
Executive summary
The service mesh has become a core component of cloud-native platforms
which has been introduced as wireless service providers deploy Core Network
systems based on the new 5GS standard from 3GPP. While the service mesh
complements the cloud-native approach of decomposing the new 5G Core
network functions into stateless microservices which are deployed as cloud
native virtual network functions (CNFs) on container platforms, it has an
undesirable side effect in that it adds latency to control plane processing. This
latency overhead is caused by the current industry standard approach of using
a service mesh sidecar proxy container in microservice pods. This has become
a pain point that needs to be addressed in the deployment of 5G Core network
functions (NFs) on cloud-native platforms. If this latency problem can be solved,
the service mesh has the potential to provide greater benefits to 5G Core
deployments, especially as we move forward to 6G and AI/ML integrated
Core Network.

This paper describes a viable way to eliminate latency overhead introduced
by the service mesh by adopting a new inline approach to replace the sidecar
proxy method. Empirical performance data is provided for a commercial-grade
cloud-native 5G Core stack. This solution achieves up to 70%1 latency reduction
for transactions between the session management function (SMF) gateway
and packet data unit (PDU) session microservices and a 33%2 reduction in
gateway CPU usage. The paper further explores how such a low-latency service
mesh could be further improved to provide greater benefits to 5G and 6G
Core deployments, such as incorporating the functionality of the new service
communication proxy (SCP) NF specified by 3GPP, and potentially leveraging
AI/ML techniques to enable more resilient and reliable wireless cores.

1 Introduction and background
As the LTE/5G and Beyond 5G (B5G) Core network adopts a cloud-native
architecture, network functions (NFs) have been restructured and decomposed
into “microservices” which are deployed as containers on cloud-native platforms
with Kubernetes orchestration. Current LTE/5G and B5G service-based
architecture (SBA) implements the NFs to utilize an individual service-based
interface (SBI) to communicate with each other, allowing the system to be more
flexible and agile. As technologies are moving from B5G to 6G Core networks,
industries and standardized development organizations (SDOs) are adapting
NFs and creating enhanced features based on this new cloud-native architecture.

With a rise of emerging services such as XR/metaverse, satellite, AI/ML
and energy-efficient networking, mobile network operators (MNOs) and
telecommunication equipment manufacturers (TEMs) are expected to attempt
to increase time-to-market (TTM) for such new features by introducing
continuous-integration/deployment (CI/CD) for commercial deployments. This
means finer-grained service and feature controls which, along with the increasing
number of 3GPP NFs, will require a robust and performant microservices
communication infrastructure for a viable solution.

Toward 6G Core Architecture
Using an Inline Service Mesh

Authors
SeongJun Lee (seoul.lee@sk.com),
B5G/6G Core R&D Architect, SK Telecom

DongJin Lee (dongjin@sk.com),
B5G/6G Core R&D Architect, SK Telecom

JoongGunn Park (clark.park@sk.com),
Core Architect, SK Telecom

Brendan Ryan (brendan.ryan@intel.com),
Senior Software Engineer,
Intel Corporation

Michal Kobylinski
(michal.kobylinski@intel.com),
Software Engineer, Intel Corporation

Chetan Hiremath
(chetan.hiremath@intel.com),
Senior Principal Engineer,
Intel Corporation

Table of Contents
Executive summary . . 1
1 Introduction and background 1
	 1.1 Service mesh based SCP 2
	 1.2 �Leveraging AI/ML technology for

enhanced Core resilience 4
	 1.3 �The need for a more flexible

service mesh. . 5
	 1.4 �Inline approach needed to reduce

service mesh overhead. 5
2 �Adapting 5GC CNFs for an inline

service mesh . . 7
	 2.1 �Design and implementation

of a gRPC-based inline
service mesh. . 8

3 Evaluation. . 9
3.1 �Benchmarking setup and

methodology . . 9
3.2 Benchmarking results. 10
4 Summary and recommendations. . 10
5 �Appendix A: Intel FlexCore

benchmarking environment
details. 13

White Paper

mailto:seoul.lee.sk.com?subject=
mailto:dongjin%40sk.com?subject=
mailto:clark.park%40sk.com?subject=
mailto:brendan.ryan%40intel.com?subject=
mailto:michal.kobylinski%40intel.com?subject=
mailto:chetan.hiremath%40intel.com?subject=

White Paper | Toward 6G Core Architecture Using an Inline Service Mesh

A relevant factor is that a service communication proxy
(SCP) was standardized in 3GPP to support efficient
communication among multiple NFs by indirect
communication with delegated discovery. This means that
consumer NFs do not perform any discovery or selection,
but instead just provide the necessary discovery and
selection parameters required to find a suitable producer
NF for a service request. The SCP uses the request address
and the discovery and selection parameters in the request
message to route the request to a suitable producer instance.
The SCP can also perform discovery with a network
repository function (NRF) to obtain the discovery result.

Along with the SCP, a new component known as the
service mesh has also been introduced for optimal
interoperability between the many microservices in cloud-
native deployments. As well as its core function of optimal
endpoint discovery, the service mesh has come to include
many other features, such as observability, filtering, load
balancing, failure management and security.

With such features, the hope was that the 6G Core network
using a service mesh architecture could enable more
efficient and flexible NFs without impacting end-to-end
signaling performance such as latency. However, the
current 3GPP standardization of the 5G Core (5GC) and
accompanying shift to cloud-native deployments have led
to increased latency for control plane operations, of which
the following are the key contributors:

• �Decomposition of NFs into microservice CNFs
encapsulated in pods: Latency is added due to the inter-
communication between these microservice CNFs,
generally via HTTP/2 REST APIs over a container network
interface (CNI) such as Calico. Note that this would not
be required in a more monolithic NF application deployed
as a virtual network function (VNF) or physical network
function (PNF).

• �Use of a service mesh sidecar proxy for communication
between CNFs: This adds additional latency to 5GC
control plane microservice intercommunication due
to extra traffic routing between the Linux kernel, proxy
sidecar container and application container.

• �3GPP Release 18 and 19 require more interaction
between the NFs: These standards require additional
NF interactions related to 5G non-standalone (NSA, 5G
with LTE) and other new ones such as NRF interactions
to discover other NFs and unstructured data storage
function (UDSF) interactions to maintain the stateless
nature of the NF pod-level microservices. This further
adds to control plane latency for core cloud-native
deployments.

This paper from SK Telecom and Intel mainly addresses
how additional latency contributed by the service mesh
could be addressed for 6G.

Currently, the most popular service mesh being used
for cloud-native core deployments is Istio, and the most
common deployment configuration is to use a sidecar proxy
such as Envoy in microservice pods. This interfaces with
the Istio service mesh controller and serves as a proxy for
microservice applications to communicate over the service
mesh with other microservices.

While offering benefits, such a service mesh proxy also
adds some overhead to communication latency between
microservices. For inter/intra NF(s), this latency is critical
and needs to adhere to strict timing requirements for
3GPP call-procedure operations such as user equipment
(UE) registration and PDU session establishment. The
decomposition of NFs into microservices has already
increased this latency, and further delays due to traversal
through a sidecar proxy makes latencies more challenging.
A thorough understanding of the traffic path and how
individual NFs communicate is important to improve the
design of the service mesh.

Some alternative service mesh approaches are also
being proposed, such as Ambient mesh, which removes
the need for a sidecar proxy by providing a common L7
processing layer with a secure overlay. However, it does not
fully address the latency overhead issue and has another
potential shortcoming in that it could become a single point
of failure.

This paper outlines an attempt to observe, measure and
improve service mesh performance by implementing
an inline service mesh for real cloud-native 5GC CNFs,
empirically measuring the performance benefits, and
finally discussing the results with a view to providing
recommendations for B5G and 6G cloud-native
deployments.

The paper also explores how the inline approach may
complement other 6G features such as service mesh based
SCP and the use of AI for platform resilience.

In the following sections, we will consider the service mesh
improvements which are needed for the 6G Core.

1.1 Service mesh based SCP
As new and emerging service features are developed
and distributed in smaller individual functional units, the
need to perform communication between each function
more efficiently becomes more important. A service
mesh based SCP may partially address this by providing
indirect communication between NF services, as illustrated
in Figure 1, showing Model C and Model D. The NF uses
a “delegating procedure” to direct the SCP to perform
common NF features such as load balancing, failure
management and redundancy so the NF can give more
focus to NF service logic, thereby reducing development
and verification time of NF features.

2

White Paper | Toward 6G Core Architecture Using an Inline Service Mesh

In the deployment Model D, “Indirect communication with delegated discovery,” a consumer NF’s initial discovery/
selection and reselection of producer NFs are all processed by the SCP functionality. In this deployment model, NFs
no longer need to search for potential peer NFs to perform communication or handle load balancing, prioritization and
overload handling, reducing common NF overhead. Additionally, because all NF messages are handled by the SCP in a
distributed manner, a unified monitoring and tracing approach is also possible. As such, a service mesh with enhanced
functionalities can appropriately provide capabilities of an SCP.

Typical VM/Cloud-Native Architecture

3GPP NF

L/B, Overload
Control

Guest OS

Middleware
(NF Discovery

& Selection

6G Cloud-Native Architecture

✓ App/business-logic focused
✓ Independent pod-based CNFs
✓ Micro/nano-serice architecture

NF NF NFNF NF NF

NF NF NFNF NF NF

NF NF NFNF NF NF

NF NF NFNF NF NF

NF NF NFNF NF NF

"Robust and Resilient Core"

Virtual Network
Interfaces

NF NF NFNF NF NF

NF NF NFNF NF NF

NF NF NFNF NF NF

NF NF NFNF NF NF

NF NF NFNF NF NF

NF NF NFNF NF NF

NF NF NFNF NF NF

NF NF NFNF NF NF

NF NF NFNF NF NF

NF NF NFNF NF NF

NF NF NFNF NF NF

NF NF NFNF NF NF

NF NF NFNF NF NF

NF NF NFNF NF NF

NF NF NFNF NF NF

✓ Common NF delegation
✓ Unified signaling
✓ �Per UE/NF-specific

manipulation

Service Mesh Infra
NF Discovery

& Selection

LB, Overload
Control

Figure 2. Traditional vs. 6G cloud-native architecture

Figure 1. Service Communication Proxy deployment Model C and D from 3GPP 23.501(Rel-18/19)

C
O
N
S
U
M
E
R

C
O
N
S
U
M
E
R

P
R
O
D
U
C
E
R

P
R
O
D
U
C
E
R

NRF

NRFNRF

SCPSCP

A

C

B

D

Service Request Service Request

Service
Request

Service
Request

Service
Request

Discovery

Discovery

Service Response Service Response

ResponseResponse

NF profile(s)

NF profile(s)

Subsequent Request Subsequent Request

Subsequent
Request

Subsequent
Request

Service Request
+ parameters

C
O
N
S
U
M
E
R

C
O
N
S
U
M
E
R

P
R
O
D
U
C
E
R

P
R
O
D
U
C
E
R

3

White Paper | Toward 6G Core Architecture Using an Inline Service Mesh

Figure 2 illustrates a potential 6G cloud-native architecture,
“Robust and Resilient Core,” evolved from a traditional
architecture. The 3GPP NF’s common features, such
as discovery and selection, load balancing and overload
control, are delegated to the service mesh layer. This Mode
D deployment of the SCP can be implemented using the
Istio service mesh. All the NF procedures and messages
are passed through the service mesh layer, simplifying the
communication channel and reducing burdens on the NFs.

Essentially the SCP can be considered a type of service
mesh with some additional functionality for core NF
discovery and selection. This enables a robust and resilient
Core network because it can:

• �Support distributed NF services providing interoperability
and resiliency without causing a single point of failure.

• �Control individual NF service rules dynamically for various
inter/infra-NF communications, allowing flexibility and
agility of the NF operations.

• �Configure intelligently, such as with zero-touch
automation, to handle NF service traffic load balances,
overload protections, retries, bypasses and suspensions
accordingly to the NF service status with the MNO’s
policies.

• �Produce visibility and observability, allowing dynamic
in-depth analysis of NF procedures from traces and logs,
which can also be used to verify and understand behaviors
of emerging service features in real time.

• �Provide a canary release in a commercial environment for
speedy development and deployment of new features.

End-to-end monitoring and
visualization of individual

inter/infra-NF communications

Burst traffic control, buffering,
load balancing and protection

of inter/intra-NF communications

Replications and auto-scaling of
inter/infra-NF communications

in multiple clusters

Recovery and self-healing of
failed or erroneous

inter/intra-NF communications

Monitoring
visualization

Redundancy
Overload

protection

Recovery

Figure 3. Fundamentals of a robust and resilient core

In summary, the service mesh-based SCP simplifies cloud-
native architecture that can handle an increasing number
of NFs and their communications, including configurations
of service/message routing, load balancing, prioritization
and monitoring, thereby making it a robust and resilient
core network.

The inline service mesh approach described in this paper
can be enhanced to support service mesh-based SCP,
thus enabling a robust and resilient core network without
sacrificing any performance or efficiency.

1.2 Leveraging AI/ML technology for enhanced
Core resilience
As an MNO, SK Telecom adheres to making a robust and
resilient core the fundamental design rule for the 6G Core
network; the primary focus is protecting end customers
from any possible service quality degradation. As shown in
Figure 3, SK Telecom foresees that a 6G Core network must
be able to fully meet cloud-native principles, especially
including monitoring, overload protection, recovery and
redundancy. As such, NFs and their interrelated individual
pods must be measured in depth for their processing
latency, jitter and packet loss for analysis in real time. Any
faults or erroneous behaviors should immediately trigger
actions such as buffering, load (re)balancing, and self-
healing. Furthermore, NF pods must have multiple replicas
and be able to scale in/out dynamically, and they need to be
monitored and visualized end-to-end for their inter/infra-
NF-pod communications.

4

White Paper | Toward 6G Core Architecture Using an Inline Service Mesh

SK Telecom recently published a 6G whitepaper3 which
contains views on 6G key requirements, evolution
methodology, development directions and promising
6G use cases. It also describes lessons learned and
improvements to make the network more robust and
resilient along with functional segmentation and distributed
processing necessary for AI-native network evolution. With
a higher number of NFs and higher performance capacities
being demanded along with more complex network
interconnections, AI assistance is an essential element
toward a 6G network.

A 6G Core network also requires even lower latency and
higher speed while maintaining reliability, thus AI-based
optimizations should be applied to meet such demands.
For example, as shown in Figure 4, individual NFs should
have logical analysis and AI/ML entities to locally optimize
key performance indicators (KPIs) and have ways for inter/
intra-NF communications to communicate with each
other via an intelligence plane for globally-optimized KPIs.
Such an architecture would require a higher number of
connections between pods, and hence it is apparent that a
service mesh-based SCP could be the appropriate choice
towards an AI-enhanced core network.

It is reasonable to consider that the service mesh could play
an important part in an AI-assisted 6G Core, and this could
be achieved with the type of inline service mesh described
in this paper.

1.3 The need for a more flexible service mesh
The current 3GPP SCP is limited to support only inter-NF
communications using service-based interface (SBI) over
HTTP/2. Also, current service mesh architecture does not
support protocols other than, for example, HTTP/2 and
gRPC. This means that the current service mesh may not
be able to work on NFs that have legacy interfaces and
protocols such as S5/8, S11, N4 (UDP) and S1, N2 (SCTP),
making it a lot more difficult to harmonize into a single
unified service mesh network.

Intelligence
Plane

Figure 4. AI native Core network redesign

Intelligence
PlaneStorage

5G 6G

Service Mesh Infra

NF NF NF

Logical
Analysis

Logical
Analysis

Machine
Learning

Machine
Learning

Data
Collection

NF

NF

Message
Framework

Logical
Analysis

Machine
Learning

NWDAF Logical
Analysis

Machine
Learning

It is important to note that NFs in the future, in the 6G
and 6G Core eras, would be more disaggregated and
decomposed to even smaller-sized functions. Some
studies suggest that the future NFs, including RAN and
UE, will support SBI natively, making it more unified. We
are likely to see more and more studies on how inter/intra-
NF communications and their different decompositions
affect performance, flexibility and resiliency for the next
generation architecture. For instance:

• �They potentially provide a way of mapping gRPC to the
3GPP HTTP/2 REST API for SBI communications.

• �This could enable NFs with gRPC support to use gRPC
for all control plane communications as the SCP could
potentially enable gRPC-encapsulated SBI messages to
be mapped HTTP/2 REST.

• �They can reuse Kubernetes-based PaaS/IaaS toolkits to
support self-healing, in-service software upgrade and
scale-in/out.

1.4 Inline approach needed to reduce service
mesh overhead
SK Telecom’s SA commercial cloud-native Core network
with sidecar proxy was measured based on busy-hour call
attempts (BHCA). As shown in Figure 5, it was observed
that a 5GC CNF’s call-processing latency (e.g., 3GPP PDU
session establishment procedure) increases with increasing
number of gRPC connections between the pods.

Depending on the BHCA requirements, pod resource
allocations and work-thread synchronizations could reduce
such overhead (e.g., queuing). Some reduction of the 3GPP
procedure latency can also be achieved by using parallel
processing as connections between pods are multiplexed.

However, as more gRPC connections are created, an
increasing number of the service mesh sidecar proxies
are injected, too, which can dramatically degrade the
3GPP procedure latency (PDU session establishment) as
shown in Figure 5. Even if the CNF application’s logic and
configurations are further tuned, the nature of the service
mesh proxy (i.e., terminating connections) adds overhead
due to kernel-space processing, the details of which will be
explained later.

5

White Paper | Toward 6G Core Architecture Using an Inline Service Mesh

Figure 5. Latency related to connections between pods
with a service mesh proxy in an SKT commercial system

1200

1000

800

600

400

200

0

CONN.=4

ms

CONN.=8 CONN.=16 CONN.=32

The sidecar proxy approach, as shown in Figure 6, does
reduce the burden to the microservice business logic
of handling communications, traffic management, load
balancing, circuit breaking, scaling, observability and
monitoring. However, it has one significant problem,
which is increased latency in pod-to-pod communications.
Reducing the latency while keeping the cloud-native
flexibility in the core system is one of the important research
areas that needs to be studied, especially from the MNO’s
perspective to provide low latency end-to-end connectivity
service to end users.

[Service mesh sidecar proxy] [Inline service mesh]

CNF App
(e.g., SMF)

CNF App
(e.g., AMF)

AgentAgent gRPC InlinegRPC Inline

JSON
Serialization

JSON
Serialization

OS Kernel
(OVS/lptables)

OS Kernel
(OVS/lptables)

HTTP/2
(HPACK, Multiplex)

HTTP/2
(HPACK, Multiplex)

Network InterfaceNetwork InterfaceNetwork InterfaceNetwork Interface

OS Kernel (OVS/lptables)OS Kernel (OVS/lptables)

CNF App
(e.g., AMF)

CNF App
(e.g., AMF)

Sidecar Proxy
(Istio Envoy Agent)

Sidecar Proxy
(Istio Envoy Agent) JSON SerializationJSON Serialization

HTTP/2
(HPACK, Multiplex)

HTTP/2
(HPACK, Multiplex)

DelayDelay

[Intelligent Service
Mesh Controller]

NF Comm. Policy

Service Agent (sidecar)
Management

Traffic Monitoring,
Optimizer

Istio Configuration

NRF

[CNF Clusters]

AMF AMF AMFAMF SMF CNFs

Common H/W Pool

Service Mesh Infra

Figure 6. Moving from a service mesh with sidecar proxy to inline design

6

White Paper | Toward 6G Core Architecture Using an Inline Service Mesh

Kernel IP tables are manipulated to redirect incoming TCP/
IP traffic to a sidecar proxy, which in turn executes routing
decisions based on xDS which is in turn controlled by Istio.
A sidecar proxy introduces extra kernel-space processing,
which adds to latency incurred for the NF’s pod-to-pod
communications. See the article titled, “Sidecar injection,
transparent traffic hijacking, and routing process in Istio
explained in detail,”4 for a detailed description of the Istio
routing process for an injected service mesh sidecar proxy.

On the other hand, for an inline approach without a sidecar
proxy, the logic executing the routing decisions based on
xDS is in the application container, thereby making the
redirection of TCP/IP traffic unnecessary and reducing the
extra kernel-space processing. Thus, reduced latency is
expected for the HTTP/2 messages moving in and out of pods.

Support has been added to gRPC for an xDS interface
which enables it to interact with an Istio service mesh
controller. Likewise, support has also been added to Istio
for deployment of pods in Kubernetes with a gRPC agent
which brokers an Istio controller interface for application
containers.

In order to make use of the Istio gRPC-based inline service
mesh feature, applications must be compiled with gRPC
libraries in order to interact with the Istio gRPC agent. While
this removes the need for a sidecar proxy, it may require the
application to be adapted to use gRPC for communication
with other application pods.

The remainder of this paper describes an example of how
5GC control plane CNFs may be adapted to use an inline
service mesh. Furthermore, the benefit of an inline service
mesh to 5GC control plane performance and efficiency

is proven with empirical benchmarks taken from a lab
deployment the Intel FlexCore reference 5GC
cloud-native stack.

2 �Adapting 5GC CNFs for an inline service mesh
FlexCore is Intel’s cloud-native 5G Core, which was used
as an example of how to adapt such a stack for an inline
service mesh. This was then evaluated to determine the
performance and efficiency benefits of such an inline
service mesh when compared with the predominant sidecar
proxy approach.

The following is a description (from top to bottom) of the
layers of the reference 5G Core stack, as shown below:

• �MANO (management and orchestration) layer, which is
composed of a GUI for deployment of 5GC CNFs.

• �3GPP (Release 16.2) standards-compliant 5GC NFs
developed with a microservices design from the start.

• �Common integration layer (CIL) for abstraction of 5GC
CNFs from south-bound PaaS and north-bound MANO.

• �PaaS based on Cloud Native Computing Foundation
(CNCF)-certified open-source cloud-native software for
platform services such as logging (Elasticsearch, Fluentd,
Kibana), tracing (Jaeger), monitoring (Prometheus and
Grafana) and service mesh (Istio, Envoy).

• �CaaS also based on CNCF-certified open-source cloud-
native software for containerization such as Kubernetes
for orchestration, Helm for package management, Calico
and Multus for cloud-native networking, Docker as a
container engine and containerd for the container runtime.

CaaS

Figure 7. Overview of the FlexCore reference cloud-native 5G core stack

UDSF UDM UDRNSSF AUSF

UPF

NRF PCF SMFN3IWF AMF

Management & Orchestration (MANO)

Common Integration Layer

PaaS

5GC NFs

Logging Tracing Monitoring Service Mesh Security

7

https://jimmysongio.medium.com/sidecar-injection-transparent-traffic-hijacking-and-routing-process-in-istio-explained-in-detail-d53e244e0348
https://jimmysongio.medium.com/sidecar-injection-transparent-traffic-hijacking-and-routing-process-in-istio-explained-in-detail-d53e244e0348
https://jimmysongio.medium.com/sidecar-injection-transparent-traffic-hijacking-and-routing-process-in-istio-explained-in-detail-d53e244e0348

White Paper | Toward 6G Core Architecture Using an Inline Service Mesh

Figure 8. 5GC microservice design to support an inline service mesh

5GC-NF-Microservice App (unmodified)

HTTP2 Upper Layer (modified)

HTTP2 Upper Layer (modified)

5GC-NF-Microservice App (unmodified)

gRPC shim Layer (new)

gRPC shim Layer (new)

gRPC Core

gRPC Core

gRPC Agent

gRPC Agent

HTTP2 Lower Layer
(nghttp2 lib)

HTTP2 Lower Layer
(nghttp2 lib)

5GC-NF Microservice-1 Pod (w/ gRPC Inline Service Mesh)

5GC-NF Microservice-2 Pod (w/ gRPC Inline Service Mesh)

xDS

xDS

5GC-NF-Microservice Container

5GC-NF-Microservice-2 Container

Istio
(Service Mesh Controller)

2.1 Design and implementation of a gRPC-based
inline service mesh
The following are the key steps required to adapt the
reference 5G Core stack to use an inline service mesh:

1. �Modified 5GC NF microservice message transfer
implementation to use gRPC and its xDS feature.

• �Implemented a gRPC shim layer for this to avoid any
modification to application code.

• �Included support to optionally use HTTP/2 or gRPC
through runtime environment variables.

NOTE: If an NF microservice already supports gRPC, it may still
need to be modified to enable use of the gRPC xDS feature to
enable Istio inline service mesh support.

2. �Modified the PaaS layer to use an Istio version with
support for a gRPC-based inline service mesh.

• �The original cloud-native platform was using Istio v1.8.2,
so that had to be upgraded to Istio v1.13.0 for a gRPC-
based inline service mesh.

3. �Modify 5G Core deployment helm charts to enable 5GC
NF microservice pods to use the gRPC-based inline
service mesh.

• �Modified microservice pod spec Istio annotations to
use Istio grpc-agent instead of sidecar as shown below.
The holdApplicationUntilProxyStarts annotation
is also required for a gRPC-based inline service
mesh.

Istio annotation for use of Envoy sidecar proxy:

 sidecar.istio.io/inject: "true"

�Istio annotation for use of a gRPC-based inline service
mesh:

 �inject.istio.io/templates: grpc-
agent

 �proxy.istio.io/config:
'{"holdApplicationUntilProxyStarts":
true}'

Figure 8 below is a high-level view of how a gRPC-based
inline service mesh was implemented for 5G Core CNF
pods. A gRPC shim layer was implemented to avoid any
modification to application code and thus reduce the effort
needed to support gRPC.

The following are the key points of the design:

• �The API presented by the HTTP/2 upper layer to NF
microservice applications is unchanged.

• �The HTTP/2 upper layer is modified to support gRPC
message transfer using a gRPC shim as well as HTTP/2
message transfer using the nghttp2 library.

• �The gRPC shim encapsulates the gRPC core and presents
an API to the HTTP/2 transport upper layer for gRPC
client and server transactions.

• �The gRPC shim manages the xDS interface with the Istio
service mesh controller.

• �gRPC metadata is used to transport 3GPP SBI (HTTP/2)
headers.

• �The SBI HTTP/2 payload, e.g., MIME, JSON or Protobuf, is
copied to gRPC messages as binary data.

8

White Paper | Toward 6G Core Architecture Using an Inline Service Mesh

Figure 9. Cloud-native 5G core performance benchmarking setup

Figure 10. Measuring latency between SMF GW and PDU-Session microservices

Cluster NW
10G SwitchKubernetes Cluster

SR-IOV

C
am

p
us

 N
et

w
or

k

OCP Master Node

OCP Worker-node-2
[5GC Ctl-Plane Microservices]

OCP Worker-node-1
[5GC UPF & Ctl-Plane Microservices]

5
G

 Traffi
c 10

0
G

 S
w

itch

S
p

irent L
and

slid
e

5
G

 Traffi
c S

im
ulator

MAC-VLAN

SR-IOV

AMF
Comm

AMF
Comm

AMF
Comm

AMF
Comm

AMF
Comm

AMF
Comm

AMF
Comm

UDSF
DataRepo

Service
Discovery

SMF
Gateway

SMF
PDUSession

UDM
SDM

UDR
SDM

NRF
NRFDiscovery

x 10

SM Context
Create SBI
Request

Measured
Latency

Created (201)
Response

x 3 x 4 x 2 x 1 x 6x 1 x 30

3 Evaluation
The Intel FlexCore reference cloud-native 5G Core stack
with Spirent Landslide 5G traffic generator was used to
evaluate the benefit of an inline service mesh for 5GC control
plane performance. This provides a realistic benchmark
using a commercial-grade 5G Core control plane.

3.1 Benchmarking setup and methodology
Figure 9 shows a high-level overview of the benchmarking
setup in Intel’s lab environment. A Spirent Landslide 5G
traffic generator was used with a two-node OCP cluster.
Both OCP worker nodes are using 4th Generation Intel®
Xeon® Scalable Processors and hosting CaaS/PaaS and
5GC NF microservices. For worker-node configuration
details, refer to Appendix A: Intel FlexCore benchmarking
environment details.

As described in the previous section, 5GC NF
microservices were adapted to use a gRPC-based inline
service mesh for empirically benchmarking the inline
service mesh approach for 5G Core deployments.

The inline service mesh was enabled for SMF
microservices, and the impact on transaction latency
between SMF-Gateway and SMF-PDUSession
microservices was measured. Specifically, the latency
of Session-Management Context-Create requests from
SMF-Gateway microservice transmission to the SMF-
PDUSession microservice receipt was measured, as shown
in Figure 10.

Latency was measured by timestamping in SMF-Gateway
and SMF-PDU-Session microservices. The SMF-Gateway
request-sent timestamp is passed as a header field and
used at the request-received point in the SMF-PDUSession
microservice to measure latency between the transmission
and receipt of this control plane message between
microservices. Thirty SMF-PDUSession pod replicas were
used to represent a typical configuration for 5GC SMF
processing.

For context, the round-trip latency of the Session-
Management Context-Create request to the response is
approximately 50 ms,5 as measured in the AMF-Comm
microservice shown below. Of this latency, the time spent
in the microservice application logic is approximately
60%, and the time spent in communications between
microservices is approximately 40%.

MAC-VLAN

9

White Paper | Toward 6G Core Architecture Using an Inline Service Mesh

Figure 12. Average CPU usage of an SMF-Gateway
microservice pod — inline service mesh vs. envoy
sidecar proxy

3500

3000

2500

1500

1000

500

0

500 reqs/sec

SMF-Gateway
(Inline)

SMF-Gateway
(with Sidecar)

Envoy Sidecar Proxy

1500 reqs/sec1000 reqs/sec
m

ill
iC

P
U

s

Figure 11. Average latency between SMF gateway and
PDUSession microservices

8

7

6

5

4

3

2

1

0

500 reqs/sec

99th Percentile (Inline) 99th Percentile (Envoy Sidecar Proxy)

1500 reqs/sec1000 reqs/sec

A
ve

ra
g

e
L

at
en

cy
 (m

s)

Average Latency (99th Percentile)

SMF-Gateway Pod CPU Usage — Inline
Service Mesh vs. Envoy Sidecar Proxy

3.2 Benchmarking results
Performance of the SMF was compared for gRPC-based
control plane transactions using an Envoy sidecar proxy
versus an inline service mesh. The SMF was configured with
30 x PDU-Session processing pods.

Latency and CPU usage were measured for an increasing
Session-Management Context-Create request rate which
was driven by a Spirent Landslide 5G traffic generator.

Figure 11 shows significant reduction of control plane
transaction latency and CPU usage for an inline service
mesh in the case of a high number of SMF-PDU-Session
microservice instances.

At high request rates (1500 requests/sec), the latency
is over 3x higher with an Envoy proxy as compared with
an inline service mesh. It was also observed that latency
measurements for the Envoy proxy exhibit higher jitter
levels than an inline service mesh.

It should be noted that the maximum traffic rate of 1500
SMF requests per second was based on deployment of
a single SMF-Gateway microservice pod which routes
SMF SBI messages to an SMF-PDUSession microservice
deployment with thirty pod replicas. By configuring the
SMF-Gateway microservice deployment for multiple pod
replicas and scaling the SMF-PDUSession microservice
pod’s proportionately, it is reasonable to assume that, with
sufficient CPU and memory resources available, that the
request rate should scale proportionately and maintain the
same latency level as shown above.

As shown in Figure 12, the total SMF-Gateway CPU usage
is approximately 1 virtual core more with an Envoy proxy as
compared to an inline service mesh. It should also be noted
that an SMF-Gateway microservice pod with an Envoy
proxy requires reservation of additional cores based on the
Envoy concurrency setting, so that fewer cores are available
for other pods.

4 Summary and recommendations
With a rise of emerging services such as XR/metaverse,
satellite, AI/ML, energy-efficient networking and the
transition to 6G Core networks, NFs will likely need to
support new service features. With the increasing demand
for these new service features, it is expected that CNFs are
going to be decomposed into even more microservices,
which perform 5GC processing via a unified communication
infrastructure for flexibility and reliability. The service mesh
that connects these microservices will thus be critical for
performance and may also provide a means to introduce
new features such as AI-based analysis and inference for
improved reliability.

The 6G Core architecture from the 3GPP is expected
to be standardized starting with Releases 20 and 21.
Currently much study and research is being conducted into
enhancing this.

The following are the key conclusions and
recommendations from the work described in this paper
by SK Telecom and Intel, which investigated the use of an
inline service mesh to reduce control plane latency and CPU
usage in cloud-native 5GC deployments.

10

White Paper | Toward 6G Core Architecture Using an Inline Service Mesh

(1) An inline service mesh reduces control plane latency
and CPU usage for cloud-native 5G Core deployments

Based on a comparison of measurements of average
latency for proxied and inline service mesh configurations,
it was shown that there is a significant reduction in latency
and CPU usage for message transfer between two
microservices. This is especially so in the case of a gateway
microservice forwarding incoming SBI messages to an NF’s
core processing microservice, such as the SMF-Gateway and
SMF-PDUSession communication benchmarked in this paper.

Furthermore, the end-to-end latency reduction for a control
plane operation depends on the number of microservices
that must be traversed to complete the operation. Each
microservice hop benefits from a latency reduction
when using an inline service mesh with the result that the
aggregate latency reduction is even more significant.

It was also shown that there is significant CPU usage
reduction when a service mesh proxy container such as
Envoy does not need to be deployed for every 5GC NF
microservice container.

While service mesh proxy approaches such as Envoy
support a rich set of features such as circuit breaking,
tracing, logging and embedding analytics, such features
may also be added for a gRPC-based inline service mesh.

(2) A generic message-transfer API should be provided
for 5GC NF microservices, abstracted from the
underlying protocol such as HTTP REST or gRPC

For the purpose of this paper, 5G Core NF microservices
were adapted to use a gRPC-based inline service mesh
by implementing a shim for an alternative gRPC message
transfer path to the existing nghttp2 library and Envoy
proxy path.

The shim approach avoided any change to microservice
application code which significantly reduced the effort and
time for gRPC integration into the 5G Core stack.

However, such an approach may add additional
performance overhead in the gRPC adaptation. A
recommended improved approach is to use a generic
API that supports independent paths of execution for
gRPC and HTTP-REST.

(3) Possible 6G design for an inline service mesh

Although gRPC is based on HTTP/2, a gRPC endpoint
cannot communicate directly with a plain HTTP-REST
endpoint, which means that currently gRPC cannot be
used for 3GPP SBI communication between NFs; it can
only be used within the boundaries of an NF between its
microservices as illustrated in Figure 13.

NudsfNnefNausfNpcfNudrNudmNausfNsmf

Namf

AMF

AMF Microservice POD

Based on 3GPP specification, only
HTTP-REST can be used between
5GC NFs, i.e., cannot use gRPC
between NFs.

Can use gRPC
between

microservices
within an NF

Istio supports
inline service mesh
but only for CNFs
that use gRPC for
message transfer

NssfNnrf

microservice microservice microservice microservice

httphttphttp

http

http
microservice

microservice

microservice
N2

UDSFNEFAUSFPCFUDRUDMAUSFSMFNSSFNRF

5G-RAN

slicemgmt gateway mobilityeventexposure

comm

n2iwf

pathmgmt

Figure 13. Using an inline service mesh in a 5G Core control plane deployment

5GC
microservice

container

5GC
microservice

container
Service

Mesh
sidecar

OS kernel OS kernel

HTTP/2

HTTP/2 gRPC/HTTP/2

xDS

xDS

Inline
gRPC
Agent

Istio service
mesh controller

11

White Paper | Toward 6G Core Architecture Using an Inline Service Mesh

While this offers reasonable latency and CPU usage
benefits, this could be improved further if interoperability
was possible between gRPC and HTTP-REST endpoints
and inline service mesh communication was supported
for HTTP-REST-based microservices. Figure 14 shows
a prototype design for a potential solution where gRPC/
HTTP/2 mapping could be built into 5G Core microservices
to enable inline service mesh communication for all control
plane messages.

This is intended as a proposal for further inline service mesh
development which builds on the initial work described
in this paper. It is proposed to develop a library for inline
service mesh communication which could be built into 5GC
NF microservices.

The following are some key points related to this design
proposal:

• �A generic API is presented to 5GC control plane
microservices, i.e., no HTTP/2 specifics.

• �Microservices will have the capability to use gRPC or
HTTP/2 for client requests depending on the target
network function.

• �The message transfer upper layer provides adaptation
to the required protocol and higher-level functionality to
augment the grpc-core and HTTP/2 third-party libraries.

• �Libraries from the open-source gRPC project may be used
for the gRPC lower layer.

• �An open-source HTTP/2 library such as nghttp2 may be
used for the HTTP/2 lower layer.

• �A thin layer is required to listen for incoming server
requests and to map to HTTP/2 or gRPC request handling,
e.g., based on content type.

Figure 14. Design proposal for 5GC microservices
with an inline service mesh for gRPC and HTTP/2
message transfer

5GC Inline Service Mesh API

Message Transfer upper layer

gRPC lower layer
(gRPC Core)

request mapping

Agent

HTTP2 lower layer
(nghttp2)

5GC-NF Microservice-1 Pod

xDS

5GC Inline Service Mesh Library

5GC-NF-Microservice-1 ContainerService Mesh Controller
(Istio)

HTTP2
gRPC

5GC-NF1-Microservice-2 Pod
(gRPC Inline)

5GC-NF2-Microservice-1 Pod
(HTTP2, Envoy Proxy)

NOTE: This may also be possible by using separate ports for
HTTP/2 and gRPC listener threads, assuming a mechanism is in
place for external NFs to determine which port to use. In this case,
the request mapping layer is not required.

• �Support must be added for HTTP/2-based inline
service mesh communication — the chosen HTTP/2
implementation must interact with a service mesh agent
to broker the xDS interface with a service mesh controller
such as Istio, similar to how this is supported by gRPC.

(4) Another consideration for 6G cloud-native
architecture — adding intelligence via the service mesh

The 6G Core will become a highly distributed AI structure
as network data analytics function (NWDAF) service is
inherent in each NF. Logical analysis and machine learning
components will be two essential components for each
NF, and an intelligence plane will be constructed through
interconnection among NFs.

Data collection, message processing and storage
functions will be performed by the NFs themselves. With
an intelligence plane, information from all network layers
can be collected, analyzed and inferred, and AI-based data
learning can be performed with ultra-low latency across the
entire network area.

Additionally, AI-based analysis and inference results
are shared through the intelligence plane to ensure high
reliability, and parameters and network configuration
information that were previously managed statically are
now dynamically auto-configured and optimized.

Further study in this area and the way that the service mesh
is leveraged also has great significance for 6G.

Looking forward, Intel and SK Telecom will continue to
jointly collaborate on software and hardware R&D toward
optimal architecture of the B5G and 6G Core.

12

White Paper | Toward 6G Core Architecture Using an Inline Service Mesh

5 Appendix A: Intel FlexCore benchmarking environment details

Hardware
Platform Intel® Server System M50FCP2UR (Fox Creek Pass)

CPU 4th Gen Intel Xeon 6438Y+ Dual Processor, 2.0 GHz, 32 Cores

Memory 8 x 32GB DDR5 (256 GB Total)

Hard Drive 2 x 1TB Intel SSD

Network Interface Card 2 x Intel Ethernet Converged Network Adapter XXV710 25GbE Dual-port

Software
Host OS RHEL 8.6, Linux Kernel 4.18

CaaS/PaaS RedHat OpenShift 4.12, Kubernetes 1.25

Service Mesh Istio 1.14.1, gRPC 1.43

FlexCore SW 23.07 5GC NF images and deployment charts

Table 1. FlexCore worker-node configuration

13

White Paper | Toward 6G Core Architecture Using an Inline Service Mesh

		 Legal Notices and Disclaimers

	 1	Up to 70% latency reduction is based on data presented in Figure 11 : 7ms latency is reduced to 2ms at 1500 reqs/sec (= approx. 70%).
		 This specifically relates to the 99th percentile average latency of SM-Context-Create requests between SMF Gateway and PDU-Session microservices at 1500 requests/sec

	2	Up to 33% reduction in Gateway CPU usage is based on data presented in Figure 12 : 3000 milli-cpu's is reduced to 2000 milli-cpu's at 1500 reqs/sec (= 33%)
		 This specifically relates to the average CPU usage of the SMF Gateway micro-service at 1500 PDU-session establishment reqs/sec.

	3	SK Telecom 6G white paper, https://www.sktelecom.com/en/press/press_detail.do?idx=1575

	4	Jimmy Song, “Sidecar injection, transparent traffic hijacking, and routing process in Istio explained in detail,”
https://jimmysongio.medium.com/sidecar-injection-transparent-traffic-hijacking-and-routing-process-in-istio-explained-in-detail-d53e244e0348

	5	50ms response time for SessionManagement Context-Create responses as measured in the test environment described in Figures 9 and 10.

		 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,
INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO SALE AND/OR USE OF INTEL PRODUCTS
INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT
OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

		 Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The information here is subject to change without notice. Do not finalize a design with this information.

		 The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized
errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which
have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel’s Web site at https://www.intel.com

		 © 2023 Intel Corporation. All rights reserved. Intel, the Intel logo, and Xeon are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

		 Other names and brands may be claimed as the property of others.

		 0124/BB/MESH/PDF		 358251-001US

Acronyms
3GPP	� Third Generation Partnership Project (for

Development of Mobile Core Technical Specifications)

5G	 Fifth Generation (of Mobile Core Standards)

5GC	 5G Core

6G	 Sixth Generation (of Mobile Core Standard)

AI	 Artificial Intelligence

AMF	 Access & Mobility Management Function

B5G	 Beyond 5G

CaaS	 Containers as a Service

CI/CD	 Continuous Integration / Continuous Development

CIL	 Common Integration Layer

CNCF	 Cloud Native Computing Foundation

CNF	 Container Network Function

CNI	 Container Network Interface

CPU	 Central Processing Unit

gRPC	 Google Remote Procedure Call (Protocol)

HTTP/2	 Hypertext Transfer Protocol 2

KPI	 Key Performance Indicators

L7	 Layer 7 (OSI Model)

LTE	 Long Term Evolution

ML	 Machine Learning

MANO	 MANagement and Orchestration

MNO	 Mobile Network Operator

NF	 Network Function

NRF	 Network Repository Function

NSA	 Non-Stand-Alone

NWDAF	 NetWork Data Analytics Function

OCP	 Openshift Container Platform

PaaS	 Platform as a Service

PDU	 Packet Data Unit

PNF	 Physical Network Function

RHEL	 RedHat Enterprise Linux

SBA	 Service Based Architecture

SBI	 Service Based Interface

SCP	 Service Communication Proxy

SDO	 Standards Development Organization

SDM	 Subscriber Data Management

SMF	 Session management Function

TCP/IP	 Transmission Control Protocol / Internet Protocol

TEM	 Telecoms Equipment Manufacturer

TTM	 Time To Market

UDM 	 Unified Data Management

UDR	 Unified Data Repository

UDSF	 Unstructured Data Service Function

UPF	 User-Plane Function

VNF	 Virtual Network Function

xDS	 (List of) Discovery Services

14

	Executive summary
	1 Introduction and background
	1.1 Service mesh based SCP
	1.2 Leveraging AI/ML technology for enhanced Core resilience
	1.3 The need for a more flexible service mesh
	1.4 Inline approach needed to reduce service mesh overhead

	2 �Adapting 5GC CNFs for an inline service mesh
	2.1 Design and implementation of a gRPC-based inline service mesh

	3 Evaluation
	3.1 Benchmarking setup and methodology
	3.2 Benchmarking results

	4 Summary and recommendations
	5 Appendix A: Intel FlexCore benchmarking environment details

