
Executive summary 
The service mesh has become a core component of cloud-native platforms 
which has been introduced as wireless service providers deploy Core Network 
systems based on the new 5GS standard from 3GPP. While the service mesh 
complements the cloud-native approach of decomposing the new 5G Core 
network functions into stateless microservices which are deployed as cloud 
native virtual network functions (CNFs) on container platforms, it has an 
undesirable side effect in that it adds latency to control plane processing. This 
latency overhead is caused by the current industry standard approach of using 
a service mesh sidecar proxy container in microservice pods. This has become 
a pain point that needs to be addressed in the deployment of 5G Core network 
functions (NFs) on cloud-native platforms. If this latency problem can be solved, 
the service mesh has the potential to provide greater benefits to 5G Core 
deployments, especially as we move forward to 6G and AI/ML integrated  
Core Network.

This paper describes a viable way to eliminate latency overhead introduced 
by the service mesh by adopting a new inline approach to replace the sidecar 
proxy method. Empirical performance data is provided for a commercial-grade 
cloud-native 5G Core stack. This solution achieves up to 70%1 latency reduction 
for transactions between the session management function (SMF) gateway 
and packet data unit (PDU) session microservices and a 33%2 reduction in 
gateway CPU usage. The paper further explores how such a low-latency service 
mesh could be further improved to provide greater benefits to 5G and 6G 
Core deployments, such as incorporating the functionality of the new service 
communication proxy (SCP) NF specified by 3GPP, and potentially leveraging 
AI/ML techniques to enable more resilient and reliable wireless cores.

1  Introduction and background 
As the LTE/5G and Beyond 5G (B5G) Core network adopts a cloud-native 
architecture, network functions (NFs) have been restructured and decomposed 
into “microservices” which are deployed as containers on cloud-native platforms 
with Kubernetes orchestration. Current LTE/5G and B5G service-based 
architecture (SBA) implements the NFs to utilize an individual service-based 
interface (SBI) to communicate with each other, allowing the system to be more 
flexible and agile. As technologies are moving from B5G to 6G Core networks, 
industries and standardized development organizations (SDOs) are adapting 
NFs and creating enhanced features based on this new cloud-native architecture.

With a rise of emerging services such as XR/metaverse, satellite, AI/ML 
and energy-efficient networking, mobile network operators (MNOs) and 
telecommunication equipment manufacturers (TEMs) are expected to attempt 
to increase time-to-market (TTM) for such new features by introducing 
continuous-integration/deployment (CI/CD) for commercial deployments. This 
means finer-grained service and feature controls which, along with the increasing 
number of 3GPP NFs, will require a robust and performant microservices 
communication infrastructure for a viable solution.
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A relevant factor is that a service communication proxy 
(SCP) was standardized in 3GPP to support efficient 
communication among multiple NFs by indirect 
communication with delegated discovery. This means that 
consumer NFs do not perform any discovery or selection, 
but instead just provide the necessary discovery and 
selection parameters required to find a suitable producer 
NF for a service request. The SCP uses the request address 
and the discovery and selection parameters in the request  
message to route the request to a suitable producer instance.  
The SCP can also perform discovery with a network 
repository function (NRF) to obtain the discovery result.

Along with the SCP, a new component known as the 
service mesh has also been introduced for optimal 
interoperability between the many microservices in cloud-
native deployments. As well as its core function of optimal 
endpoint discovery, the service mesh has come to include 
many other features, such as observability, filtering, load 
balancing, failure management and security. 

With such features, the hope was that the 6G Core network 
using a service mesh architecture could enable more 
efficient and flexible NFs without impacting end-to-end 
signaling performance such as latency. However, the 
current 3GPP standardization of the 5G Core (5GC) and 
accompanying shift to cloud-native deployments have led 
to increased latency for control plane operations, of which 
the following are the key contributors:

• �Decomposition of NFs into microservice CNFs 
encapsulated in pods: Latency is added due to the inter-
communication between these microservice CNFs, 
generally via HTTP/2 REST APIs over a container network 
interface (CNI) such as Calico. Note that this would not 
be required in a more monolithic NF application deployed 
as a virtual network function (VNF) or physical network 
function (PNF). 

• �Use of a service mesh sidecar proxy for communication 
between CNFs: This adds additional latency to 5GC 
control plane microservice intercommunication due 
to extra traffic routing between the Linux kernel, proxy 
sidecar container and application container.

• �3GPP Release 18 and 19 require more interaction 
between the NFs: These standards require additional 
NF interactions related to 5G non-standalone (NSA, 5G 
with LTE) and other new ones such as NRF interactions 
to discover other NFs and unstructured data storage 
function (UDSF) interactions to maintain the stateless 
nature of the NF pod-level microservices. This further 
adds to control plane latency for core cloud-native 
deployments.

This paper from SK Telecom and Intel mainly addresses 
how additional latency contributed by the service mesh 
could be addressed for 6G.

Currently, the most popular service mesh being used 
for cloud-native core deployments is Istio, and the most 
common deployment configuration is to use a sidecar proxy 
such as Envoy in microservice pods. This interfaces with 
the Istio service mesh controller and serves as a proxy for 
microservice applications to communicate over the service 
mesh with other microservices. 

While offering benefits, such a service mesh proxy also 
adds some overhead to communication latency between 
microservices. For inter/intra NF(s), this latency is critical 
and needs to adhere to strict timing requirements for 
3GPP call-procedure operations such as user equipment 
(UE) registration and PDU session establishment. The 
decomposition of NFs into microservices has already 
increased this latency, and further delays due to traversal 
through a sidecar proxy makes latencies more challenging. 
A thorough understanding of the traffic path and how 
individual NFs communicate is important to improve the 
design of the service mesh.

Some alternative service mesh approaches are also 
being proposed, such as Ambient mesh, which removes 
the need for a sidecar proxy by providing a common L7 
processing layer with a secure overlay. However, it does not 
fully address the latency overhead issue and has another 
potential shortcoming in that it could become a single point 
of failure.

This paper outlines an attempt to observe, measure and 
improve service mesh performance by implementing 
an inline service mesh for real cloud-native 5GC CNFs, 
empirically measuring the performance benefits, and 
finally discussing the results with a view to providing 
recommendations for B5G and 6G cloud-native 
deployments.

The paper also explores how the inline approach may 
complement other 6G features such as service mesh based 
SCP and the use of AI for platform resilience.

In the following sections, we will consider the service mesh 
improvements which are needed for the 6G Core.

1.1  Service mesh based SCP 
As new and emerging service features are developed 
and distributed in smaller individual functional units, the 
need to perform communication between each function 
more efficiently becomes more important. A service 
mesh based SCP may partially address this by providing 
indirect communication between NF services, as illustrated 
in Figure 1, showing Model C and Model D. The NF uses 
a “delegating procedure” to direct the SCP to perform 
common NF features such as load balancing, failure 
management and redundancy so the NF can give more 
focus to NF service logic, thereby reducing development 
and verification time of NF features.
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In the deployment Model D, “Indirect communication with delegated discovery,” a consumer NF’s initial discovery/
selection and reselection of producer NFs are all processed by the SCP functionality. In this deployment model, NFs 
no longer need to search for potential peer NFs to perform communication or handle load balancing, prioritization and 
overload handling, reducing common NF overhead. Additionally, because all NF messages are handled by the SCP in a 
distributed manner, a unified monitoring and tracing approach is also possible. As such, a service mesh with enhanced 
functionalities can appropriately provide capabilities of an SCP.
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Figure 2. Traditional vs. 6G cloud-native architecture

Figure 1. Service Communication Proxy deployment Model C and D from 3GPP 23.501(Rel-18/19)
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Figure 2 illustrates a potential 6G cloud-native architecture, 
“Robust and Resilient Core,” evolved from a traditional 
architecture. The 3GPP NF’s common features, such 
as discovery and selection, load balancing and overload 
control, are delegated to the service mesh layer. This Mode 
D deployment of the SCP can be implemented using the 
Istio service mesh. All the NF procedures and messages 
are passed through the service mesh layer, simplifying the 
communication channel and reducing burdens on the NFs.

Essentially the SCP can be considered a type of service 
mesh with some additional functionality for core NF 
discovery and selection. This enables a robust and resilient 
Core network because it can:

• �Support distributed NF services providing interoperability 
and resiliency without causing a single point of failure.

• �Control individual NF service rules dynamically for various 
inter/infra-NF communications, allowing flexibility and 
agility of the NF operations.

• �Configure intelligently, such as with zero-touch 
automation, to handle NF service traffic load balances, 
overload protections, retries, bypasses and suspensions 
accordingly to the NF service status with the MNO’s 
policies.

• �Produce visibility and observability, allowing dynamic 
in-depth analysis of NF procedures from traces and logs, 
which can also be used to verify and understand behaviors 
of emerging service features in real time. 

• �Provide a canary release in a commercial environment for 
speedy development and deployment of new features. 

End-to-end monitoring and 
visualization of individual  

inter/infra-NF communications

Burst traffic control, buffering,  
load balancing and protection  

of inter/intra-NF communications

Replications and auto-scaling of 
inter/infra-NF communications 

in multiple clusters

Recovery and self-healing of 
failed or erroneous  

inter/intra-NF communications

Monitoring 
visualization

Redundancy
Overload 

protection

Recovery

Figure 3. Fundamentals of a robust and resilient core

In summary, the service mesh-based SCP simplifies cloud-
native architecture that can handle an increasing number  
of NFs and their communications, including configurations 
of service/message routing, load balancing, prioritization 
and monitoring, thereby making it a robust and resilient 
core network.

The inline service mesh approach described in this paper 
can be enhanced to support service mesh-based SCP, 
thus enabling a robust and resilient core network without 
sacrificing any performance or efficiency.

1.2  Leveraging AI/ML technology for enhanced 
Core resilience
As an MNO, SK Telecom adheres to making a robust and 
resilient core the fundamental design rule for the 6G Core 
network; the primary focus is protecting end customers 
from any possible service quality degradation. As shown in 
Figure 3, SK Telecom foresees that a 6G Core network must 
be able to fully meet cloud-native principles, especially 
including monitoring, overload protection, recovery and 
redundancy. As such, NFs and their interrelated individual 
pods must be measured in depth for their processing 
latency, jitter and packet loss for analysis in real time. Any 
faults or erroneous behaviors should immediately trigger 
actions such as buffering, load (re)balancing, and self-
healing. Furthermore, NF pods must have multiple replicas 
and be able to scale in/out dynamically, and they need to be 
monitored and visualized end-to-end for their inter/infra-
NF-pod communications.
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SK Telecom recently published a 6G whitepaper3 which 
contains views on 6G key requirements, evolution 
methodology, development directions and promising 
6G use cases. It also describes lessons learned and 
improvements to make the network more robust and 
resilient along with functional segmentation and distributed 
processing necessary for AI-native network evolution. With 
a higher number of NFs and higher performance capacities 
being demanded along with more complex network 
interconnections, AI assistance is an essential element 
toward a 6G network.

A 6G Core network also requires even lower latency and 
higher speed while maintaining reliability, thus AI-based 
optimizations should be applied to meet such demands. 
For example, as shown in Figure 4, individual NFs should 
have logical analysis and AI/ML entities to locally optimize 
key performance indicators (KPIs) and have ways for inter/
intra-NF communications to communicate with each 
other via an intelligence plane for globally-optimized KPIs. 
Such an architecture would require a higher number of 
connections between pods, and hence it is apparent that a 
service mesh-based SCP could be the appropriate choice 
towards an AI-enhanced core network. 

It is reasonable to consider that the service mesh could play 
an important part in an AI-assisted 6G Core, and this could 
be achieved with the type of inline service mesh described 
in this paper.

1.3  The need for a more flexible service mesh
The current 3GPP SCP is limited to support only inter-NF 
communications using service-based interface (SBI) over 
HTTP/2. Also, current service mesh architecture does not 
support protocols other than, for example, HTTP/2 and 
gRPC. This means that the current service mesh may not 
be able to work on NFs that have legacy interfaces and 
protocols such as S5/8, S11, N4 (UDP) and S1, N2 (SCTP), 
making it a lot more difficult to harmonize into a single 
unified service mesh network.
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Figure 4. AI native Core network redesign 
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It is important to note that NFs in the future, in the 6G 
and 6G Core eras, would be more disaggregated and 
decomposed to even smaller-sized functions. Some 
studies suggest that the future NFs, including RAN and 
UE, will support SBI natively, making it more unified. We 
are likely to see more and more studies on how inter/intra-
NF communications and their different decompositions 
affect performance, flexibility and resiliency for the next 
generation architecture. For instance: 

• �They potentially provide a way of mapping gRPC to the 
3GPP HTTP/2 REST API for SBI communications.

• �This could enable NFs with gRPC support to use gRPC 
for all control plane communications as the SCP could 
potentially enable gRPC-encapsulated SBI messages to 
be mapped HTTP/2 REST.

• �They can reuse Kubernetes-based PaaS/IaaS toolkits to 
support self-healing, in-service software upgrade and 
scale-in/out.

1.4  Inline approach needed to reduce service  
mesh overhead
SK Telecom’s SA commercial cloud-native Core network 
with sidecar proxy was measured based on busy-hour call 
attempts (BHCA). As shown in Figure 5, it was observed 
that a 5GC CNF’s call-processing latency (e.g., 3GPP PDU 
session establishment procedure) increases with increasing 
number of gRPC connections between the pods.

Depending on the BHCA requirements, pod resource 
allocations and work-thread synchronizations could reduce 
such overhead (e.g., queuing). Some reduction of the 3GPP 
procedure latency can also be achieved by using parallel 
processing as connections between pods are multiplexed.

However, as more gRPC connections are created, an 
increasing number of the service mesh sidecar proxies 
are injected, too, which can dramatically degrade the 
3GPP procedure latency (PDU session establishment) as 
shown in Figure 5. Even if the CNF application’s logic and 
configurations are further tuned, the nature of the service 
mesh proxy (i.e., terminating connections) adds overhead 
due to kernel-space processing, the details of which will be 
explained later. 
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Figure 5. Latency related to connections between pods 
with a service mesh proxy in an SKT commercial system
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The sidecar proxy approach, as shown in Figure 6, does 
reduce the burden to the microservice business logic 
of handling communications, traffic management, load 
balancing, circuit breaking, scaling, observability and 
monitoring. However, it has one significant problem, 
which is increased latency in pod-to-pod communications. 
Reducing the latency while keeping the cloud-native 
flexibility in the core system is one of the important research 
areas that needs to be studied, especially from the MNO’s 
perspective to provide low latency end-to-end connectivity 
service to end users.
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Figure 6. Moving from a service mesh with sidecar proxy to inline design
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Kernel IP tables are manipulated to redirect incoming TCP/
IP traffic to a sidecar proxy, which in turn executes routing 
decisions based on xDS which is in turn controlled by Istio. 
A sidecar proxy introduces extra kernel-space processing, 
which adds to latency incurred for the NF’s pod-to-pod 
communications. See the article titled, “Sidecar injection, 
transparent traffic hijacking, and routing process in Istio 
explained in detail,”4 for a detailed description of the Istio 
routing process for an injected service mesh sidecar proxy.

On the other hand, for an inline approach without a sidecar 
proxy, the logic executing the routing decisions based on 
xDS is in the application container, thereby making the 
redirection of TCP/IP traffic unnecessary and reducing the 
extra kernel-space processing. Thus, reduced latency is  
expected for the HTTP/2 messages moving in and out of pods. 

Support has been added to gRPC for an xDS interface 
which enables it to interact with an Istio service mesh 
controller. Likewise, support has also been added to Istio 
for deployment of pods in Kubernetes with a gRPC agent 
which brokers an Istio controller interface for application 
containers.

In order to make use of the Istio gRPC-based inline service 
mesh feature, applications must be compiled with gRPC 
libraries in order to interact with the Istio gRPC agent. While 
this removes the need for a sidecar proxy, it may require the 
application to be adapted to use gRPC for communication 
with other application pods.

The remainder of this paper describes an example of how 
5GC control plane CNFs may be adapted to use an inline 
service mesh. Furthermore, the benefit of an inline service 
mesh to 5GC control plane performance and efficiency 

is proven with empirical benchmarks taken from a lab 
deployment the Intel FlexCore reference 5GC  
cloud-native stack.

2  �Adapting 5GC CNFs for an inline service mesh
FlexCore is Intel’s cloud-native 5G Core, which was used 
as an example of how to adapt such a stack for an inline 
service mesh. This was then evaluated to determine the 
performance and efficiency benefits of such an inline 
service mesh when compared with the predominant sidecar 
proxy approach.

The following is a description (from top to bottom) of the 
layers of the reference 5G Core stack, as shown below:

• �MANO (management and orchestration) layer, which is 
composed of a GUI for deployment of 5GC CNFs. 

• �3GPP (Release 16.2) standards-compliant 5GC NFs 
developed with a microservices design from the start.

• �Common integration layer (CIL) for abstraction of 5GC 
CNFs from south-bound PaaS and north-bound MANO.

• �PaaS based on Cloud Native Computing Foundation 
(CNCF)-certified open-source cloud-native software for 
platform services such as logging (Elasticsearch, Fluentd, 
Kibana), tracing (Jaeger), monitoring (Prometheus and 
Grafana) and service mesh (Istio, Envoy).

• �CaaS also based on CNCF-certified open-source cloud-
native software for containerization such as Kubernetes 
for orchestration, Helm for package management, Calico 
and Multus for cloud-native networking, Docker as a 
container engine and containerd for the container runtime.

CaaS

Figure 7. Overview of the FlexCore reference cloud-native 5G core stack
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Figure 8. 5GC microservice design to support an inline service mesh
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2.1  Design and implementation of a gRPC-based 
inline service mesh
The following are the key steps required to adapt the 
reference 5G Core stack to use an inline service mesh:

1. �Modified 5GC NF microservice message transfer 
implementation to use gRPC and its xDS feature.

• �Implemented a gRPC shim layer for this to avoid any 
modification to application code.

• �Included support to optionally use HTTP/2 or gRPC 
through runtime environment variables.

NOTE: If an NF microservice already supports gRPC, it may still 
need to be modified to enable use of the gRPC xDS feature to 
enable Istio inline service mesh support.

2. �Modified the PaaS layer to use an Istio version with 
support for a gRPC-based inline service mesh. 

• �The original cloud-native platform was using Istio v1.8.2, 
so that had to be upgraded to Istio v1.13.0 for a gRPC-
based inline service mesh.

3. �Modify 5G Core deployment helm charts to enable 5GC 
NF microservice pods to use the gRPC-based inline 
service mesh.

• �Modified microservice pod spec Istio annotations to 
use Istio grpc-agent instead of sidecar as shown below. 
The holdApplicationUntilProxyStarts annotation 
is also required for a gRPC-based inline service 
mesh.

Istio annotation for use of Envoy sidecar proxy:

    sidecar.istio.io/inject: "true"

�Istio annotation for use of a gRPC-based inline service 
mesh:

    �inject.istio.io/templates: grpc-
agent

    �proxy.istio.io/config: 
'{"holdApplicationUntilProxyStarts": 
true}'

Figure 8 below is a high-level view of how a gRPC-based 
inline service mesh was implemented for 5G Core CNF 
pods. A gRPC shim layer was implemented to avoid any 
modification to application code and thus reduce the effort 
needed to support gRPC.

The following are the key points of the design:

• �The API presented by the HTTP/2 upper layer to NF 
microservice applications is unchanged.

• �The HTTP/2 upper layer is modified to support gRPC 
message transfer using a gRPC shim as well as HTTP/2 
message transfer using the nghttp2 library.

• �The gRPC shim encapsulates the gRPC core and presents 
an API to the HTTP/2 transport upper layer for gRPC 
client and server transactions.

• �The gRPC shim manages the xDS interface with the Istio 
service mesh controller.

• �gRPC metadata is used to transport 3GPP SBI (HTTP/2) 
headers.

• �The SBI HTTP/2 payload, e.g., MIME, JSON or Protobuf, is 
copied to gRPC messages as binary data.
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Figure 9. Cloud-native 5G core performance benchmarking setup

Figure 10. Measuring latency between SMF GW and PDU-Session microservices
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3  Evaluation
The Intel FlexCore reference cloud-native 5G Core stack 
with Spirent Landslide 5G traffic generator was used to 
evaluate the benefit of an inline service mesh for 5GC control 
plane performance. This provides a realistic benchmark 
using a commercial-grade 5G Core control plane.

3.1  Benchmarking setup and methodology
Figure 9 shows  a high-level overview of the benchmarking 
setup in Intel’s lab environment. A Spirent Landslide 5G 
traffic generator was used with a two-node OCP cluster. 
Both OCP worker nodes are using 4th Generation Intel® 
Xeon® Scalable Processors and hosting CaaS/PaaS and 
5GC NF microservices. For worker-node configuration 
details, refer to Appendix A: Intel FlexCore benchmarking 
environment details.

As described in the previous section, 5GC NF 
microservices were adapted to use a gRPC-based inline 
service mesh for empirically benchmarking the inline 
service mesh approach for 5G Core deployments.

The inline service mesh was enabled for SMF 
microservices, and the impact on transaction latency 
between SMF-Gateway and SMF-PDUSession 
microservices was measured. Specifically, the latency 
of Session-Management Context-Create requests from 
SMF-Gateway microservice transmission to the SMF-
PDUSession microservice receipt was measured, as shown 
in Figure 10.

Latency was measured by timestamping in SMF-Gateway 
and SMF-PDU-Session microservices. The SMF-Gateway 
request-sent timestamp is passed as a header field and 
used at the request-received point in the SMF-PDUSession 
microservice to measure latency between the transmission 
and receipt of this control plane message between 
microservices. Thirty SMF-PDUSession pod replicas were 
used to represent a typical configuration for 5GC SMF 
processing. 

For context, the round-trip latency of the Session-
Management Context-Create request to the response is 
approximately 50 ms,5 as measured in the AMF-Comm 
microservice shown below. Of this latency, the time spent 
in the microservice application logic is approximately 
60%, and the time spent in communications between 
microservices is approximately 40%.

MAC-VLAN
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Figure 12. Average CPU usage of an SMF-Gateway 
microservice pod — inline service mesh vs. envoy 
sidecar proxy
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3.2  Benchmarking results
Performance of the SMF was compared for gRPC-based 
control plane transactions using an Envoy sidecar proxy 
versus an inline service mesh. The SMF was configured with 
30 x PDU-Session processing pods.

Latency and CPU usage were measured for an increasing 
Session-Management Context-Create request rate which 
was driven by a Spirent Landslide 5G traffic generator.

Figure 11 shows significant reduction of control plane 
transaction latency and CPU usage for an inline service 
mesh in the case of a high number of SMF-PDU-Session 
microservice instances.

At high request rates (1500 requests/sec), the latency 
is over 3x higher with an Envoy proxy as compared with 
an inline service mesh. It was also observed that latency 
measurements for the Envoy proxy exhibit higher jitter 
levels than an inline service mesh.

It should be noted that the maximum traffic rate of 1500 
SMF requests per second was based on deployment of 
a single SMF-Gateway microservice pod which routes 
SMF SBI messages to an SMF-PDUSession microservice 
deployment with thirty pod replicas. By configuring the 
SMF-Gateway microservice deployment for multiple pod 
replicas and scaling the SMF-PDUSession microservice 
pod’s proportionately, it is reasonable to assume that, with 
sufficient CPU and memory resources available, that the 
request rate should scale proportionately and maintain the 
same latency level as shown above.

As shown in Figure 12, the total SMF-Gateway CPU usage 
is approximately 1 virtual core more with an Envoy proxy as 
compared to an inline service mesh. It should also be noted 
that an SMF-Gateway microservice pod with an Envoy 
proxy requires reservation of additional cores based on the 
Envoy concurrency setting, so that fewer cores are available 
for other pods.

4  Summary and recommendations
With a rise of emerging services such as XR/metaverse, 
satellite, AI/ML, energy-efficient networking and the 
transition to 6G Core networks, NFs will likely need to 
support new service features. With the increasing demand 
for these new service features, it is expected that CNFs are 
going to be decomposed into even more microservices, 
which perform 5GC processing via a unified communication 
infrastructure for flexibility and reliability. The service mesh 
that connects these microservices will thus be critical for 
performance and may also provide a means to introduce 
new features such as AI-based analysis and inference for 
improved reliability.

The 6G Core architecture from the 3GPP is expected 
to be standardized starting with Releases 20 and 21. 
Currently much study and research is being conducted into 
enhancing this.

The following are the key conclusions and 
recommendations from the work described in this paper 
by SK Telecom and Intel, which investigated the use of an 
inline service mesh to reduce control plane latency and CPU 
usage in cloud-native 5GC deployments.
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(1) An inline service mesh reduces control plane latency 
and CPU usage for cloud-native 5G Core deployments

Based on a comparison of measurements of average 
latency for proxied and inline service mesh configurations, 
it was shown that there is a significant reduction in latency 
and CPU usage for message transfer between two 
microservices. This is especially so in the case of a gateway 
microservice forwarding incoming SBI messages to an NF’s 
core processing microservice, such as the SMF-Gateway and  
SMF-PDUSession communication benchmarked in this paper.

Furthermore, the end-to-end latency reduction for a control 
plane operation depends on the number of microservices 
that must be traversed to complete the operation. Each 
microservice hop benefits from a latency reduction 
when using an inline service mesh with the result that the 
aggregate latency reduction is even more significant.

It was also shown that there is significant CPU usage 
reduction when a service mesh proxy container such as 
Envoy does not need to be deployed for every 5GC NF 
microservice container.

While service mesh proxy approaches such as Envoy 
support a rich set of features such as circuit breaking, 
tracing, logging and embedding analytics, such features 
may also be added for a gRPC-based inline service mesh.

(2) A generic message-transfer API should be provided 
for 5GC NF microservices, abstracted from the 
underlying protocol such as HTTP REST or gRPC

For the purpose of this paper, 5G Core NF microservices 
were adapted to use a gRPC-based inline service mesh 
by implementing a shim for an alternative gRPC message 
transfer path to the existing nghttp2 library and Envoy  
proxy path.

The shim approach avoided any change to microservice 
application code which significantly reduced the effort and 
time for gRPC integration into the 5G Core stack.

However, such an approach may add additional 
performance overhead in the gRPC adaptation. A 
recommended improved approach is to use a generic  
API that supports independent paths of execution for  
gRPC and HTTP-REST.

(3)  Possible 6G design for an inline service mesh

Although gRPC is based on HTTP/2, a gRPC endpoint 
cannot communicate directly with a plain HTTP-REST 
endpoint, which means that currently gRPC cannot be 
used for 3GPP SBI communication between NFs; it can 
only be used within the boundaries of an NF between its 
microservices as illustrated in Figure 13.
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Figure 13. Using an inline service mesh in a 5G Core control plane deployment
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While this offers reasonable latency and CPU usage 
benefits, this could be improved further if interoperability 
was possible between gRPC and HTTP-REST endpoints 
and inline service mesh communication was supported 
for HTTP-REST-based microservices. Figure 14 shows 
a prototype design for a potential solution where gRPC/
HTTP/2 mapping could be built into 5G Core microservices 
to enable inline service mesh communication for all control 
plane messages.

This is intended as a proposal for further inline service mesh 
development which builds on the initial work described 
in this paper. It is proposed to develop a library for inline 
service mesh communication which could be built into 5GC 
NF microservices.

The following are some key points related to this design 
proposal:

• �A generic API is presented to 5GC control plane 
microservices, i.e., no HTTP/2 specifics.

• �Microservices will have the capability to use gRPC or 
HTTP/2 for client requests depending on the target 
network function.

• �The message transfer upper layer provides adaptation 
to the required protocol and higher-level functionality to 
augment the grpc-core and HTTP/2 third-party libraries.

• �Libraries from the open-source gRPC project may be used 
for the gRPC lower layer.

• �An open-source HTTP/2 library such as nghttp2 may be 
used for the HTTP/2 lower layer.

• �A thin layer is required to listen for incoming server 
requests and to map to HTTP/2 or gRPC request handling, 
e.g., based on content type.

Figure 14. Design proposal for 5GC microservices 
with an inline service mesh for gRPC and HTTP/2 
message transfer

5GC Inline Service Mesh API

Message Transfer upper layer

gRPC lower layer 
(gRPC Core) 

request mapping
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5GC-NF1-Microservice-2 Pod 
(gRPC Inline) 
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NOTE: This may also be possible by using separate ports for 
HTTP/2 and gRPC listener threads, assuming a mechanism is in 
place for external NFs to determine which port to use. In this case, 
the request mapping layer is not required.

• �Support must be added for HTTP/2-based inline 
service mesh communication — the chosen HTTP/2 
implementation must interact with a service mesh agent 
to broker the xDS interface with a service mesh controller 
such as Istio, similar to how this is supported by gRPC.

(4) Another consideration for 6G cloud-native 
architecture — adding intelligence via the service mesh

The 6G Core will become a highly distributed AI structure 
as network data analytics function (NWDAF) service is 
inherent in each NF. Logical analysis and machine learning 
components will be two essential components for each 
NF, and an intelligence plane will be constructed through 
interconnection among NFs.

Data collection, message processing and storage 
functions will be performed by the NFs themselves. With 
an intelligence plane, information from all network layers 
can be collected, analyzed and inferred, and AI-based data 
learning can be performed with ultra-low latency across the 
entire network area.

Additionally, AI-based analysis and inference results 
are shared through the intelligence plane to ensure high 
reliability, and parameters and network configuration 
information that were previously managed statically are 
now dynamically auto-configured and optimized.

Further study in this area and the way that the service mesh 
is leveraged also has great significance for 6G.

Looking forward, Intel and SK Telecom will continue to 
jointly collaborate on software and hardware R&D toward 
optimal architecture of the B5G and 6G Core.
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5  Appendix A: Intel FlexCore benchmarking environment details

Hardware
Platform Intel® Server System M50FCP2UR (Fox Creek Pass)

CPU 4th Gen Intel Xeon 6438Y+ Dual Processor, 2.0 GHz, 32 Cores

Memory 8 x 32GB DDR5 (256 GB Total)

Hard Drive 2 x 1TB Intel SSD

Network Interface Card 2 x Intel Ethernet Converged Network Adapter XXV710 25GbE Dual-port

Software
Host OS RHEL 8.6, Linux Kernel 4.18 

CaaS/PaaS RedHat OpenShift 4.12, Kubernetes 1.25

Service Mesh Istio 1.14.1, gRPC 1.43

FlexCore SW 23.07 5GC NF images and deployment charts

Table 1. FlexCore worker-node configuration
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Acronyms
3GPP	� Third Generation Partnership Project (for 

Development of Mobile Core Technical Specifications)

5G	 Fifth Generation (of Mobile Core Standards)

5GC	 5G Core

6G	 Sixth Generation (of Mobile Core Standard)

AI	 Artificial Intelligence

AMF	 Access & Mobility Management Function

B5G	 Beyond 5G

CaaS	 Containers as a Service

CI/CD	 Continuous Integration / Continuous Development

CIL	 Common Integration Layer

CNCF	 Cloud Native Computing Foundation

CNF	 Container Network Function

CNI	 Container Network Interface

CPU	 Central Processing Unit

gRPC	 Google Remote Procedure Call (Protocol)

HTTP/2	 Hypertext Transfer Protocol 2

KPI	 Key Performance Indicators

L7	 Layer 7 (OSI Model)

LTE	 Long Term Evolution

ML	 Machine Learning

MANO	 MANagement and Orchestration

MNO	 Mobile Network Operator

NF	 Network Function

NRF	 Network Repository Function

NSA	 Non-Stand-Alone

NWDAF	 NetWork Data Analytics Function

OCP	 Openshift Container Platform

PaaS	 Platform as a Service

PDU	 Packet Data Unit

PNF	 Physical Network Function

RHEL	 RedHat Enterprise Linux

SBA	 Service Based Architecture

SBI	 Service Based Interface

SCP	 Service Communication Proxy

SDO	 Standards Development Organization

SDM	 Subscriber Data Management

SMF	 Session management Function

TCP/IP	 Transmission Control Protocol / Internet Protocol

TEM	 Telecoms Equipment Manufacturer

TTM	 Time To Market

UDM 	 Unified Data Management

UDR	 Unified Data Repository

UDSF	 Unstructured Data Service Function

UPF	 User-Plane Function

VNF	 Virtual Network Function

xDS	 (List of) Discovery Services
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