.html#cc-event-log-acpi-table

56 Document Number: 355388-001

Refer to the example outputs at measurement log for grub

boot and measurement log for direct boot

o Get TDREPORT, which includes value of RTMR.

$ tdx_tdreport

o Verify RTMR.

$ tdx_verify_rtmr

The tool will compare RTMR value from TDREPORT and RTMR value

replayed via event log. The two values are expected to be identical,

which means the measured contents are not tampered with.

4.2.5 Linux Runtime Measurement

Integrity Measurement Architecture (IMA) is the Linux kernel integrity subsystem

to detect if files have been accidentally or maliciously altered, both remotely and

locally. Currently, IMA maintains the runtime measurement list, if anchored in a

hardware Trusted Platform Module (TPM), to make the measured hashes of files

immutable. It also supports the appraise mechanism to enforce local file integrity by

appraising the measurement against a “good” value stored as an extended attribute.

Extra kernel changes have been introduced to enable IMA in a TD guest and to

maintain the runtime measurement list inside of an RTMR [2].

Figure 26: Enable IMA extend hash to RTMR

Different configurations (kernel command line) can be applied to define the scope

to be measured. Available options include:

https://github.com/intel/tdx-tools/blob/tdx-1.5/doc/measure_log_grub_boot.txt
https://github.com/intel/tdx-tools/blob/tdx-1.5/doc/measure_log_grub_boot.txt
https://github.com/intel/tdx-tools/blob/tdx-1.5/doc/measure_log_direct_boot.txt

57 Document Number: 355388-001

• “ima_hash=sha384”: Enable measurement against boot aggregates, which

covers firmware, boot loader, kernel command line and etc.

• “ima_hash=sha384 ima_policy=critical_data”: Enable measurements

against boot aggregates and kernel integrity critical data.

• “ima_hash=sha384 ima_policy=tcb”: Enable measurements against all

programs executed, files mmap’d for execution, and all files opened with the

read mode bit set by either the effective uid (euid=0) or uid=0.

Custom policies can be set by the user to define the scope to be measured. For

more details, please refer to the IMA documentation.

Below are some sample instructions to enable and verify this feature in a TD guest:

• Sample configuration to start up the TD VM

$./start-qemu.sh -k <path-to-kernel> -i <path-to-image> -e

"ima_hash=sha384 ima_policy=critical_data"

• Run

o Get IMA measurement count.

$ sudo cat /sys/kernel/security/integrity/ima/runtime_measurements_count

o Get full IMA measurement list stored inside the kernel securityfs.

$ sudo cat /sys/kernel/security/integrity/ima/ascii_runtime_measurements

o Verify RTMR within TDREPORT by using the PyTdxMeasure Tool.

$ sudo ./tdx_tdreport

User can find the measurements extended in RTMR [2] inside the

TDREPORT. TPM PCR Calculator (available in Microsoft Store) can be

used to replay the result with the ASCII measurements that fetched

inside kernel security FS.

4.3 Attestation

4.3.1 Overview

Remote attestation helps an off-platform party (also known as Relying Party) to

have increased confidence that the software is running inside a TD, on a genuine,

Intel-TDX system, and at a given security level (also referenced as the TCB version).

On a high level, the Relying Party requests attestation proof – a TD Quote – and then

verifies this TD Quote. Among other information, the TD Quote contains: TD

measurements (static and runtime), data that the TD associates with itself, SVNs of

58 Document Number: 355388-001

elements in the TDX TCB. Intel TDX attestation requires Intel SGX, because an

SGX-based TD-Quoting Enclave is used in the process. In the following, we provide

some more details of the Intel SGX attestation flow. See Section E of Intel® Trust

Domain Extension – White Paper for more details about Intel TDX remote

attestation.

Intel TDX Attestation flow (see Figure 2722):

• (1): Relying Party sends an attestation request to TD.

• (2): TD requests a TD Report from the Intel TDX Module

• (3, 4): Intel TDX Module invokes the CPU instruction SEAMREPORT, which

triggers the hardware-based generation of a TD Report including, among other

information, TD measurements (static and runtime), data that the TD associates

with itself, SVNs of elements in the TDX TCB. The SEAMREPORT instruction

protects the integrity of the TD Report with a MAC for which the key is only known

to hardware.

• (5): Intel TDX Module passes back the TD Report to the TD.

• (6): TD forwards the TD Report to the VMM requesting the conversion to a

TD Quote.

• (7, 8): VM forwards the TD Report to the TD Quoting Enclave for conversion.

TD Quoting Enclave uses the CPU instruction EVERIFYREPORT2 to verify the

MAC of the TD Report. On success, the TD Quoting Enclave converts the TD

Report to a TD Quote by signing the TD Report with its Attestation Key. The

Attestation Key is signed with the Provisioning Certificate Key (PCK) by the

Provisioning Certification Enclave (PCE) and the Intel publishes certificates and

certificate revocation lists for PCKs. As a result, the trust of TD Quotes is rooted in

Intel CAs.

• (9, 10): VMM passed back TD Quote to TD, and TD forwards it to the

challenger.

• (11, 12): Relying Party performs attestation verification by verifying the TD

Quote. The attestation verification can be done by the Relying Party itself or using a

dedicated attestation service, e.g., Project Amber.

59 Document Number: 355388-001

Intel TDX remote attestation demonstrates applications that are running securely

on a given trusted environment (TD guest) to a relying party. This increases the

confidence of a remote party that the software is running inside a TD on a genuine

Intel TDX system at a given security level, which is also referenced as the TCB

version. The TDX attestation reuses Intel SGX infrastructure to provide attestation

to a given measurement. It is based on TD Quote, which is the signed TD Report in

TD Quoting Enclave [1].

Figure 27: Intel TDX Attestation Flow

The Linux Stack for Intel TDX 1.5 provides end-to-end Intel TDX attestation

capability by integrating the Intel® Software Guard Extensions Data Center

Attestation Primitives9 (Intel® SGX DCAP). In this section, it will introduce how to

run Intel TDX remote attestation.

4.3.2 Set Up DCAP Repository on Host

In the following, we show how to set up Intel SGX DCAP on an Intel TDX host with

either Ubuntu 22.04 or RHEL 9.x. For more details about installation and self-

building https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/docs/ or

https://github.com/intel/SGXDataCenterAttestationPrimitives

DCAP doesn’t support RHEL 9.x host yet. We provide containerized version of

PCCS and QGS so that customers can run PCCS and QGS on a RHEL 9.x host to

complete quote generation operation. The containerized PCCS and QGS can also

run on Ubuntu 22.04 host. It’s recommended to go through below non-

9 https://github.com/intel/SGXDataCenterAttestationPrimitives

https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/docs/
https://github.com/intel/SGXDataCenterAttestationPrimitives
https://github.com/intel/SGXDataCenterAttestationPrimitives

60 Document Number: 355388-001

containerized installation steps on Ubuntu 22.04 host to get an overview of the

process of remote attestation. After that, it will introduce how to setup

containerized PCCS and QGS on RHEL 9.x host in section 4.3.7 Setup

containerized PCCS and QGS on RHEL 9 host.

Note: In the following sections of 4.3.2 – 4.3.6, if there are no additional instructions,

the steps run on Ubuntu 22.04 host.

Before running the steps, download SGX DCAP archive 1.18 of Ubuntu 22.04 from

https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/ The relevant archive is

named sgx_*_local_repo.tgz.

This example shows how to set up the package repository on an Intel TDX host with

Ubuntu 22.04.

1. Setup DCAP repo

$ # Prepare DCAP repo

$ tar zxvf sgx_debian_local_repo.tar.gz

$ sudo mv sgx_debian_local_repo /srv/sgx_debian_local_repo

$ # Set up local Debian repository

$ sudo cat <<EOF >> /etc/apt/sources.list.d/sgx_debian_local_repo.list

deb [trusted=yes arch=amd64] file:/srv/sgx_debian_local_repo jammy main

EOF

$ sudo apt update

2. Install dependencies.

$ sudo apt install -y gcc make tar

 # Install latest nodejs, version 18 shown below is an example

$ curl -sL https://deb.nodesource.com/setup_18.x -o nodesource_setup.sh

$ sudo bash nodesource_setup.sh

$ sudo apt-get install -y nodejs

4.3.3 Set Up PCCS on Host

Intel provides a reference implementation of the Provisioning Certification Caching

Service (PCCS). This cache can store collateral (e.g., Provisioning Certificate Key

certificates and TCB levels) necessary for TD quote generation and TD quote

verification, without the need to access the Intel® Software Guard Extensions

Provisioning Certification Service (Intel® SGX PCS).

In the following example, we assume you use Intel’s PCCS implementation for

remote attestation purposes.

https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/

61 Document Number: 355388-001

Figure 28: Setup PCCS

1. Obtain a provisioning API key for to enable the PCCS RESTful API.

Go to https://sbx.api.portal.trustedservices.intel.com/provisioning-

certification and click 'Subscribe'. An API key will be generated. Copy the API

key for the following steps.

2. Install PCCS with following steps. During installation, answer “Y” when asked

if the PCCS should be installed now, “Y” when asked if PCCS should be

configured now, and enter API key generated in step 1 when asked for “Intel

PCS API key”. Answer the remaining questions according to your needs.

$ # Switch to root user for installation

$ sudo su

$

$ apt update

$ apt install -y --no-install-recommends sgx-dcap-pccs

https://sbx.api.portal.trustedservices.intel.com/provisioning-certification
https://sbx.api.portal.trustedservices.intel.com/provisioning-certification

62 Document Number: 355388-001

NOTE: If you have configured PCCS during above installation command, it doesn’t

need to run below install.sh which will configure PCCS again.

$ cd /opt/intel/sgx-dcap-pccs

$ sudo -u pccs ./install.sh

NOTE: If you have configured PCCS during above installation command, it doesn’t

need to run below install.sh which will configure PCCS again.

$ cd /opt/intel/sgx-dcap-pccs

$ sudo -u pccs ./install.sh

➢ After the installation is completes successfully, make sure the PCCS is

configured to use the v4 API. Check “uri” and modify it if needed in the

configuration file /opt/intel/sgx-dcap-pccs/config/default.json:

NOTE: Remote attestation PCS server supports both SBX and LIV server. If you are

using production fused SKU, please use LIV server in below uri. Otherwise please

use SBX server.

If you are using production fused SKU, please set uri as below

"uri": "https://api.trustedservices.intel.com/sgx/certification/v4/"

If you are using debug fused SKU, please set uri as below

"uri": "https://sbx.api.trustedservices.intel.com/sgx/certification/v4/"

➢ If present, delete the old PCCS database, Afterwards, restart PCCS.

$ [Optional] Remove old PCCS datase

$ sudo rm -rf /opt/intel/sgx-dcap-pccs/pckcache.db

$

$ Restart PCCS and check status

$ sudo systemctl restart pccs

$ sudo systemctl status pccs

You can check the PCCS service log with the following command:

$ sudo journalctl -u pccs -f

4.3.4 Set Up Quote Generation Service on Host

This section introduces how to install Quote Generation Service (QGS) and how to

perform Intel SGX platform registration.

63 Document Number: 355388-001

Figure 29: Set up DCAP software on the TDX host

1. Download the Intel® Software Guard Extensions SDK for Linux* OS (Intel®

SGX SDK for Linux* OS) from https://download.01.org/intel-sgx/sgx-

dcap/1.18/linux/distro/ according to your OS distro. The relevant archive is

named sgx_linux_x64_sdk_*.bin.

2. Install the Intel® Software Guard Extensions SDK for Linux* OS (Intel® SGX

SDK for Linux* OS) to the folder /opt/intel/

$ sudo chmod +x sgx_linux_x64_sdk_2.19.90.3.bin

$ sudo ./sgx_linux_x64_sdk_2.19.90.3.bin

3. Install QGS and QPL packages on the host.

$ sudo apt install -y --no-install-recommends tdx-qgs libsgx-dcap-default-qpl

libsgx-dcap-default-qpl-dev

NOTE: If you didn’t provide secure certificate for PCCS HTTPS service,

please modify the configuration file: /etc/sgx_default_qcnl.conf to add

the following.

// PCCS server address

“pccs_url”: “https://<PCCS_IP>:8081/sgx/certification/v4/”,

https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/
https://download.01.org/intel-sgx/sgx-dcap/1.18/linux/distro/

64 Document Number: 355388-001

// To accept insecure HTTPS certificate depends on PCCS Server’s configuration,

// set below option to false

“use_secure_cert”: false

4. Install PCKIDRetrievalTool

 sudo apt install -y sgx-pck-id-retrieval-tool

NOTE: the reported version of the PCKIDRetrievalTool may be different, if you

didn’t provide secure certificate for PCCS HTTPS service, please modify the

configuration file /opt/intel/sgx-pck-id-retrieval-

tool/network_setting.conf with the following content.

PCCS_URL=https://<PCCS_IP>:8081/sgx/certification/v4/platforms

if using localhost as pccs

PCCS_URL=https://localhost:8081/sgx/certification/v4/platforms

USE_SECURE_CERT=FALSE

5. Do SGX platform Registration via PCKIDRetrievalTool

$ cd /opt/intel/sgx-pck-id-retrieval-tool

$ sudo sh -c ./PCKIDRetrievalTool

The expected response is as follows. The reported version may be different.

Intel® Software Guard Extensions PCK Cert ID Retrieval Tool Version 1.18.100.1

Registration status has been set to completed status. Pckid_retrieval.csv has been

generated successfully!

NOTE: If it returns a message like “Platform Manifest not available”, you may need to

perform a SGX Factory Reset in BIOS and run PCKIDRetrievalTool again.

4.3.5 Generate Quote in TD

This section introduces the quote generation steps including launching a TDX guest

with quote generation support and generating a quote within the TDX guest.

65 Document Number: 355388-001

Figure 30: Quote Generation

4.3.5.1 Launch TD with Quote Generation Support

There are two ways to run quote generation: get quote via vsock or get quote via

TDVMCALL. Both are supported.

66 Document Number: 355388-001

Figure 31: Approaches to Generate Intel TDX Quote

• Approach 1: Get quote via vsock call from the user space within TD guest to

QGS directly.

o If launched via QEMU, add the following parameter.

-device vhost-vsock-pci,guest-cid=3

o If using start-qemu.sh to indicate getting quote via vsock.

$./start-qemu.sh -i <guest image> -k <guest kernel> -q vsock

o If launched via Libvirt, add the following fields in XML

<vsock model='virtio'>

 <cid auto='yes' address='3'/>

 <address type='pci' domain='0x0000' bus='0x05' slot='0x00' function='0x0'/>

</vsock>

• Approach 2: Get quote via TDG.VP.VMCALL.GETQUOTE

o If launched via QEMU, add “quote-generation-

service=vsock:2:4050” in parameter -object

-object tdx-guest,sept-ve-disable,id=tdx,quote-generation-service=vsock:2:4050

o If using start-qemu.sh to indicate getting quote via tdvmcall.

$./start-qemu.sh -i <guest image> -k <guest kernel> -q tdvmcall

o If launched via libvirt, add following fields in XML

<launchSecurity type='tdx'>

67 Document Number: 355388-001

 <Quote-Generation-Service>vsock:2:4050</Quote-Generation-Service>

</launchSecurity>

• Within a TD guest, create a file at /etc/tdx-attest.conf with the following

content:

port=4050

4.3.5.2 Generate Quote within Intel TDX Guest

1. Set up the package repository in TD guest. Refer to steps of “Setup DCAP

repo” in section 4.3.2 Set Up DCAP Repository on Host:

- Install libtdx-attest, libtdx-attest-dev

$ sudo apt install -y libtdx-attest libtdx-attest-dev

$ sudo apt-get install -y make gcc

2. Build quote generation sample

$ cd /opt/intel/tdx-quote-generation-sample/

$ make clean

$ make

3. Use test_tdx_attest to generate a quote.dat.

$ sudo chmod +x test_tdx_attest

$ sudo ./test_tdx_attest

4.3.6 Verify Quote on Host

68 Document Number: 355388-001

Figure 32: Verify Quote

After the Quote is generated, you can use a sample Quote verification application to

verify the Quote.

1. Install the Quote verification libraries:

$ sudo apt install -y libsgx-dcap-quote-verify

$ sudo apt install -y libsgx-dcap-quote-verify-dev

2. Copy quote.dat from TDVM

Use scp or virt_copy_out to copy the quote from the TDVM.

$ # use scp to copy the quote from TDVM to host

$ scp <TDVM-user>@<TDVM-IP>:<path-to>/quote.dat <host_directory>/.

$ # use virt-copy-out to copy the quote from TDVM to host

$ sudo virt-copy-out -a <image_name> <directory_in_TDVM_contains_quote.dat>

<host_directory>

NOTE: Terminate the TDVM before using virt_copy_out to copy out the

quote.dat.

3. Build and run sample application verifying the generated quote:

$ git clone https://github.com/intel/SGXDataCenterAttestationPrimitives.git

69 Document Number: 355388-001

$ cd SGXDataCenterAttestationPrimitives/SampleCode/QuoteVerificationSample

$ make SGX_DEBUG=1

$./app -quote <PATH>/quote.dat

4.3.7 Setup containerized PCCS and QGS on RHEL 9 host

DCAP doesn’t support RHEL 9.x host yet. We provide containerized PCCS and

QGS to support TD quote generation on RHEL 9.x host. After TD quote is

generated, it can be verified on any host with DCAP supported distro and DCAP

installed. Please find DCAP supported distros at https://download.01.org/intel-

sgx/latest/dcap-latest/linux/distro/

1. Get tools of containerized PCCS and QGS

$ git clone https://github.com/intel/tdx-tools.git

2. Install docker

$ # Before installing docker, please uninstall the podman firstly.

$ sudo dnf remove podman

$ # Follow the official documentation to install the docker.

$ # https://docs.docker.com/engine/install/centos/

$ sudo groupadd docker

$ sudo usermod -a -G docker $USER

$ sudo systemctl restart docker

3. Install QGS service

$ cd tdx-tools/attestation/qgs

$ # Build QGS docker image

$ docker build --build-arg HTTP_PROXY=$http_proxy --build-arg

HTTPS_PROXY=$https_proxy -t <your registry> .

$ # Start QGS container

$ docker run -d --privileged --name qgs --restart always --net host <your

registry>

$ # Check QGS container is running

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

90a3777d813e qgs "/opt/intel/tdx-qgs/…" 9 minutes ago Up 9 minutes

qgs

4. Install PCCS service

https://github.com/intel/tdx-tools/tree/tdx-1.5/attestation/pccs
https://github.com/intel/tdx-tools/tree/tdx-1.5/attestation/qgs
https://download.01.org/intel-sgx/latest/dcap-latest/linux/distro/
https://download.01.org/intel-sgx/latest/dcap-latest/linux/distro/
https://github.com/intel/tdx-tools.git
https://docs.docker.com/engine/install/centos/

70 Document Number: 355388-001

$ cd container

$ # Prepare configuration of PCCS. Inpout sbx of liv according to your environment

when prompt

$./configure.sh

$ # Build PCCS docker image

$ docker build –build-arg HTTP_PROXY=$http_proxy –build-arg

HTTPS_PROXY=$https_proxy -t <your registry> .

$ # Start PCCS docker container

$ docker run -d --privileged -v /sys/firmware/efi/:/sys/firmware/efi/ --name pccs

--restart always --net host <your registry>

$ # Check whether PCCS is running

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

90a3777d813e pccs "node pccs_server.js" 9 minutes ago Up 9 minutes

8081/tcp pccs

After QGS and PCCS are running, you can boot TD with Ubuntu 22.04 guest image

on the host and get quote following section 4.3.5 Generate Quote in TD. Then you

can verify quote following section 4.3.6 Verify Quote on Host.

71 Document Number: 355388-001

5 TD Migration

5.1 Overview

VM migration is an action of moving VM from one resource to another, such as from

one host to another host to achieve the goal of improving resource utilization or

keeping VM running when original host needs to bring down for maintenance

purpose.

TD migration solution helps Cloud service providers to relocate/migrate an

executing TD guest from a source TDX platform to a target TDX platform. A TD

guest runs in a CPU mode that protects the confidentiality of its memory and CPU

state from another other platform software, including host VMM. The primary

security objective must be maintained while allowing TD resource manager (host

VMM) to migrate TD guest across compatible platforms.

The following diagram illustrates TD migration architecture.

Figure 33: TD migration

In this section. the TD that will be migrated is called source TD. The TD of migration

destination is called destination TD. A new component Migration TD (aka MigTD) is

72 Document Number: 355388-001

introduced as assistance of TD migration. It will perform functions of evaluating

migration policy and transfer Migration Session Key (MSK) for TD migration.

A MigTD should be bound to source TD and destination TD before migration can

start. A MigTD can be bound to more than one TD guest.

The TD migration process can be divided into 2 parts - Pre-migration and Migration.

• Pre-migration: MigTD will evaluate migration source and destination to

adherence to TD migration policy. After that, MSK will be generated and

transferred to destination host.

• Migration: TD content will be transferred to destination platform and the TD

content will be protected by MSK.

The following diagram illustrates TD migration flow.

Figure 34: TD migration communication flow

5.2 Prerequisite

Pre-migration phase involves MigTD’s attestation, so it requires to setup Quote

generation service (QGS) and PCCS before running pre-migration. Please refer to

4.3 Attestation

Install TDX migration package using below commands.

73 Document Number: 355388-001

For Ubuntu 22.04 host:

$ sudo apt-get install mig-td

For RHEL 9.x host:

$ sudo dnf install mig-td

5.3 TD migration guide

The following sections introduce how to perform TD migration either using TDX

QEMU or TDX Libvirt.

5.3.1 TD migration using QEMU

TD migration is mainly supported via TDX Qemu. In this section, the scripts are

using Qemu commands to go through TD migration steps.

The scripts are under the directory utils/td-migration/ of tdx-tools. The overall

steps will be like below.

• Create MigTD on source and destination (mig-td.sh)

• Create user TD on source and destination (user-td.sh)

• Pre-migration (connect.sh, pre-mig.sh)

• Live migration (mig-flow.sh)

Please check details in the following sections.

Figure 35: TD migration workflow

74 Document Number: 355388-001

5.3.1.1 Pre-copy migration

Pre-copy is the most used type of VM live migration. The source VM memory

content copy starts and keeps transferring until meeting a stopping condition. Then

the VM stops at the source host and be initiated at the destination host. TD

migration via pre-copy can be triggered either using TDX QEMU or using TDX

Libvirt. It shows how to run pre-copy migration via QEMU in this section.

NOTE: Each command needs one terminal, so please prepare 5 terminals or use

tmux.

Single Host Migration guide

1. Create MigTD_src to bind with source user TD

$ sudo ./mig-td.sh -t src

2. Create MigTD_dst to bind with destination user TD

$ sudo ./mig-td.sh -t dst

If MigTD starts successfully, the console will display the below message.

MigTD Version - 0.2.2

Loop to wait for request

You can check whether the 2 MigTD are created successfully by checking qemu

process. It's supposed to show 2 qemu processes for the 2 MigTD.

$ sudo ps -ef | grep qemu | grep migtd

3. Launch source TD and destination TD via direct boot or grub boot. Source TD

will boot to console successfully. A qemu process will be started for destination

TD but nothing will display in console until migration completes.

Direct Boot

$ sudo ./user-td.sh -t src -i <path/to>/image -k <path/to>/kernel

$ sudo ./user-td.sh -t dst -i <path/to>/image -k <path/to>/kernel

Grub Boot

$ sudo ./user-td.sh -t src -i <path/to>/image -b grub

$ sudo ./user-td.sh -t dst -i <path/to>/image -b grub

If you want to run attestation for userTD, it needs to boot TD with vsock or

tdvmcall.

Boot TD and set get quote method as vsock.

sudo ./user-td.sh -t src -i <path/to>/image -b grub -q vsock

Boot TD and set get quote method as tdvmcall.

sudo ./user-td.sh -t src -i <path/to>/image -b grub -q tdvmcall

4. Pre-Migration

Create a channel for MigTD_src and MigTD_dst.

$ sudo ./connect.sh

Check there are 2 socat process running

$ ps axu| grep socat

5. Start Pre-Migration

75 Document Number: 355388-001

$ sudo ./pre-mig.sh

Check if pre-migration is successful in dmesg output. There should be 2 messages

about pre-migration is done.

$ dmesg

[110722.032798] kvm_intel: Pre-migration is done, userspace pid=368587

[110722.074132] kvm_intel: Pre-migration is done, userspace pid=368515

6. Start Migration

$ sudo ./mig-flow.sh

You can check migration status by running the following command in Qemu monitor

of source TD.

(qemu) info migrate

…

Migration status: active

total time: 147699 ms

expected downtime: 300 ms

setup: 11 ms

transferred ram: 3345444 kbytes

throughput: 936.92 mbps

remaining ram: 13496592 kbytes

total ram: 16781448 kbytes

…

After migration is complete, you can see the following message. Destination TD

will be ready in the terminal of booting destination TD.

$ dmesg

[110983.886989] migration flow is done, userspace pid 397008

Cross Host Migration guide

NOTE:

Guest image of source TD should be accessible from destination platform. In this

section, it uses NFS for guest image sharing.

Source host and destination host should have the same BIOS version and use the

same Linux TDX SW stack.

1. Create MigTD on both source and destination host

Run the following command on source host. It will create a MigTD for source TD.

$ sudo ./mig-td.sh -t src

Run the following command on destination host. It will create a MigTD for

destination TD.

$ sudo ./mig-td.sh -t dst

2. Create source TD and destination TD via direct oot or grub boot

Direct Boot

create the source user TD on source host

$ sudo ./user-td.sh -t src -i <path/to>/image -k <path/to>/kernel

76 Document Number: 355388-001

create the destination user TD on dest host. A qemu process will be started for

destination TD after running user-td.sh but nothing will display in console until

migration completes.

$ sudo ./user-td.sh -t dst -i <path/to>/image -k <path/to>/kernel

Grub Boot

create the source user TD on source host

$ sudo ./user-td.sh -t src -i <path/to>/image -b grub

create the destination user TD on dest host

$ sudo ./user-td.sh -t dst -i <path/to>/image -b grub

3. Create socat channel

This step has a little difference with the single host live migration.

Create a channel for MigTD_src and MigTD_dst. Run this command on source

platform.

$ sudo ./connect.sh -t remote -i <DEST_HOST_IP>

4. Start Pre-Migration on source host

$ sudo ./pre-mig.sh -t remote -i <DEST_HOST_IP>

Check whether pre-migration is successful on both source and destination hosts.

It's expected to see a message similar as the follows.

$ dmesg

[110722.032798] kvm_intel: Pre-migration is done, userspace pid=368587

5. Start Migration on source host

$ sudo ./mig-flow.sh -i <DEST_HOST_IP>

You can check migration progress by running the following command in Qemu

monitor of source TD. When it completes, the status will be completed. The example

output is as follows.

(qemu) info migrate

…

Migration status: completed

total time: 14699 ms

expected downtime: 300 ms

setup: 11 ms

…

After migration is complete, you can see the following message on destination

platform. Destination TD will be ready in the terminal of booting destination TD.

$ dmesg

[110983.886989] migration flow is done, userspace pid 397008

5.3.1.2 Cancel migration

Migration can be cancelled in case users want to abort migration or the connection

between source and destination TD is interrupted. After migration is cancelled,

source TD will not be affected and still works well.

77 Document Number: 355388-001

If you want to abort TD migration, please connect to Qemu monitor and run the

following command.

(qemu) migrate_cancel

If you want to re-migrate the source TD, please refer to 5.3.1.1 Pre-copy migration to

go through migration process again and make sure:

• Destination TD has been created.

• Re-run pre-migration and it passed.

• Trigger migration.

5.3.1.3 Post-copy migration

Post-copy migration is another type of VM live migration. It defers the transfer of a

VM's memory contents until after its processor state has been sent to the target

host. This strategy can provide a "winwin" by reducing total migration time while

maintaining the liveness of the VM during migration.

For TD post-copy migration, it shares the same steps of starting migTD, starting

source TD and destination TD, pre-migration as pre-copy does. Please refer to

5.3.1.1 Pre-copy migration to start migTD, user TD and complete pre-migration. The

only difference is in the step of migration. Please run below command to trigger

post-copy migration.

NOTE: It doesn’t support to enable post-copy and multi-stream at the same time.

Start Migration

$ sudo ./mig-flow.sh -c

Check migration status and you can see it’s postcopy-active

(qemu) info migrate

…

Migration status: postcopy-active

…

5.3.1.4 Multi-stream migration

Multi-stream migration supports to enable multi-FD for TD migrations, which allows

multiple parallel connections in one migration, and utilize more network capacity.

For TD multi-stream migration, it shares the same steps of starting migTD, starting

source TD and destination TD, pre-migration as pre-copy does. Please refer to

5.3.1.1 Pre-copy migration to start migTD, user TD and complete pre-migration. The

78 Document Number: 355388-001

only difference is in the step of migration. Please run below command to trigger

multi-stream migration.

NOTE: It doesn’t support to enable post-copy and multi-stream at the same time.

Start Migration enabling multifd and set multifd_channel number to 4

$ sudo ./mig-flow.sh -m -n 4

Check migration parameters and you can see multifd_channel number

(qemu) info migrate_parameters

5.3.1.5 Pre-binding

Pre-binding supports to bind a user TD to a migTD with migTD hash in case migTD

is not created yet. It doesn't require migTD to be ready before user TD. The migTD

hash is calculated based on migTD binary and a fixed TD configuration (TD

Attributes and XFAM, etc.). It will be generated along with migTD build. The hash

file will be generated under the same directory of migtd.bin. By default, it’s at

/usr/share/td-migration/. The hash of migTD has been calculated and stored

in /usr/share/td-migration/migtd.servtd_info_hash. The hash needs to be

used as input of “-v” when running below script. The real binding needs to be done

before pre-migration. Please run below command to go through migration using

pre-binding.

1. Create source migTD and destination migTD, please refer to steps of Pre-copy

Migration

2. Boot source TD and destination TD using migTD hash other than migTD PID. “-v”

indicates

$ sudo ./user-td.sh -t src -i <path/to>/image -b grub -g -v <migtd_hash>

$ sudo ./user-td.sh -t dst -i <path/to>/image -b grub -g -v <migtd_hash>

create migTD

$ sudo ./mig-td.sh -t src

$ sudo ./mig-td.sh -t dst

3. Pre-migration

$ sudo ./connect.sh

Bind migTD PID to user TD before pre-migration starts

$ sudo ./pre-mig.sh -b

4. Migration

$ sudo ./mig-flow.sh

79 Document Number: 355388-001

5.3.2 TD migration using Libvirt

TDX Libvirt also supports TD pre-copy migration. Users need to create migTD and

provide migTD pidfile in Libvirt XML template for TD. Then TD migration can be

triggered the same way as traditional VM migration.

It doesn’t support below features via TDX Libvirt yet.

• TD post-copy migration

• TD multi-stream migration

• MigTD pre-binding

5.3.2.1 Prerequisite

As mentioned in the previous section, the binary tool “socat” is also used in the TDX

Libvirt to establish a channel to verify two TD guests. Therefore, the “socat” need to

be installed in the source host and destination host before.

And the migTD need to be launched manually. The command below is an example.

1. Create MigTD_src to bind with source user TD

$ sudo tdx-tools/utils/td-migration/mig-td.sh -t src

2. Create MigTD_dst to bind with destination user TD

$ sudo tdx-tools/utils/td-migration /mig-td.sh -t dst

The migtTD will provide a pidfile to expose its pid to the TDX Libvirt. The script in

this release will create files “/var/run/migtd-src.pid” and “/var/run/migtd-

dst.pid” for the migTDs on the source host and the destination respectively.

5.3.2.2 TD launch and migration

The definition xml file describes a TD. To create a migratable TD, the policy of

launch security should disable the debug flag, the value of which is “0x10000000”.

Besides, the new entry <migration> should be added to the definition file, being the

direct child of the domain entry. The definition file can be formed in the following

example.

<domain type='kvm' …>

 …

 <launchSecurity type='tdx'>

 <policy>0x10000000</policy>

 <Quote-Generation-Service>vsock:2:4050</Quote-Generation-Service>

 </launchSecurity>

 <migration>

<migtd>

 <srcPidFile>/var/run/migtd-src.pid</srcPidFile>

 <dstPidFile>/var/run/migtd-dst.pid</dstPidFile>

80 Document Number: 355388-001

</migtd>

 </migration>

</domain>

The <srcPidFile> points to the migTD pidfile on the source host and the

<dstPidFile> points to the migTD pidfile on the destination host. The migration

command for TD is the same as traditional VM, except that current TDX Libvirt only

support simple live migration. On the source host, run the below command to trigger

migration.

$ virsh migrate --live qemu+ssh://[dst-host-name]/system

The speed of live migration can be affected by the memory size of the guest and the

bandwidth of the network between two hosts.

5.4 Reference

Pre-migration will do migration policy checking. TD migration can only be

performed after pre-migration is successful. The following error code is for you

reference in case pre-migration fails.

Table 8: Pre-migration result code

Code Description
0 SUCCESS

1 INVALID_PARAMETER

2 UNSUPPORTED

3 OUT_OF_RESOURCE

4 TDX_MODULE_ERROR

5 NETWORK_ERROR

6 SECURE_SESSION_ERROR

7 MUTUAL_ATTESTATION_ERROR

8 MIGPOLICY_ERROR

0xFF MIGTD_INTERNAL_ERROR

The default migration policy will check the following items and only pass when the

policy is met on source and destination platform. Please check policy details in the

following table.

Table 9: Pre-migration policy

Field Policy item Operation
TEE_TCB_INFO TEE_TCB_SVN.SEAM greater or equal

TEE_TCB_INFO MRSEAM equal

TEE_TCB_INFO MRSIGNERSEAM equal

TEE_TCB_INFO ATTRIBUTES equal

81 Document Number: 355388-001

TDINFO ATTRIBUTES equal

TDINFO XFAM equal

TDINFO MRCONFIGID equal

TDINFO MROWNER equal

TDINFO MROWNERCONFIG equal

EventLog Digest.MigTdCore equal

EventLog Digest.MigTdPolicy equal

EventLog Digest.MigTdSgxRootKey equal

82 Document Number: 355388-001

6 TD Preserving

The TDX module is designed to be able to reload the new one with TD guests and

legacy guests running, without rebooting the host.

NOTE: Currently, given TDX module has no production-signed version yet, it only

supports reloading the same one that is running on the host.

6.1 Prepare new TDX module

Make sure you have the following files. They represent new TDX module. This new

TDX module will be loaded during TD Preserving.

/lib/firmware/intel-seam/libtdx.bin

/lib/firmware/intel-seam/libtdx.bin.sigstruct

6.2 Trigger TD Preserving

Trigger TD Preserving via the following command.

$ echo update > /sys/devices/system/cpu/tdx/reload

Wait for a few seconds and check dmesg. It should display “tdx: TDX module

initialized” and you can see version information of new TDX module. The following is

a part of example output. TDX module version could vary.

[26.183842] tdx: TDX module: atributes 0x80000000, vendor_id 0x8086,

major_version 1, minor_version 5, build_date 20230525, build_num 534

[26.184252] tdx: TDX module: features0: fbf

[26.707902] tdx: 131331 pages allocated for PAMT.

[26.713246] tdx: TDX module initialized.

83 Document Number: 355388-001

7 vTPM

vTPM for TDX solution provides TPM 2.0 compliant device to TD guest. A TD with

vTPM device can work with tpm2-tools, IMA and Keylime to utilize TPM

functionality, TPM PCR and Keylime attestation process.

Two specific components are introduced to enable vTPM for TD:

• A vTPM TD to support vTPM functionality.

• A new TDVF with vTPM enabled.

Note that vTPM solution is supported since TDX 1.5 stack 2023WW27.

7.1 Installation

Install vTPM TD and vTPM TDVF on Ubuntu 22.04

$ sudo apt install -y vtpm-td ovmf

Install vTPM TD and vTPM TDVF on RHEL 9.x

$ sudo dnf install -y intel-mvp-vtpm-td intel-mvp-ovmf

If you are using 2023WW27 release, check whether vTPM TD and vTPM OVMF

have been installed.

$ # vTPM TD

$ ls /usr/share/tdx-vtpm/vtpmtd.bin

$ # vTPM OVMF

$ ls /usr/share/tdx-vtpm/OVMF.fd

7.2 Launch TD with vTPM enabled

Please refer to https://github.com/intel/tdx-tools to get TD base Libvirt xml

template and rename it to tdx_libvirt_direct.xml.

1. Update OVMF path

• If using 2023WW27 release, please add /usr/share/tdx-vtpm/OVMF.fd in

<os>-<loader> section.

2. Add vTPM template element <vtpm> as follows.

https://github.com/intel/tdx-tools

84 Document Number: 355388-001

<loader> is required for vTPM, it should be configured to vTPM TD’s binary.

<log> is optional in case to capture vTPM’s running log.

<domain type='kvm' xmlns:qemu='http://TDX Libvirt.org/schemas/domain/qemu/1.0'>

...

<os>

 ...

 <loader>/usr/share/tdx-vtpm/OVMF.fd</loader>

 ...

</os>

...

<launchSecurity type='tdx'>

 ...

 <vtpm>

 <loader>/usr/share/tdx-vtpm/vtpmtd.bin</loader>

 <log>/tmp/vtpm-td.log</log>

 </vtpm>

 </launchSecurity>

...

</domain>

To launch a TD with vTPM enabled, it is same as normal TD.

$ virsh create tdx_libvirt_direct.xml

7.3 Verify vTPM features

After booting up to TD guest OS, vTPM features can be used as normal TPM. tpm2-

tools can be used to verify vTPM features. It’s recommended to build and install

tpm2-tools in TD guest image.

Please install the following dependencies before building and installing tpm2-tools.

$ sudo apt-get -y install autoconf-archive libcmocka0 libcmocka-dev procps

iproute2 build-essential git pkg-config gcc libtool automake libssl-dev uthash-dev

autoconf doxygen libjson-c-dev libini-config-dev libcurl4-openssl-dev uuid-dev

libltdl-dev libusb-1.0-0-dev libarchive-dev clang libglib2.0-dev

Follow document: https://tpm2-tools.readthedocs.io/en/latest/INSTALL/ to build

and install tpm2-tools.

Run tpm2_pcrread to read the PCR registers.

$ # Read TPM PCR register

$ tpm2_pcrread

 sha256:

 0 : 0x6EEB7D7776BD6917F9595F6AC643EA7102861ED2E6204BB16E5ED5FE8DF19435

 1 : 0xAD2E8C8588627F7DEF8340ED8B3D459D25FD42D67BC54E8A3161345C7EC9FCC2

 2 : 0x3D458CFE55CC03EA1F443F1562BEEC8DF51C75E14A9FCF9A7234A13F198E7969

 3 : 0x3D458CFE55CC03EA1F443F1562BEEC8DF51C75E14A9FCF9A7234A13F198E7969

 4 : 0x6FE4C4AA1593841114E77CE3ED2EDA2CB07796EA42E46281068406D41EF1EEA8

 5 : 0xA5CEB755D043F32431D63E39F5161464620A3437280494B5850DC1B47CC074E0

 6 : 0x3D458CFE55CC03EA1F443F1562BEEC8DF51C75E14A9FCF9A7234A13F198E7969

https://tpm2-tools.readthedocs.io/en/latest/INSTALL/

85 Document Number: 355388-001

 7 : 0xB5710BF57D25623E4019027DA116821FA99F5C81E9E38B87671CC574F9281439

 8 : 0x00

 9 : 0xE0C40B1D01B7EB88BD00FE4D465E38B86846C59E9C441274125DAFF7ACC2CA1A

 10: 0x93E94F77D78CF172D93E99E1F44769F7FB20990C3F02052F917A0CBA163A363D

 11: 0x00

 12: 0x00

 13: 0x00

 14: 0x00

 15: 0x00

 16: 0x00

 17: 0xFF

 18: 0xFF

 19: 0xFF

 20: 0xFF

 21: 0xFF

 22: 0xFF

 23: 0x00

7.4 Keylime Attestation

Keylime is an open-source scalable trust system harnessing TPM Technology. It

provides a flexible framework for the remote attestation of any given PCR. In this

section, it will introduce a typical Keylime use scenario – remote attestation with

TPM.

vTPM can be used for Keylime to do remote attestation with Linux IMA enabled.

Keylime verifier will do continually remote attestation with Linux IMA measurement

records protected with vTPM from Keylime agent deployed inside TDVM and

compare against know good values provided by trusted admin or third parties.

7.4.1 Keylime Installation

Install Keylime verifier, Keylime registrar and Keylime agent:

$ useradd keylime -g tss

$ git clone https://github.com/keylime/keylime.git

$ cd keylime

$./installer.sh

Keylime agent is rust based, please follow https://www.rust-lang.org/tools/install to

install rust runtime. Keylime agent depends on tpm2-tss and tpm2-tools to be

installed as perquisitions, please follow 2.9.3 to install.

$ git clone https://github.com/keylime/rust-keylime.git

$ cd rust-keylime

$ cargo build --release

$ cp target/release/keylime_agent /usr/local/bin/

86 Document Number: 355388-001

7.4.2 Configuration

Update TD Libvirt xml template adding following parameter to enable Linux IMA:

<cmdline>... ima_policy=critical_data</cmdline>

When boot with this command line option, the Linux IMA measurement records can

be found at /sys/kernel/security/ima/ascii_runtime_measurements:

10 beab1f23c09f6458e298b123c8f8a647559ce772 ima-ng

sha256:6754a6b5ef16e241674dd59c8ff99964b075d9d8b87a767bc3e144b2fc508676

boot_aggregate

10 897bd9521b5e83ccc0aea36b3530e1deb5cb6f91 ima-buf

sha256:fefe31aa320223a0ba73eb5e28a05ee7fd9a459a1f7e26c4240b0998d51b7d43

kernel_version 362e322e31362d6d7670333076332b372d67656e65726963

Generate a Keylime runtime policy file using the IMA measurement records:

$ keylime_create_policy -b -m /sys/kernel/security/ima/ascii_runtime_measurements

-o runtime_policy.json

The generated policy file runtime_policy.json as bellow:

{"meta": {"version": 1, "generator": 1}, "release": 0, "digests":

{"boot_aggregate":

["6754a6b5ef16e241674dd59c8ff99964b075d9d8b87a767bc3e144b2fc508676"]}, "excludes":

[], "keyrings": {}, "ima": {"ignored_keyrings": [], "log_hash_alg": "sha1",

"dm_policy": null}, "ima-buf": {"kernel_version":

["fefe31aa320223a0ba73eb5e28a05ee7fd9a459a1f7e26c4240b0998d51b7d43"]},

"verification-keys": ""}

Prepare a payload file payload.txt for tenant command be used when registering

agent to verifier:

$ echo "12345678" > payload.txt

Change configure files in /etc/keylime to make sure it uses same hash algorithm

as Linux IMA does:

tpm_hash_alg = "sha256" #agent.conf

transparency_log_sign_algo = sha256 #registrar.conf

transparency_log_sign_algo = sha256 #verifier.conf

Change configure /etc/keylime/tenant.conf for to ask tenant to use self-

signed EK certificate.

require_ek_cert = False

Make sure /var/lib/keylime and all sub directories have owner run_as

“keylime:tss” specified in /etc/keylime/agent.conf, if not, please use following

command to set the owner and group.

$ sudo chown -R keylime:tss /var/lib/keylime

87 Document Number: 355388-001

7.4.3 Start Keylime Components

Start Keylime verifier, Keylime registrar and Keylime agent:

$ keylime_verifier > keylime_verifier.log 2>&1 &

$ keylime_registrar > keylime_registrar.log 2>&1 &

$ keylime_agent > keylime_agent.log 2>&1 &

Add Keylime agent to verifier to do continues remote attestation:

$ keylime_tenant -c add --uuid d432fbb3-d2f1-4a97-9ef7-75bd81c00000 -

f ./payload.txt --runtime-policy ./runtime_policy.json

Use following commands to check Keylime system status:

$ keylime_tenant -c reglist

$ keylime_tenant -c cvstatus

$ keylime_tenant -c regstatus

Use following command to remove the agent from verifier:

$ keylime_tenant -c delete -u d432fbb3-d2f1-4a97-9ef7-75bd81c00000

88 Document Number: 355388-001

8 Full Disk Encryption

FDE (Full disk encryption) is a security method for protecting sensitive data by

encrypting all data on a disk partition. In non-confidential VM, FDE is using LUKS

(Linux Unified Key Setup) with a user input disk encryption key. In confidential

environments like Intel TDX, to achieve zero trust, the encryption key should be

retrieved from the replying party via remote attestation.

Figure 36: Full Disk Encryption in TDX Guest

The FDE can be done in OVMF at the pre-boot stage or initrd at the Linux early boot

stage like. To learn more refer to the presentation “Secure Bootloader for

Confidential Computing”.

8.1 Workflow

This section introduces a solution/implementation to integrate FDE with Intel TDX.

The workflow can be divided into 5 steps.

1. Register key and keyid from the Key Broker Service (KBS).

https://lpc.events/event/16/contributions/1260/attachments/932/1950/Secure%20bootloader%20for%20Confidential%20Computing%20-%20LPC.pdf
https://lpc.events/event/16/contributions/1260/attachments/932/1950/Secure%20bootloader%20for%20Confidential%20Computing%20-%20LPC.pdf

89 Document Number: 355388-001

2. Create an encrypted guest image with the key retrieved in Step 1.

3. Install FDE components in the encrypted guest image.

4. Enroll necessary variables into OVMF.

5. Launch a TDX guest based on the encrypted guest image and the OVMF.

In the above step 1, the key and keyid pair should be registered in the KBS. Typically,

the key will be used to encrypt the guest image, and the keyid is the identifier of the

key in the KBS, which will be used in the decryption process. Given that KBS

providers have different designs for their keys and keyids, it is recommended to

register the pair of the key and the keyid after consulting the KBS provider.

In the above step 2, it creates an encrypted guest image.

In the above step 3, FDE components will be installed in the encrypted guest image.

The tdx-tools provides an integrated script “tdx-tools/attestation/full-

disk-encryption/tools/image/fde-image.sh” to complete the task. The key

and the keyid is retrieved in Step 1, and the tdx-repo is built from the tdx-tools.

$ cd attestation/full-disk-encryption/tools/image

$./fde-image.sh -k ${key} -i ${keyid} -d ${tdx-repo}

In Step 4, several variables are enrolled in the OVMF. These variables, such as keyid,

are retrieved by the fde-agent from the OVMF to help remote attestation retrieve

the key from the KBS. For example, assume that the keyid is saved in a JSON file.

The python script “tdx-tools/attestation/full-disk-

encryption/tools/image/enroll_vars.py” helps enroll the data.

$ cd attestation/full-disk-encryption/tools/image

$ # Enroll user data

$ cat userdata.txt

{

 "keyid":"sth"

}

$ NAME="KBSUserData"

$ GUID="732284dd-70c4-472a-aa45-1ffda02caf74"

$ DATA="userdata.txt"

$ python3 tools/image/enroll_vars.py -i OVMF.fd -o OVMF.fd -n $NAME -g $GUID -d

$DATA

$ # Enroll KBS URL

$ NAME="KBSURL"

$ GUID="0d9b4a60-e0bf-4a66-b9b1-db1b98f87770"

$ DATA="url.txt"

$ python3 tools/image/enroll_vars.py -i OVMF.fd -o OVMF.fd -n $NAME -g $GUID -d

$DATA

$ # Enroll KBS Certificate

$ NAME="KBSCert"

$ GUID="d2bf05a0-f7f8-41b6-b0ff-ad1a31c34d37"

$ DATA="cert.cer"

90 Document Number: 355388-001

$ python3 tools/image/enroll_vars.py -i OVMF.fd -o OVMF.fd -n $NAME -g $GUID -d

$DATA

In Step 5, a TDX guest is launched from the encrypted guest image. The script “tdx-

tools/start-qemu.sh” can launch it. Please use the encrypted guest image and

OVMF mentioned in step 3 and step 4.

$ OVMF_PATH=/path/to/OVMF

$ IMAGE_PATH=/path/to/image

$ start-qemu.sh \

 -b grub \

 -q tdvmcall \

 -o ${OVMF_PATH} \

 -i ${IMAGE_PATH}

The detailed steps are described in tdx-tools/doc/full_disk_encryption.md.

8.2 Prepare Encryption Image

It is complicated to create an encrypted guest image in Step 2 and Step 3. In Step 2,

an empty image is created first. The image will be partitioned into several volumes,

and the root filesystem partition is encrypted with the key in actual. The rootfs is

then copied to the root filesystem partition.

In the Step 3, a binary named by the fde-agent and its related configuration need to

be installed into the initrd. The parameter “cryptdevice=${root-enc}”, which

specifies the encrypted root partition, is appended in the kernel cmdline to enable

the FDE.

More details are described in the tdx-tools/attestation/full-disk-

encryption/README.md.

91 Document Number: 355388-001

9 Develop and Debug

9.1 Override the Intel TDX module

Secure arbitration mode (SEAM) is an extension to the virtual machines extension

(VMX) architecture to define a new VMX root operation called SEAM VMX root and

a new VMX non-root operation called SEAM VMX non-root. Collectively, the SEAM

VMX root and SEAM VMX non-root execution modes are called operations in

SEAM. SEAM VMX root operation is designed to host a CPU-attested, software

module called the Intel® Trust-Domain Extensions (Intel® TDX) module to manage

virtual machine (VM) guests called Trust Domains (TD). Currently, the Intel TDX

Module is the only SEAM module that the Intel P-SEAMLDR installs [1].

By default, BIOS loads the built-in version of TDX Loader and TDX module from the

IFWI during the server booting. For development or upgrading purpose without re-

flashing the BIOS, a debug or new version SEAMLDR and TDX module could be

placed into the ESP partition. The BIOS loads the new or debug version from ESP

on the next boot.

Figure 37: BIOS Search TDX Module from ESP

The naming rule is:

92 Document Number: 355388-001

• <ESP>/EFI/TDX/TDX-SEAM_SEAMLDR.bin

• <ESP>/EFI/TDX/TDX-SEAM.so

• <ESP>/EFI/TDX/TDX-SEAM.so.sigstruct

Check the updated TDX module information.

It will display a string including version information of tdx module, such as

major version, monir version, build date, etc.

$ sudo cat /sys/firmware/tdx/tdx_module/*

0x00000000202302060x000001c90x000000010x00000000initialized0x00008086

93 Document Number: 355388-001

9.2 Off-TD Debug via GDB from the Host

QEMU supports working with gdb via gdb’s remote-connection facility (the

“gdbstub”). This allows you to debug guest code in the same way that you might do

with a low-level debug facility like JTAG on real hardware. You can stop and start the

virtual machine, examine states like registers and memory, and set breakpoints and

watchpoints. Refer to https://www.QEMU.org/docs/master/system/gdb.html for

detailed gdb usage.

To support gdb the Intel TDX module exposes the following APIs:

• TDH.VP.RD/WR to allow QEMU emulator to read/write guest’s CPU states.

• TDH.MEM.RD/WR to allow QEMU emulator to read/write guest memory.

Figure 38: Off-TD Debug via GDB

Steps to debug TD guest are as follows:

• Step 1: Start TD guest in debug mode

o Append “debug=on” to “-object”. For example:

-object tdx-guest,id=tdx,debug=on

o Add -s -S parameter to QEMU-kvm. For example:

$ QEMU-kvm -s –S

o Disable kernel address randomization by append “nokaslr”

https://www.qemu.org/docs/master/system/gdb.html

94 Document Number: 355388-001

o If booting TD via start-qemu.sh, please refer to below command to set

“debug=on”:

$./start-qemu.sh -i <guest image> -k <guest kernel> -d

• Step 2: Install the guest kernel’s debug symbol into the host.

$ sudo dnf install intel-mvp-tdx-guest-kernel-debuginfo

• Step 3: Run the script start_gdb.sh with the following content.

#!/bin/bash

GDB=gdb

MOD_DIR=/usr/lib/debug/usr/lib/modules/<guest kernel>/

$GDB \

-ex "add-auto-load-safe-path $MOD_DIR" \

-ex "file $MOD_DIR/vmlinux" \

-ex "set arch i386:x86-64:intel" \

-ex "set remotetimeout 360" \

-ex "target remote 127.0.0.1:1234“

• Step 4: In the GDB console, use command “hb” to set the first break point.

gdb> hb start_kernel

The software breakpoint is available after the kernel is loaded into Guest Physical

Address (GPA) space by QEMU.

9.3 Check Memory Encryption

There are lots of approaches to check whether TDX memory is encrypted or not.

This section introduces how to do this check via a GDB debug approach.

1. Install the kernel development package on the host for debug symbols (using

RHEL distro as example):

$ sudo dnf install intel-mvp-tdx-kernel-devel

2. Get the GVA (guest virtual address) of the .text code section of guest

kernel.

$ # Extract the guest kernel binary

$ /usr/src/kernels/$(uname -r)/scripts/extract-vmlinux <path-to-guest-kernel-

file > vmlinux

$ objdump -d vmlinux > disassembled-vmlinux.asm && head -n 20 disassembled-

vmlinux.asm

...

ffffffff81000000 <.text>:

ffffffff81000000: 48 8d 25 51 3f c0 01 lea 0x1c03f51(%rip),%rsp

ffffffff81000007: 48 8d 3d f2 ff ff ff lea -0xe(%rip),%rdi

ffffffff8100000e: 56 push %rsi

ffffffff8100000f: e8 dc 06 00 00 callq 0xffffffff810006f0

95 Document Number: 355388-001

...

 The result shows that the virtual address of .text section starts from

0xffffffff81000000.

3. Verify the instructions/memory at the guest physical address of the .text

code section in a non-confidential VM guest.

➢ Launch a non-confidential guest, nokaslr should be appended for kernel

command like below to turn off the Kernel Address Space Layout

Randomization (KASLR).

-append "root=/dev/vda1 console=hvc0 nokaslr"

➢ Enter QEMU monitor shell

If using start-qemu.sh, just “telnet 127.0.0.1 9001”

➢ Disassemble the virtual address of the .text section

(QEMU) stop

(QEMU) x /10i 0xffffffff81000000

0x01000000: 48 8d 25 51 3f c0 01 leaq 0x1c03f51(%rip), %rsp

0x01000007: 48 8d 3d f2 ff ff ff leaq -0xe(%rip), %rdi

0x0100000e: 56 pushq %rsi

0x0100000f: e8 dc 06 00 00 callq 0x10006f0

4. Verify the instructions/memory at guest physical address of .text code

section in a TD guest.

➢ Launch a TD guest

o debug=on should be appended for QEMU command line

-object tdx-guest,id=tdx,debug=on

o nokaslr should be appended for kernel command line

-append "root=/dev/vda1 console=hvc0 nokaslr"

➢ Enter QEMU monitor shell

If using start-QEMU.sh, just “telnet 127.0.0.1 9001”

➢ Disassemble the virtual address of .text section

(QEMU) stop

(QEMU) x /10i 0xffffffff81000000

0xffffffff81000000: 98 cwtl

0xffffffff81000001: f8 clc

0xffffffff81000002: 49 5e popq %r14

0xffffffff81000004: 5a popq %rdx

0xffffffff81000005: 55 pushq %rbp

...

96 Document Number: 355388-001

The disassembled instructions should be different from a non-confidential guest

and should look meaningless (all zero) since the memory is encrypted.

9.4 Troubleshooting

9.4.1 Failed to boot non-TDX host kernel with TDX enabled in BIOS, hit

machine check xxxxxxxx00061136

When TDX is enabled in BIOS, non-TDX host kernel may fail to boot with below

message:

[Mca]CheckEmcaSmiError returns TRUE

[Mca]McaDetectAndHandle start

[Mca]McaDetectAndHandle, state is 0x0

[Mca]McaDetectAndHandle, state is 0x1

[Mca]ProcessSocketMcBankError: Inside the function

S0 C3 T1 [Mca]McBankErrorHandler: Skt = 0x0, McBank = 0x9, State = 0x1

S0 C3 T1 [Mca]McBankErrorHandler: Skt = 0x0, McBank = 0x9, State = 0x2

S0 C3 T1 [CpuRas]MC status 0xBE20000000061136, class FATAL

S0 C3 T1 [Mca]McBankErrorHandler: Skt = 0x0, McBank = 0x9, State = 0x4

S0 C3 T1 [CpuRas]MC status 0xBE20000000061136, class FATAL

System address:D1FFC000 is not DRAM address

ERROR: C00000002:V03071008 I0 D6476950-2481-4CBB-8400-442542C766C8 7C93FE18

When Trust Domain Extension (TDX) is Enabled in BIOS, the distribution-provided

kernel may not boot due to CONFIG_MTRR_SANITIZER=y to wrongly clean MTRR

entry with TDX/MKTME private bit.

To boot non-TDX distro default kernel, disable_mtrr_cleanup should be added

to kernel command line:

• In grub menu, press "e" entering the editing mode.

• Append disable_mtrr_cleanup in kernel command line like:

BOOT_IMAGE=(hd0,gpt2)/vmlinuz-4.18.0-193.el8.x86_64 root=/dev/mapper/cl-root ro

crashkernel=1G

resume=/dev/mapper/cl-swap rd.lvm.lv=cl/root rd.lvm.lv=cl/swap console=tty0

earlyprintk=ttyS0,115200 disable_mtrr_cleanup

97 Document Number: 355388-001

10 Virtual Machine Administrator

In this section, it assumes that TD has boot successfully by host OS administrators.

It will introduce how to use TD from virtual machine administrator perspective.

10.1 Run AI Workload with Intel AMX

Intel AMX is a new built-in accelerator that improves the performance of deep-

learning training and inference on the CPU. This is ideal for workloads like natural-

language processing, recommendation systems, and image recognition.10 It is

available on the 4th Gen Intel® Xeon® Scalable processors.

Use the following approach to check its capability on the TD guest.

$ grep -o amx /proc/cpuinfo

Expect to see output of several "amx". Empty results mean Intel AMX is not

enabled.

This section introduces how to run AI workload boosted by Intel AMX within an Intel

TD guest. This offers another layer of security over traditional VM’s to protect the

model data while it is being used.

• Install the Intel® Optimization for TensorFlow* version 2.8.0 via pip. Python

versions supported are 3.7, 3.8, 3.9, 3.10. For TensorFlow versions 1.13, 1.14

and 1.15 with pip > 20.0, if you get an “invalid wheel error”, try to downgrade

the pip version to < 20.0

$ dnf install python3

$ python3 -m pip install intel-tensorflow-avx512==2.11.0

• Download a pre-trained model.

$ wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_8/

mobilenet_v1_1.0_224_frozen.pb

• Clone the intelai/models repo and then navigate to the benchmark directory.

$ dnf install git

$ git clone https://github.com/IntelAI/models.git

$ cd models/benchmarks

• Intel® Optimization for TensorFlow uses Intel® oneAPI Deep Neural Network

Library (oneDNN) and OpenMP library. The DNNL_MAX_CPU_ISA

environment variable can be used to limit processor features for oneDNN, it

should be set to AVX512_CORE_AMX to use AMX features. The

10 Intel® Advanced Matrix Extensions Overview

https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/advanced-matrix-extensions/overview.html

98 Document Number: 355388-001

OMP_NUM_THREADS and KMP_AFFINITY environment variables set the

number of threads and thread affinity for OpenMP library. Set these

environment variables.

$ export DNNL_MAX_CPU_ISA=AVX512_CORE_AMX

$ export OMP_NUM_THREADS=16

$ export KMP_AFFINITY=granularity=fine,verbose,compact

• Run online inference. Replace <PATH> to the absolute path where the pre-

trained model is located.

$ python3 launch_benchmark.py \

--benchmark-only --framework tensorflow --model-name mobilenet_v1 \

--mode inference --precision bfloat16 --batch-size 1 \

--in-graph /opt/mobilenet_v1_1.0_224_frozen.pb \

--num-intra-threads 16 --num-inter-threads 1 --verbose --\ input_height=224

input_width=224 warmup_steps=20 steps=20 \ input_layer='input'

output_layer='MobilenetV1/Predictions/Reshape_1'

• The result will look like the following.

[Running warmup steps...]

steps = 10, 360.33539518900346 images/sec steps = 20, 349.292471685543 images/sec

[Running benchmark steps...]

steps = 10, 364.1521097412745 images/sec steps = 20, 369.8028566390407 images/sec

Average Throughput: 364.37 images/s on 20 iterations

If running same workload without “export

DNNL_MAX_CPU_ISA=AVX512_CORE_AMX”, the result will be a

noticeably smaller (images/sec) because AMX is not being used to

accelerate.

NOTE: If you fail to run above commands and see a message like "If you cannot

immediately regenerate your protos, some other possible workarounds are: 1.

Downgrade the protobuf package to 3.20.x or lower. 2. Set

PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use

pure-Python parsing and will be much slower)." you have two options. Option 1 is to

upgrade the protobuf version to 3.20.0 as following:

$ pip3 install --upgrade protobuf==3.20.0

Option 2 is to set the environment variable as following

$ export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python

Then re-run above online inference command.

99 Document Number: 355388-001

11 Disclaimer

The released components of the Linux Reference Stack for Intel TDX: Virtual

Firmware (edk2/TDVF), bootloader (grub2), and the Linux kernel, are fully enabled

to be run from within the Linux-based Intel TDX Guest VM to take advantage of the

Intel TDX security technology for cryptographically isolating Trusted VMs from the

rest of the system.

While Intel TDX removes the need for a Guest VM to trust the host and virtual

machine manager (VMM), it cannot by itself protect the guest VM from host/VMM

attacks that leverage existing paravirt-based communication interfaces between

the host/VMM and the guest (such as MMIO, portIO, etc.). To achieve the full

protection against such attacks, the Guest VM SW stack needs to be hardened to

securely handle a untrusted and potentially malicious input from a host/VMM via the

above-mentioned interfaces. This hardening effort is not specific to Intel TDX as a

technology, but common for all confidential cloud computing solutions and the

components of the VM guest SW stack. It should be an industry-wide effort

together with the open-source maintainers to perform the security analysis and

hardening of these components for the confidential computing threat model.

The Linux Reference Stack for Intel TDX team has invested a significant effort in

hardening the Linux kernel that is released as part of the Linux Reference Stack for

Intel TDX, the threat model for the Linux guest kernel, as well as the implemented

mitigation mechanisms are explained in the Intel TDE Linux guest kernel security

specification. The overall hardening methodology, as well as documentation on the

tools that have been used can be found in Intel TDE guest Linux kernel hardening

strategy. As a result, the Linux Reference Stack for Intel TDX kernel tree contains

numerous patches that either implement these hardening mechanisms or fix the

security issues that were discovered during the hardening process. It is strongly

recommended that all these patches are manually carried forward to the intended

production kernels, until they are merged into the mainline Linux kernel and will

become part of the upstream base kernel tree. In particular, the following two

patches that are critical for the security of the Intel TDX Linux guest kernel must be

included in any production guest kernel:

Commit ID:

• c942fc241d4e6c215731b6f03740b1a8bfc42018 from patches-tdx-

kernelMVP-KERNEL-5.19-v2.4.tar.gz

100 Document Number: 355388-001

• Commit ID: c289330c56c61508a1008d74fc65b7bc24a4a7d5 from

patches-tdx-kernelMVP-KERNEL-5.19-v2.4.tar.gz

It is important to note that the hardening of the Linux guest kernel has not been

finalized for this release and other components, such as virtual firmware

(edk2/TDVF) and the bootloader (grub2), still need more attention. In particular,

the existing interfaces that edk2/TDVF or grub2 expose towards the host/VMM

have not yet been analyzed for potential security implications against the

confidential cloud computing threat model. It is strongly recommended that this

analysis be done, and any issues uncovered are mitigated before these components

are used in production.

101 Document Number: 355388-001

12 References

[1] Intel, "Intel® TDX White Papers," February 2023. [Online]. Available:

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-

trust-domain-extensions.html.

[2] Intel, "TDX Guest Hardening," [Online]. Available: https://intel.github.io/ccc-

linux-guest-hardening-docs/tdx-guest-hardening.html.

[3] Confidential Computing Consortium, "A Technical Analysis of Confidential

Computing," 2022.

[4] Trust Computing Group, TCG Guidance on Integrity Measurements and Event

Log, 2021.

	1 Introduction
	1.1 Overview
	1.2 Terminology
	1.3 Using this White Paper
	1.4 Document Formatting

	2 Hardware and BIOS
	2.1 Hardware
	2.2 BIOS

	3 Build and Installation
	3.1 Components
	3.2 Building Stacks
	3.2.1 Build Packages
	3.2.2 Create Guest Image

	3.3 Install IaaS Host
	3.3.1 Install Packages Manually
	3.3.2 Deploy via Ansible
	3.3.3 Reboot with the Intel TDX kernel

	3.4 Manage the TD
	3.4.1 Overview
	3.4.2 Boot TD Guest
	3.4.2.1 Launch via QEMU
	3.4.2.2 Launch via Libvirt
	3.4.2.3 Secure Boot

	3.4.3 Use VirtIO Device

	3.5 Validation
	3.5.1 Overview
	3.5.2 PyCloudStack
	3.5.2.1 Overview
	3.5.2.2 Install PyCloudStack on TDX host
	3.5.2.3 Example

	3.5.3 Intel TDX Tests
	3.5.3.1 Overview
	3.5.3.2 Prerequisites
	3.5.3.3 Setup Environment
	3.5.3.4 Run Tests

	4 Measurement & Attestation
	4.1 TEE, TCB, Quote
	4.2 TDX Measurement
	4.2.1 TD Report
	4.2.2 MRTD and RTMR
	4.2.3 Pre-Boot Measurement
	4.2.4 Pytdxattest Tool
	4.2.5 Linux Runtime Measurement

	4.3 Attestation
	4.3.1 Overview
	4.3.2 Set Up DCAP Repository on Host
	4.3.3 Set Up PCCS on Host
	4.3.4 Set Up Quote Generation Service on Host
	4.3.5 Generate Quote in TD
	4.3.5.1 Launch TD with Quote Generation Support
	4.3.5.2 Generate Quote within Intel TDX Guest

	4.3.6 Verify Quote on Host
	4.3.7 Setup containerized PCCS and QGS on RHEL 9 host

	5 TD Migration
	5.1 Overview
	5.2 Prerequisite
	5.3 TD migration guide
	5.3.1 TD migration using QEMU
	5.3.1.1 Pre-copy migration
	5.3.1.2 Cancel migration
	5.3.1.3 Post-copy migration
	5.3.1.4 Multi-stream migration
	5.3.1.5 Pre-binding

	5.3.2 TD migration using Libvirt
	5.3.2.1 Prerequisite
	5.3.2.2 TD launch and migration

	5.4 Reference

	6 TD Preserving
	6.1 Prepare new TDX module
	6.2 Trigger TD Preserving

	7 vTPM
	7.1 Installation
	7.2 Launch TD with vTPM enabled
	7.3 Verify vTPM features
	7.4 Keylime Attestation
	7.4.1 Keylime Installation
	7.4.2 Configuration
	7.4.3 Start Keylime Components

	8 Full Disk Encryption
	8.1 Workflow
	8.2 Prepare Encryption Image

	9 Develop and Debug
	9.1 Override the Intel TDX module
	9.2 Off-TD Debug via GDB from the Host
	9.3 Check Memory Encryption
	9.4 Troubleshooting
	9.4.1 Failed to boot non-TDX host kernel with TDX enabled in BIOS, hit machine check xxxxxxxx00061136

	10 Virtual Machine Administrator
	10.1 Run AI Workload with Intel AMX

	11 Disclaimer
	12 References

