Intel® Quantum SDK

Developer Guide and Reference

February 15,2024

Release Version 1.1

Contents:

1 HowtoCite 1
2 Overview 2
3 Introduction to Quantum Computing 5
4 Supported Quantum Logic Gates 7
41 QuantumDbDotQubitGates e e e 9
5 Language Extensions 10
51 Built-in Types & Intrinsic Functions e 10
52 NaMESPACES . . . o ot i e e e e e e l
53 INnCludes & Classes o i e e e 1
6 Programming with the Intel® Quantum SDK 14
6. In-lining & quantum_kernelfunctions e 14
6.2 Measurements using Simulated QuantumBackends o 15
6.3 Localgbit Variables e 17
7 Compiling 19
71 Output of the Intel® Quantum SDK Compiler. e e e 19
72 Compiler Optimization e e e 19
7.3 Qubit Placementand Scheduling e 20
74 Circuit Printing & LaTeX e e e e 23
75 Support for OpenQASM 2.0 e e e 23
7.6 OtherCompilerFlags e e e e 24
8 Configuringthe FullStateSimulator 25
81 Overview of FullStateSimulator e e e e e 25
8.2 Execution Options e e e 25
8.3 Overview of IgsConfig v v it i e e e e 26
9 Intel® Quantum Simulator Backend 27
A Customizable noisemodeling e e 27
9.2 Using Custom IQS Noise ModelsinaProgram 28
9.3 Important Points on Performing Noisy Simulationswith1QS 29
10 Quantum Dot Simulator Backend 30
10.1 Simulationof Qubits e e 30
10.2 Rotatingvs. Laboratory Frame e 31
10.3 Usageinconjunctionwith getAmplitudes() i e 3l
10.4 Using Quantum Dot SimulatorinaProgram e e 31
10.5 Important Points on Quantum Dot Simulator 32
10.6 Compilation with Quantum Dot Simulator as the ComputingBackend 32

1 Clifford Simulator Backend
1.1 CliffordOperations e e e e e
1.2 Using Clifford SimulatorinaProgram
n.3 Important Points on Clifford Simulator. e
n4 Compilation with Clifford Simulator asthe ComputingBackend
12 Tensor Network Backend
121 Brief Overview of TensorNetworkConfig
13 Custom Backend
131 CustomInterface e e e
182 CustomSimulator e
133 Methods e e
14 PythonInterface
14.1 INtrodUCtioN L e e e e e e
142 PythonviaOpenQASM 2.0 e e e
143 Compiling quantum kerneltoSharedLibrary (.s0) ittt
144 Usinga Custom Backend withthe PythoniInterface
145 Known Limitations of the PythonInterface
15 Running With MPI
151 MPISUPPROIt .« . . . e
15.2 EXECULION . . . o e e e e
15.3 Sourcingcompilervariables e e
154 KnownLimitationswithMPI e e e
16 Running and Writing Custom Passes for the Intel® Quantum Compiler
16.1 INtrodUCtioN L e e e e e
162 RUNNINGPAasses e e
16.3 The Open-Source Compiler Passes Repository e e e i
17 Code Samples
17.1 Algorithmsand Simulations e e e
17.2 Programming e e e e e e e e
18 Summary of Known Limitations / Issues
19 Support and Bugreporting
20 FAQ
20.1 Why is the amplitude of this state not the same as my by-hand calculation?
20.2 Whatto doif I'm getting the “API called with qubits that are duplicated!" error?
20.3 Whatto doif I'm getting the “1-qubit gate X on qubit Y is not available in the platform”error?
204 Wherecanlfindthelntel Quantum SDK? e e
Bibliography

33
33
34
35
36

37
37

39
39
40
40

42
42
43
44
47
47

48
48
48
48
48

49
49
49

51

52
52
52

54
55

56
56
57
57
58

59

Revision 1.0 Intel® Quantum SDK

1.0 How to Cite

To cite the Intel® Quantum SDK, please reference:

Khalate, P., Wu, X.-C., Premaratne, S., Hogaboam, J., Holmes, A., Schmitz, A., Guerreschi, G. G., Zou, X. & Matsuura, A. Y.,
arXiv:2202.11142 (2022).

https://doi.org/10.48550/arXiv.2202.11142

Revision 1.0 Intel® Quantum SDK

2.0 Overview

The Intel® Quantum Software Development Kit (SDK) is a high level programming environment that allows users to write
software targeted to the Intel® quantum hardware. The Intel® Quantum SDK currently provides a choice of several simu-
lation backends specialized for different tasks. When Intel® quantum hardware backends are available in the future, users
will be able to seamlessly transition their simulations to execute on physical qubits with minimal software changes.

Developing applications that run on quantum computers involves considerable challenges whose solutions we often take
for granted when programming the classical computers we use every day. The Intel® Quantum Computing Stack en-
capsulates these challenges as internal modules that include: quantum compilation (front-end and back-end), runtime
mapping and scheduling, fault tolerance support, control electronics, and qubit management. The Intel® Quantum SDK
is designed to fully integrate with these modules of the Intel® Quantum Computing Stack. It includes optimizations and
decompositions based on the LLVM compiler framework targeting the Intel® Quantum Computing Stack.

The Intel® Quantum SDK provides an intuitive C++ based application programming interface (API). This APl allows users
to express quantum circuit diagrams using C++ code. At this point, readers new to quantum computing and interpreting
guantum circuit diagrams may benefit from visiting the Introduction to Quantum Computing section and the collection of
Tutorials.

Let’s consider a simple example. The following quantum circuit, which represents the famous entangled EPR or Bell State
[EIPR1935] [BELL1964],

)

|0) s>

is expressed with the Intel® Quantum SDK using the following C++ code:

https://en.wikipedia.org/wiki/Bell_state

0 O N o O AW N

Revision 1.0 Intel® Quantum SDK

Listing 1: Bell State Preparation & Measurement Example

/* Gate definitions and key words */
#include <clang/Quantum/quintrinsics.h>

/* Quantum Runtime APIs */
#include <quantum full state simulator backend.h>

#include <iostream>

const int num qubits = 2;
/* Declare 2 qubits */
gbit g[num qubits];

/* The quantum logic must be in a function with the keyword quantum kernel */
/* pre-pended to the signature */
quantum_kernel void prep and meas bell(cbit read out) {

/* Prepare both qubits in the |0> state */

PrepZ(ql0]);

PrepZ(q[1]);

/* Apply a Hadamard gate to the top qubit */
H(ql0]);

/* Apply a Controlled-NOT gate with the top qubit as
* the control and the bottom qubit as the target */
CNOT(ql0]1, qll1l);

/* Measure qubit 0 */
MeasZ(q[0], read out);

int main() {
/* Configure the simulator */
igsdk::IgsConfig settings(num qubits, "noiseless");
igsdk: :FullStateSimulator quantum 8086 (settings);
if (igsdk::QRT_ERROR SUCCESS != quantum 8086.ready()) return 1;

/* Declare 2 measurement readouts */
/* Measurements are stored here as "classical bits" */
cbit classical bit;

prep _and meas bell(classical bit);

/* Here we can use the FullStateSimulator APIs to get data */
/* or we can write classical logic that interacts with our measurement */
/* results, as below. */
bool result = classical bit;
if (result) {
std::cout << "True\n";
}
else {
std::cout << "False\n";

}

return 0;

Revision 1.0 Intel® Quantum SDK

Ready to get started building quantum circuits? If so, feel free to jump straight to the Getting Started Guide to learn about
the SDK's software requirements, installation, usage, and how to interpret the output. Otherwise, it may be helpful to brush
up on the basics and investigate the resource material found in the Introduction to Quantum Computing section. The
collection of Tutorials and Samples may also be of interest.

To summarize, the Intel® Quantum SDK includes:
* Anintuitive user interface based on the C++ programming language.

» Optimizations and decompositions based on the LLVM compiler framework specifically targeted at the Intel® Quan-
tum Computing Stack.

» A full compilation flow that produces an executable using a user’s selected backend.

Authoring aquantum-accelerated application in the Intel® Quantum SDK follows the programming paradigm of other hard-
ware accelerators. Quantum programs are written in a C++ programming environment that has been extended to allow the
user to express quantum circuits as quantum logical operations. Depending on whether the user is targeting a simulation
environment or qubit hardware, our quantum runtime library will direct the quantum workload to the appropriate backend
during runtime execution.

Currently available backends:

= The Intel Quantum Simulator (IQS) backend, a full-state-vector qubit simulation with a complete description of the
guantum state of the qubits defined.

= The Quantum Dot (QD) simulator, a physics-based simulation of the physical qubits paired with a state-vector front-
end.

= The Tensor Network backend, a simulator that uses tensor contractions to evaluate quantum circuits.

» The Clifford Circuit backend, a simulator that provides extremely fast results for quantum algorithms implemented
using only Clifford quantum gates.

* Aninterface for a user-defined backend; with this option, users can develop their own behavior for qubit simulators.

Revision 1.0 Intel® Quantum SDK

3.0 Introduction to Quantum Computing

Quantum computing is a new model of computation that solves problems by manipulating and measuring the properties of
special systems that exhibit quantum mechanical phenomena. These special quantum mechanical systems are referred
to as quantum computers. Quantum computers are particularly well-suited to certain kinds of computational problems,
such as cryptography, Quantum Fourier Transforms (QF Ts), optimization/search, physics/chemistry simulation, and many

more.

k)
= [k
2
2

2N States

N Quantum Bits

To better understand how a quantum computer works, it helps to compare the basic unit of quantum information, a qubit,
with the well-known classical binary bit. A binary bit can be in only one of two possible states: a O or al. This is similar to
how we consider the state of a standard coin lying on a table; it is either heads or tails.

Note: Here we focus on the paradigm of gate-based quantum computing using qubits. Other types of quantum systems
are not directly supported by the Intel® Quantum SDK.

In this analogy we consider the state of a quantum coin to be “spinning” on the table top; that is, it is in neither the heads
nor the tails state, it is in both states at the same time. In the quantum realm, this concept is called superposition: a qubit is
simultaneously in both the O and the 1state (in quantum mechanics, these are referred to as |0) , |1)). In fact, a qubitisina
linear combination of these two states. So in some sense, a qubit is more like a weighted spinning coin; it has some chance
of being in the O state, and some chance of being in the 1state. In quantum mechanics we often write this scenario as:

) = a|0) + 8[1)

where |¢)) represents the state of the qubit and « and 3 represent the probability “amplitude” of the qubit being in the |0) or
the |1) state, respectively. Actually, the o and 3 coefficients are complex numbers, and the square of their absolute values
(asin, |a|? and | 8]?) represents the real-world probability of that qubit being in the |0) or the |1) states, respectively. Since
there are only 2 possible states, we know that |a|? +|3|? = 1, which simply means there is a100% chance that the qubitis in
either the |0) or the |1) state. Just as we can stop a spinning coin at any time with our finger, we can also measure the state
of a qubit |/} to see exactly which state it is in at a given time: we represent this measurement with a very simple quantum
circuit diagram:

|¥)

Revision 1.0 Intel® Quantum SDK

Note: This quantum circuit diagram represents measuring an arbitrary single-qubit state |)). Quantum circuit diagrams
are read left-to-right. More operations on a single qubit extend the circuit horizontally, and more qubits are added vertically.

Immediately upon measuring the qubit’s state, we will see that is it in either the |0) state or the |1) state. The probability the
qubitis |0) is |«|?, and the probability the qubitis |1) is | 3|2. An important property of quantum measurements is that they
change the state of the underlying qubits, irreversibly collapsing the qubit’s state from a superposition to a single state.

Applying operations like measurements or other quantum gates (such as a qubit “flip”) is fundamental to quantum com-
puting. For example, we can flip the |0) state to the |1) state with an X gate, as represented by this circuit diagram:

10) 1)

Furthermore, qubits can be entangled with each other. That is, the combined state of multiple qubits can be correlated. In
our coin analogy above, 2 spinning coins could represent 4 possible states via superposition. But if the two spinning coins
are entangled, the result of one coin will necessarily inform us of the result of the other. In the similar case of measuring
an entangled Bell pair of qubits, measuring the state of one qubit lets us know the state of the second qubit, even without
measuring the second qubit.

These two properties, superposition and entanglement, enable quantum computers to solve certain problems far more
efficiently than a classical computer. Generally speaking, guantum computing is performing quantum operations on qubits
to solve these interesting problems. One example is applying a Quantum Fourier Transform (QFT); with only O(n?) gates,
specifically the Hadamard and phase-shift gates (see the quantum gates and the QF T sample sections for more details),
we can apply a Fourier transform on O(2™) amplitudes. The corresponding 4-qubit QF T circuit diagram looks like this:

)

) : Py [H{ R

|1)2) H
) (i}

To learn more about quantum computing and how to develop quantum algorithms like the one above, see suggestions in
the Getting Started Guide.

Revision 1.0 Intel® Quantum SDK

4.0 Supported Quantum Logic Gates

Below is a list of quantum logic gates supported in the Intel® Quantum SDK and their signatures. To see the matrix defini-
tions for these gates, refer to the file:

<path to Intel Quantum SDK>/iqc/include/clang/Quantum/quintrinsics.h

1. Hadamard (H)

void H(gbit& q);
2. PauliX (X)

void X(gbit& q);

This is equivalent to a rotation around the X-axis by .
3. PauliY (Y)

void Y(gbit& q);

This is equivalent to a rotation around the Y-axis by 7.
4. PauliZ (2)

void Z(qbit& q);

This is equivalent to a rotation around the Z-axis by 7.
5. Phase (S)

void S(qgbit& q);

Phase shift with half the rotation of Z (i.e. a 7/2 rotation). Equivalent to RZ (r/2).
6. Phase Inverse (Sdag)

void Sdag(gbit& q);

Conjugate transpose of S.

Note: Dag here is an abbreviation for “dagger”, which denotes the conjugate transpose of a Hermitian matrix.

7T
void T(gbit& q);
Phase shift, with one quarter the rotation of Z (i.e. a 7 /4 rotation). Equivalent to RZ(m/4).
8. TInverse (Tdag)
void Tdag(gbit& q);
Conjugate transpose of T.
9. X axis Rotation (RX)
void RX(gbit& q, double angle);
10. Y axis Rotation (RY)

Revision 1.0 Intel® Quantum SDK

void RY(gbit& q, double angle);
11. Z axis rotation (RZ)
void RZ(gbit& q, double angle);
12. Controlled Z (CZ)
void CZ(gbit& ctrl, gbit& target);
13. CNOT
void CNOT(gbit& ctrl, qbit& target);
14. SWAP
void SWAP(gbit& ctrl, qbit& target);
15. Toffoli
void Toffoli(qbit& ctrl@, gbit& ctrll, gbit& tgt);
Toffoli gate with two controls.
16. PrepZ
void PrepZ(gbit& q);
Initialize/reset qubit to the |0) computational state.
17. PrepX
void PrepX(gbit& q);
Initialize/reset qubit to the |+) computational state.
18. PrepY
void PrepY(gbit& q);
Initialize/reset qubit to the | R) computational state.
19. MeasZ
void MeasZ(gbit& q, bool& c);
void MeasZ(qgbit& q, cbit& c);
Measure the qubit g in the |0) or | 1) computational states and store the resultin c.
20. MeasX
void MeasX(qbit& q, bool& c);
void MeasX(gbit& q, cbit& c);
Measure the qubit g in the |+) or |—) computational states and store the result in c.
21. MeasY
void MeasY(qbit& q, bool& c);
void MeasY(qbit& q, cbit& c);
Measure the qubit g inthe | R) or | L) computational states and store the result in c.

22. CPhase

Revision 1.0 Intel® Quantum SDK

void CPhase(qbit& ctrl, qgbit& target, double angle);

Controlled Phase gate.
23. XY-plane Rotation

void RXY(qgbit& q, double theta, double phi);

Define a rotation in the XY-plane of the Bloch sphere (RXY Matrix Representation).
24. Swap Alpha

void SwapA(gqbit& ql, qbit& g2, double angle);

Rotation in the Span{|01) |10)} subspace.

4.1 Quantum Dot Qubit Gates

Some physical systems will find it easier to implement certain quantum gates because of differences in the underlying
guantum systems used to create hardware qubits. If two sets of quantum gates are each universal for quantum computing,
then a quantum algorithm can be implemented in either set of quantum gates. Below is the list of the quantum gates that
the Intel® Quantum SDK targets during compilation. The gates writteninthe quantum_kernel functions are decomposed
by the compiler into the gates below, and the results can be found in the human-readable . gs file. This list is for reference.

1. quprepz(gbit q)
Anincoherent reset to computational |0) state.
2. qumeasz(gbit q)
Measurement in the Z basis. This collapses the qubit to the measured state, either |0) or |1).
3. qurotxy (gbit q, double theta, double phi)
A rotation of theta around arbitrary axis in X-Y plane of the Bloch sphere as characterized by angle phi, i.e. the
operator exp {—i 6/2 (cos(qb)X + sin(qﬁ)\?) }
4. qucphase(gbit gql, gbit g2, double theta)
An arbitrary phase of exp (—i §) on the |11) state of the given qubits.
5. quswapalp(gbit gl, gbit g2, double theta)
An arbitrary rotation of theta inthe {|01) ,|10)} state subspace.
6. qurotz(qbit g, double theta)

An arbitrary rotation of theta about the Z-axis of the Bloch sphere. Optimizers should minimize occurrences.

Revision 1.0 Intel® Quantum SDK

5.0 Language Extensions

The Intel® Quantum SDK defines a number of data types, keywords, and classes to facilitate expressing quantum algo-
rithms as well as some common tasks associated with working with quantum qubit simulators. A complete list of the meth-
ods is provided in API Reference. This section summarizes the key concepts developers should know when writing C++-
based programs in the Intel® Quantum SDK.

5.1 Built-in Types & Intrinsic Functions

gbit:

Datatype for variables representing qubits. gbit variables can be declared either globally in the global names-
pace or locally within a quantum_kernel function (see Local variables). A gbit variable cannot be used as a
member variable of any class.

cbhit:

Data type for variables to represent a classical bit returned by a quantum measurement. Equivalent to bool.
quantum_kernel:

Attribute for afunction that will contain quantumlogic, e.g. a gate acting onaqubit oranother quantum_kernel.
release quantum state():

Anintrinsic functionthat onceinvokedinaquantum_kernel, indicates thatthe quantum state isunconstrained
from that point onwards. Quantum variables can be re-used in a new quantum_kernel, but they must be re-
initialized using PrepX, PrepY, or PrepZ since the quantum states are unspecified after being released. Calling
release_quantum_state () facilitates optimizations when compiling with the - 01 flag, which canlead to more-
efficient execution of the quantum algorithm. For an example of the effects of optimization on a quantum_-
kernelusing release quantum state(),see Usingrelease_quantum_state() in the Tutorial document.

std::vector<std::reference wrapper<qbit>>

Data structure used to specify the order of qubits or a subset of qubits for reporting data from a full state quan-
tum simulator. Reference wrappers are constructed by calling std: : ref (q) for qubit variables q. Thisidiomis
important because there is no a priori relationship between gbit type variables and hardware qubits. Concep-
tually, this is similar to an object instance that does not necessarily occupy the same memory address during
each execution.

For example, suppose a user has two qubits: g1 in state |0) and g2 in state |1). [f getProbabilities isinvoked
with the vector {std: :ref(ql), std::ref(qg2)} of reference wrappers, the reported state will be |01); if itis
invoked with {std::ref(qg2), std::ref(ql)},the state willbe: |10).

5.1.1 Known Limitations

Top-level quantum_kernel functions can only refer to global gbit variables or local gbit variables defined inside a
quantum_kernel function. In other words, the following is not a valid top-level quantum_kernel function signature:
quantum kernel void my single qubit function(gbit &q) ;. Thisrestriction does not apply to quantum kernel ex-
pressions, which are described in FLEQ Guide and Reference (Local qubits).

10

Revision 1.0 Intel® Quantum SDK

5.2 Namespaces

igsdk
Namespace providing access to the classes and methods of the Intel® Quantum SDK.
gexpr

Namespace providing access to quantum kernel expressions. Part of the Functional Language Extension for
Quantum (FLEQ). See FLEQ Guide and Reference (Quantum kernel expressions).

glist
Namespace providing access to compile-time quantum lists (see FLEQ Guide and Reference (QList)).
datalist

Namespace providing access to compile-time strings (see FLEQ Guide and Reference (DatalList)).

5.3 Includes & Classes

<clang/Quantum/quintrinsics.h>: Required header file that provides access to the supported quantum gates as well
as the instructions to prepare the state of a qubit and perform a measurement on a qubit. See Supported Quantum
Logic Gates and Intel Quantum Dot Qubit Gates for additional details about the gates.

5.3.1 Quantum Backends

<quantum full state simulator backend.h>:

This header file is needed for full state simulators, and provides access to the FullStateSimulator class as
well as auxiliary helper classes.

IgsConfig:
Configuration data for the FullStateSimulator class.
FullStateSimulator:

Class with API calls to both set up a quantum simulator device and access the underlying quantum
state during simulation. See Configuring the FullStateSimulator for a quick explanation or API Ref-
erence for a complete description of the class’s methods.

<quantum clifford simulator backend.h>:

Header file needed for using the Clifford Simulator.
ErrSpeclqQ:

Configuration struct for single qubit gate errors.
ErrSpec2Q:

Configuration struct for two qubit gate errors.
ErrSpecldle:

Configuration struct for idling.
ErrorRates:

Configuration struct for error rates of each gate type.

GateTimes:

1

Revision 1.0 Intel® Quantum SDK

Configuration struct for duration of each gate type.
CliffordSimulatorConfig:
Configuration struct for setting up a Clifford Simulator Device.
CliffordSimulator:
Backend interface for using the Clifford Simulator.
<quantum_tensor_network backend.h>:
Header file needed for using the Tensor Network Backend.
TensorNetworkConfig:
Configuration struct for setting up a Tensor Network Device.
TensorNetworkSimulator:
Backend interface for using Tensor Network Simulation.
<quantum_custom_backend.h>:
Header file needed for using or developing a Custom Backend.
CustomInterface:
Abstract base class for user to implement their own simulator.
CustomSimulator:
Backend interface for using the custom backend.
<grt_errors.hpp>:

This header file is included by any quantum backend. It defines the data type for communicating success or
failure from the quantum runtime.

QRT_ERROR_T:

Datatype representing potential errors in setting up a quantum device. Either QRT_ERROR_SUCCESS,
QRT_ERROR_WARNING, or QRT_ERROR FAIL.

<quantum_backend.h>:

This header file contains base classes for simulation devices. Itis included by any needed simulation interface.

<quantum.hpp>:

Deprecated. Includes headers for all backends.

5.3.2 Accessing Results

<qrt_indexing.hpp>:
This header file is included by any quantum backend. It defines the data types for accessing backend results.
QssIndex:

Data type for representing quantum basis elements. Used for indexing into data structures repre-
senting quantum state spaces (QSS).

QssMap<T>:

A map from QssIndex values to type T values. Used for representing total or partial quantum state
spaces where T is double for probabilities or complex for amplitudes.

12

Revision 1.0 Intel® Quantum SDK

5.3.3 Functional Language Extension for Quantum (FLEQ)

<clang/Quantum/qgexpr.h>:

Header file that provides resources for building quantum kernel expressions. See FLEQ Guide and Reference
(Quantum kernel expressions).

QExpr:

Data type of quantum kernel expressions, a representation of quantum kernel functions provided by
FLEQ. See FLEQ Guide and Reference (Quantum kernel expressions) for more information.

<qlist-utils.h>:
Header file that provides useful utilities for working with quantum kernel expressions.
<clang/Quantum/qlist.h>:
Header file that provides access to compile-time qubit lists. See FLEQ Guide and Reference (QList).
glist::QList:
Data type for compile-time qubit lists.
<clang/Quantum/datalist.h>:
Header file that provides access to compile-time strings. See FLEQ Guide and Reference (DatalList).
datalist::DatalList:

Data type for compile-time strings.

13

Revision 1.0 Intel® Quantum SDK

6.0 Programming with the Intel® Quantum SDK

6.1 In-lining & quantum kernel functions

When the compiler prepares a quantum_kernel function, it separates all the quantum instructions (as Intermediate Rep-
resentation (IR)) from the classical IR so that it can deliver a complete set of instructions to the quantum backend.

Local declarations and operations with traditional C++ data types are supported inside a quantum_kernel function, which
aids readability and preserves programming concepts. At compile time, these “classical” instructions are pulled out of the
quantum_kernel. This has a consequence on classical instructions, especially bool and cbit measurement results: any
operations on classical variables written inside a quantum_kernel will be executed at the beginning of that quantum_-
kernel, unless they are written after the final quantum gate in the quantum_kernel.

gbit qO;
gbit ql;

quantum_kernel void myKernel() {

bool b = false;

std::cout << "b has value false (0) here after initialization: "
<< b << "\n";

PrepZ(q0);

X(q0);

MeasZ(q0, b);

std::cout << "b still has value 0 here since the quantum gates are not complete:
<< (int)c << "\n";

PrepZ(ql);

std::cout << "After all gates in quantum kernel have executed, b has value true (1):
<< b << "\n";

A quantum_kernel may be called from within another quantum_kernel. Here, too, the compiler in-lines the quantum in-
structions from the innermost quantum_kernel and continues until it produces one sequence of instructions that corre-
sponds to the “top-level” quantum_kernel call that begins the quantum algorithm.

In-lining combined with the earlier rule on rearranging operations on measurement results means that for quantum_kernel
functions containing a measurement which are called in the middle of another quantum_kernel function, the operations
onthose cbitandbool measurement results will be moved to the beginning of the resulting set of instructions. This means
that the following code:

If a user needs classical instructions to be executed strictly in the middle of a quantum algorithm, they should break up
the algorithm into multiple top-level quantum kernel functions. Alternatively, they can use the bind operator on quantum
kernel expressions (see FLEQ Guide and Reference (Barriers and binding)).

The restriction that the entire quantum_kernel be known at compile time together with the in-lining behavior means that
the top-level kernel cannot accept an arbitrary variable of type qbit as a parameter. The variables of qbit type that will be
operated on must be explicitly defined in the “top-level” kernel’s instructions; however, inner quantum_kernel functions
may be written to accept qbit type variables as parameters.

Note: This restriction applies primarily to quantum_kernel functions, and not to FLEQ. See FLEQ Guide and Reference
if you need this feature.

14

Revision 1.0 Intel® Quantum SDK

gbit gs[3];

// A nested quantum kernel may take either classical or quantum arguments
quantum_kernel void bell(gbit &a, gbit &b) {

Prepz(a);

PrepZ(b);

H(a);

CNOT (a,b);
}

// A top level quantum kernel may take classical arguments, but not quantum
// arguments
quantum_kernel void topLevelBell() {
bell(ql0],q[2]1);
}

int main() {

// may call top-level quantum kernel
topLevelBell();

// may not call quantum kernel with quantum arguments
// invalid: bell(q[0], ql[21);
}

6.2 Measurements using Simulated Quantum Backends

Atypical quantum program using the Intel® Quantum SDK will do effectively the following sequence: 1. Submit quantum_-
kernel functions to a quantum backend. 2. Execute quantum_kernel on the backend. 3. Retrieve results. 4. Repeat 1-3
as needed.

After the quantum_kernel has finished executing, users will need to retrieve results from the backend. This section de-
scribes the result retrieval and aggregation process, using the example of the FullStateSimulator backend.

The FullStateSimulator class provides three main approaches to obtain statistical measurements:
1. getProbabilities () (and/or other simulation data)
2. getSamples()
3. Repeated execution of explicit measurement operations e.g. MeasZ (sampling).

These methods will be elaborated in the following sections.

Both Intel® Quantum Simulator (IQS) and Quantum Dot (QD) Simulator backends support collecting the simulation details,
such as the quantum amplitudes, conditional probabilities, or single-qubit probabilities. The FullStateSimulator class
provides these data regardless of which backend is selected to run the simulation.

6.2.1 Simulation Data

Table 1: Simulation Method Comparison

15

Revision 1.0 Intel® Quantum SDK

Method Returned object Effi- Recom- Other Notes
ciency mended?
(with
1QS)
getProbabilities() vector<double> or | Best Yes
QssMap<double>
getSingleQubitProbs() vector<double> Best Yes
getSamples () vector<vector<bool>> Good Yes
getAmplitudes() vector<complex<double>> Good No Accurate up to global
or phase
QssMap<complex<double>>
Repeated sampling calls User-defined Worst No Complexity scales with
number of samples

Working with the simulation data returned by FullStateSimulator methods such as getProbabilities () is often the
most computationally efficient route to simulating a quantum algorithm. Thisis because quantum algorithms often encode
their results as probabilities of different states. If the entire algorithm needed to run many times to sample the probability,
as required on a hardware quantum backend, the simulation time would increase significantly.

For applications that need a set of measurement outcomes, both backends of the FullStateSimulator offer a second
route to obtain the simulation data, which avoids the need for repeated executions of a given quantum_kernel function.
This route consists of calling getSamples () to get sequences of outcomes as if measurements were applied to the qubit
register. This sampling of results doesn't affect the state and can even be applied as many times as an application calls for.

6.2.2 Combining Simulation Data and Measurement Operations

IQS offers the ability to retrieve simulation results (i.e. from getProbabilities() or getSamples()) when quantum_-
kernel functions include measurement gates (e.g. MeasZ()).

Note: This feature is not available in QD Simulator because it doesn’t collapse the state (see the Quantum Dot (QD)
Simulator). This means combining results of measurement operations and sampling results with the QD Simulator can
yield unexpected results.

When using probability measurement and explicit measurement gates on a qubit in simulations, QS will cause a ‘partial
collapse’ of the state in the simulator to a sub-space. You can combine such operations with a sampling technique like
getProbability or getSamples to compute data or collect statistics on the sub-space. To support combining measure-
ment operations and simulation data, IQS will always collapse the quantum state of the simulator when it encounters amea-
surement operationina quantum_kernel. Any subsequent querying of the FullStateSimulator after measurement will
always give the same result on the qubits that had one of MeasX, MeasY, or MeasZ applied, and other qubits will have any
correlated effects on their probabilities present.

Measuring a qubit leavesiitin one of the two states into which the measurement was projected; e.g. measuring a qubit along
the Z-axis (in a Bloch sphere representation) leaves itin either a |0) or |1) state. Another perspective on thisis that the post-
measurement state of the entire set of qubits now occupies a sub-space of the Hilbert space previously occupied by the
pre-measurement qubits. This can be qualitatively understood by noting that there is no uncertainty in the state of the
measured qubit. A measurement also has consequences on the correlations arising from entanglement between qubits.
More simply, measuring one qubit can affect the probabilities of the outcomes of measuring a different qubit (provided the
two qubits were entangled). In the extreme case, a large amount of correlation present in the system could mean that a
single measurement applied on one qubit results in the state of the entire set of qubits being determined, such as for a Bell
pair or GHZ state.

16

Revision 1.0 Intel® Quantum SDK

6.2.3 Using Only Measurement Operations

A third option is to collect your own statistical results by executing the entire quantum algorithm with all the required mea-
surement operations many times in a loop (or other control-flow structure) to direct execution flow. Each iteration of the
quantum algorithm produces and then stores, analyzes, or accumulates the result of the measurements. Under ideal con-
ditions (no noise), the sampling & measurement approaches will each produce statistically-equivalent results, especially
with large sample sizes. Because quantum algorithms running on quantum hardware must use the measurement ap-
proach, the simulation data and sampling approaches can be seen as a debugging mode for the measurement approach.
IQS supports using measurements anywhere in the quantum algorithm; in contrast, QD Simulator only supports reading
measurements at the end of the quantum_kernel.

6.3 Local gbit Variables

gbit variables can be declared globally or locally. When the compiler maps the program qubits to physical qubits, each
gbit variable will be assigned to a physical qubit. Since the compiler cannot guarantee the state that a local gbit variable
isin, local gbit variables must be initialized using PrepX, PrepY, or PrepZ before being used. At the end of the quantum_-
kernel, the local gbit variables must be released. This can be achieved through measurements or release quantum_-
state().

Note that if using release quantum state(), the quantum states are unspecified after the function call (see Language
Extensions). Without releasing the quantum states, the physical qubits assigned to the local gbit variables might be as-
signed to other local gbit variables in a new quantum_kernel function while still holding the quantum states of the out-
of-scope variables. The out-of-scope variables’ physical qubits will not be assigned to unreleased global gbit variables,
however.

In the following example, a local gbit variable is declared, initialized, and measured.

quantum_kernel void kernel() {
gbit q;
bool b; // can also be of type cbit

PrepZ(q); // prepare the gbit variable before applying gates
H(a);
MeasZ(q, b); // release the gbit variable at the end of the quantum kernel

If local gbit variables are entangled with global gbit variables, the entanglement persists after the local qbit variables
go out of scope. The user must insert gates needed to disentangle the local qbit variables from the global ones before
releasing the local variables’ quantum states.

gbit global;

quantum_kernel void errorExampleEntangledQubits() {
gbit local;

PrepZ(local); // Prep the gbit variable before applying gates
H(local);
CNOT (local, global);

// After local goes out of scope, the physical qubit it was assigned to
// is still entangled with global

The recommended best practice with regards to local gbit variables is therefore to prep them before they are used and
insert gates to undo the entanglement between local and global gbit variables before releasing the quantum states at the
end of quantum_kernel functions.

17

Revision 1.0 Intel® Quantum SDK

For information on how to use local gbit variables with quantum kernel expressions and FLEQ, refer to FLEQ Guide and
Reference (Local qubits).

18

Revision 1.0 Intel® Quantum SDK

7.0 Compiling

The compiler’s operation can be modified using command-line flags, allowing functionality such as specifying header in-
clude paths and library paths, redirecting output files, and specifying different qubit hardware or connectivity. These op-
tions can be printed by running

‘$./intel-quantum-compiler -h

7.1 Output of the Intel® Quantum SDK Compiler

Three files are generated from the compilation stage and written to the working or user-specified output directory. These
files are:

<algo-name>. 11: Intermediate representation (IR) of source file.

This file shows the LLVM IR of both quantum and classical parts of the code combined, with the quantum_ -
kernels and operations represented as function calls.

<algo-name>. gs: Human-readable assembly file for Intel® Quantum backend target.

This file shows the assembly for each quantum_kernel written by the user and mapped to the quantum back-
end. Thus, it will reflect some of the quantum target’s attributes, such as its native gate set, and limited connec-
tivity (in the form of additional swap gates).

<algo-name>: Executable corresponding to <algo-name>.
This is the binary and final result of the Intel® Quantum SDK compiler.

The details inthe .11 and . gs files can provide a better understanding of the program’s low-level execution flow. When
debugging or trying to understand the results of optimization, referring to both .11 and . gs can be informative. For ex-
ample, in optimizing measurement operations, when the compiler can be sure that a given boolean or cbit measurement
outcome is dependent on another outcome or set of outcomes, then that measurement outcome can ultimately be de-
termined by the classical part of the IR (especially in conjunction with a call to release quantum state())and the mea-
surement that set it can be omitted. Similarly, the dynamic parameters passed to some quantum gates can sometimes
be combined by the compiler, reducing the number of operations on dynamic variables. Inspecting the . gs file will reveal
which measurements and operations will be executed.

7.2 Compiler Optimization

As in compilation for classical programs, the LLVM-based Intel® Quantum SDK quantum compiler can look for oppor-
tunities to reduce the required quantum instructions and/or order and execute them more optimally. This optimization
accounts for logical and physical constraints, and can be activated by passing one of the following optimization options:

= -00:

This optimization flag represents no optimization at this time. This is the default if no flag is provided. Cer-
tain compiler passes will still be applied, such as converting to native gates.

This optimization flag enables high-level quantum optimizations onthe quantum_kernel functions. Atthis
time, the -01 optimization converts all quantum_kernel functions to a high-level representation we refer
to as a “product-of-Pauli-rotations” representation. The overall unitary (and more generally, the quantum
channel) is converted to an abstract Pauli-based form, consisting of:

19

Revision 1.0 Intel® Quantum SDK

- A sequence of Pauli-operator-based elements of the form e~%*F, where P is a general Pauli operator

(tensor product of single-qubit Pauli operators) and t is any real number.

= Analogous elements for Clifford operations and non-unitary quantum operations such as measure-
ment and qubit preparation.

Optimizations are performed on this representation, which is then used to synthesize a new circuit directly
using native gates for the target backend. The synthesis process minimizes entangling gates and overall
depth. The synthesis methods are adapted from [Schmitz2021], [Paykin2023], [Schmitz2023].

For quantum_kernel functions that use many qubit preparation operations, i.e. significantly more than the number of
qubits used, use of -01 flag is known to dramatically slow down the compilation due to the intense amount of computa-
tion needed.

7.3 Qubit Placement and Scheduling

Note: This section distinguishes between a physical qubit, and a program qubit, which is the model used in users’ pro-
grams. A “program qubit” is sometimes referred to as a virtual qubit. For the purposes of this section, the primary constraint
of aphysical qubit is that it will not have all-to-all connectivity, meaningitis not possible to perform a two-qubit gate between
every pair of qubits. A physical qubit does not need to be implemented in hardware, and can exist solely in simulation.

The backends of the Intel® Quantum SDK provide features to simulate quantum hardware at different levels of idealiza-
tion. For example, the FullStateSimulator backend provides anidealized quantum computer with unlimited (“all-to-all”)
physical connectivity between simulated physical qubits, so there is no “placement” decision required to map program
gbit objects in the source code onto the physical qubits.

When all-to-all physical qubit connectivity is not available, some algorithms will require moving the program qubits around
over the physical qubits.

The Intel® Quantum SDK compiler integrates the solution to this constraint into the quantum basic block functions it con-
structs from quantum_kernel functions. The placement compiler pass assigns program qubits (as declared in user’s
source code) to physical qubits (as defined in a platform configuration . j son file). This is the initial placement of the pro-
gram qubits which may change once the circuit has been processed by the scheduler compiler pass.

The scheduler compiler pass sequences the quantum instructions & gates, accounting for physical qubit connectivity
by adding quantum instructions required to implement the algorithm. These additional quantum instructions effectively
“move” the quantum information across physical qubits to perform a quantum gate between program qubits whose phys-
ical qubits were not directly connected.

7.3.1 Placement

By default, the placement pass assumes an all-to-all connectivity between the physical qubits and assigns the program
qubits to physical qubits trivially, meaning program qubit O is assigned to physical qubit O, program qubit 1to physical qubit
1,and so on. If using the default mode, the - ¢ flag (specifying a configuration file) is optional when invoking the compiler.

For example,

$./intel-quantum-compiler quantum algorithm.cpp

Inthis case, - c is not required and the placement pass uses the default trivial placement.
When a configuration file is provided, the compiler offers four placement methods:

1. Trivial (-p trivial): Map program qubits to physical ones trivially (see above).

20

Revision 1.0 Intel® Quantum SDK

2. Dense (-p dense): Map the program qubits in a cluster of the highest connected portion of the given connectivity
as defined in the platform configuration file.

3. Local (-p local): Use a local search optimization technique to place qubits that occur in the same gate close to
each other.

4, Custom(-p custom): User provides the desired placement in their source code (see below).

In general, if the user wishes to select a placement method, the - c flag must also be specified. To invoke the placement
pass, use the -p flag. Only one -p flag is accepted at a time.

$./intel-quantum-compiler -c configuration file -p trivial quantum algorithm.cpp
$./intel-quantum-compiler -c configuration file -p dense quantum algorithm.cpp
$./intel-quantum-compiler -c configuration file -p local quantum algorithm.cpp

If using custom placement, both insert the following line to define the placement in the source code:

// When defining the global qubit register, provide the custom placement.

gbit qreg[3] = {2, 0, 1}

// This places program qubit qreg[0] to physical qubit 2, qreg[l] to physical qubit 0, and qreg[2] to,
—physical qubit 1.

And invoke the placement pass with the -p customflag:

$./intel-quantum-compiler -c configuration file -p custom quantum algorithm.cpp

Details about Local Search Placement

The local search compares two graphs with sets of vertices and edges. The application graph has vertices of program
gubits and edges defined between two vertices if their respective program qubits appear in the same gate. Italso considers
the qubit connectivity graph, where the vertices are the physical qubits and the edges are the pairs of qubits for which the
qubit chip natively supports operations between them. It would be ideal to place the qubits such that the placement maps
an edge on the application graph maps to an edge on the qubit connectivity graph. However, this is not always possible.
The local search can be configured with a certain amount of resets and a certain amount of iterations per reset. This can
be passed through -i=n or - r=n as a compilation option.

Eachreset starts out at a random placement, and iteratively swaps qubits using two qubits connected in the qubit connec-
tivity graph. Half the time, it greedily chooses an edge to minimize a heuristic, and the other half of the time it does arandom
move to get out of a local minima.

The heuristic is based on iterating over all edges on the application graph, and for each edge adding up the minimal path
length on the qubit connectivity graph between the two physical qubits that the placement maps the two program qubits
onto that make up the edge in the application graph. There are some optimizations related to the fact that many of the
terms in these sums do not need to be recomputed each time.

Known Limitations with the Placement pass

Custom placement can only be used on global gbit variables, not local gbit variables.

7.3.2 Scheduling

By default, the scheduler pass is disabled and an all-to-all connection is assumed of the device.

When the qubit connectivity is constrained, the scheduler adds SWAP gates to dynamically change the map specifying
the program-to-physical-qubit assignment. For simplicity, we refer to this map as the “qubit map”.

Updating the qubit map is often referred as “routing” since it can be visualized as a movement of the program qubits onto
the physical qubit graph. Routing consists of two parts, performed once per QOBB:

2

Revision 1.0 Intel® Quantum SDK

1. Forwardrouting: needed to satisfy the connectivity constraints when 2-qubit gates in the QBB need to be scheduled
for execution. This changes the program-to-physical-qubit map.

2. Backward routing: needed to re-schedule the program qubits to the qubit map expected at the end of the OBB.
This is a requirement of advanced quantum programs in which the order of QBB execution is not known at compile
time. No backward routing is needed when the qubits are released after execution, i.e. when the QBB contains the
command release quantum state().

The forward routing method can be set by using the -S flag:
* none: connectivity constraints are neglected.

= greedy: given gate G between program qubits (gA, gB) currently mapped to physical qubits (QA, OB), the method
search for two physical qubits (QC, QD) such that:

1. Gate Gis available between (QC, QD).

2. The duration of a SWAP chains from QA to QC and from QB to QD, plus the duration of gate G(QC, QD) is
minimized.

3. The SWAP chains in point 2 are computed via A* search with the SWAP chain duration as the cost function.

4. Tiesin point 2 are broken by favoring solutions with balanced durations of the SWAP chains QA to QC and OB
to QD.

This method works for any connectivity.
The backward routing method can be set by using the -K flag:

* retrace: performall the SWAP gates added in the forward routing but in opposite order. Cancel consecutive SWAP
gates on the same pair of physical qubits. This method is often inefficient, but the overhead is at most twice the
forward routing cost. It works for any qubit connectivity.

* bubble-sort: forlinear connectivity only, based on the bubble-sort algorithm. It considers the qubit map desired at
the end of the QBB as defining the order among program qubits and the qubit map at the end of the forward routing
as an unordered program qubit sequence (to be ordered via bubble sort). This works also for non-linear connectivity
when a Hamiltonian path can be identified via a simple heuristic.

= oddeven-sort: asforbubble-sort but using the odd-even transposition sort algorithm.

* grid: for 2D grid connectivity only, based on the successive ordering along rows, columns, and rows again. The size
of the 2D grid is identified automatically given that the physical qubits are ordered with the row-major ordering.

To invoke the scheduler pass, use the -S and -K flags:

$./intel-quantum-compiler -c configuration file -S greedy -K bubble-sort quantum algorithm.cpp

Known Limitations with the Scheduler pass

If the scheduler pass -S flag is not set or set to “none”, the compiler assumes an all-to-all connectivity even if a non-all-to-all
connectivity is given in the config .json. Conversely, to invoke the - S flag, the - ¢ flag must be given.

If the - p flag is given, the scheduler will use the placement generated by the placement pass as an initial placement. If the
-p flagis not given but the -S flag is set, the scheduler will assume a trivial initial placement.

When the -S flag is not set and -01 optimization is set, some quantum_kernel functions may see additional quswapalp
gate operations at the end of the quantum_kernel.

Whenthe -Kflagis setto either bubble-sort oroddeven-sort butaHamiltonian path cannot be foundin the connectivity
graph of physical qubits, the default ret race method is used.

Whenthe -Kflagis set to grid but the connectivity graph does not correspond to arow-major 2D array of qubits, the default
retrace methodis used.

22

Revision 1.0 Intel® Quantum SDK

7.3.3 Combining the -p and -S flags

Placement and scheduling passes can be invoked together with the -p and the -S flags:

$./intel-quantum-compiler -c configuration file -p custom -S greedy quantum algorithm.cpp

7.3.4 Sample Platform Configuration files

The SDK comes with example platform configuration files representing the details of a different implementation of quan-
tum hardware. They are:

= 8 qubits: Linear connectivity targeting the quantum dot simulator backend.

» 9 qubits: Square grid connectivity targeting non quantum dot simulation backends.

= 34 qubits: Linear connectivity targeting non quantum dot simulation backends.

= 256 qubits: Square grid connectivity targeting non quantum dot simulator backends.
= 256 qubits: Ladder connectivity targeting non quantum dot simulator backends.

= 256 qubits: Linear connectivity targeting non quantum dot simulator backends.

For usage with the quantum dot simulator, use intel-quantum-sdk-QDSIM. j son which pointsto the 8 qubit configuration
file. For usage with the non quantum dot simulator backends or just the compiler, use intel-quantum-sdk.json. By
default, intel-quantum-sdk. json points to the 256 qubit configuration file. If you wish to use other configuration files,
please copy intel-quantum-sdk. json to your own directory, modify the pointed to configuration file and use the - c flag
to point to your copy.

7.4 Circuit Printing & LaTeX

To invoke the circuit printer, user the -P flag:

$./intel-quantum-compiler -P console quantum algorithm.cpp
$./intel-quantum-compiler -P tex quantum algorithm.cpp
$./intel-quantum-compiler -P json quantum algorithm.cpp

For each quantum_kernel function in the source code compiled, the circuit printer feature will output a representation
of the quantum kernel to the target specified. The console target will result in ascii-style circuits being displayed to the
console. The tex and json targets will output, for each quantum_kernel function, a separate . tex or . jsonfile.

A TeX distribution on your local machine with the qci rcuit package (maintained at the Comprehensive TeX Archive Net-
work (CTAN)) and its dependencies are required to produce an image or PDF file from the . tex file. Many options for TeX
distributions exist for each platform. Those familiar with the LaTeX typesetting language will be able to incorporate the
. tex file or part of its contents into their projects. Those familiar with the commands of the qcircuit package may cus-
tomize and extend the diagram at will.

7.5 Support for OpenQASM 2.0

The Intel® Quantum SDK provides a source-to-source converter which takes OpenQASM code and converts it into C++
for use with the Intel® Quantum SDK. This converter requires Python 3; see Getting Started Guide (System Requirements)
section for specifics and recommendations. Currently, it processes OpenQASM 2.0 compliant code as described by the
Open Quantum Assembly Language paper (arXiv:1707.03429 [quant-ph]).

To translate an OpenQASM file to C++ file, you can run the compiler with the -B flag to generate the corresponding
quantum_kernel functions in C++ format.

23

https://doi.org/10.48550/arXiv.1707.03429

Revision 1.0 Intel® Quantum SDK

’$./intel-quantum-compiler -B example.qgasm

7.6 Other Compiler Flags

Verbosity - -v:

Provides a summary of each quantum_kernel in terms of both the supported gates set and the quantum dot
qubit gates set.

24

Revision 1.0 Intel® Quantum SDK

8.0 Configuringthe FullStateSimulator

Before a quantum_kernel can be called, a properly configured instance of the FullStateSimulator class is required.
This can be done by creating an IgsConfig object with the desired values and passing it to the constructor or initializer of
the FullStateSimulator. Thetype QRT ERROR T is used to check-on the status of simulator instance. For example,

// configure to use N qubits; accepts defaults for remaining
igsdk::IgsConfig iqs config(/*num qubits*/ N);

// setup quantum device
igsdk::FullStateSimulator iqs device(iqgs config);
iqs _device.printVerbose(true);

// ensure setup was successful
if (iqgsdk::QRT_ERROR SUCCESS != iqs device.ready()) return 1;

The essential classes and methods for configuration are detailed below. See API Reference for the full list of APIs to find
details about retrieving data.

8.1 Overviewof FullStateSimulator

Class with API calls to both set up a quantum simulator device and access the underlying quantum state during simulation.

= Constructor

’FullStateSimulator(Iquonfig &device config);

Instantiates a simulator object that is initialized to the settingsin device config.

= printVerbose()

’0RT7ERR0R7T FullStateSimulator::printVerbose(bool printVerbose);

Sets the status of the simulator’s verbose output.

= ready()

’ORT_ERROR_T FullStateSimulator: : ready () ; ‘

Returns an enum of QRT_ERROR T; QRT_ERROR_SUCCESS if the simulator is ready toruna quantum_kernel,
else returns QRT_ERROR_FAIL.Ensure the simulator is ready before executing quantum_kernel functions
or making any queries.

Provides a trigger for opportunities to define error handling logic.

8.2 Execution Options

The Intel® Quantum SDK backends have two execution modes:

= Synchronous (default): pauses the execution of the program whenever a QBB is called. Execution resumes once
the QBB is done running.

= Asynchronous: the host puts the QBB into a queue of QBBs to be run.

25

Revision 1.0

Intel® Quantum SDK

Prior to using the results of any measurements, the user should callwait () onthe device to ensure that the device has fin-
ished running and set the appropriate cbit (s). Any APl that sets a device property (e.g. setting contraction path method)
is put on the queue, while any API that gets simulation data from the device blocks until the device has finished running.

The synchronous parameterinthe DeviceConfig specifies whether the backend will runin synchronous or asynchronous
mode. Other backends such as Clifford Simulator, Tensor Network Simulator, and a user-defined Custom Backend can

also utilize the asynchronous execution mode for faster simulations.

8.3 Overviewof IgsConfig

Class to hold configuration data used to configure the FullStateSimulator or user-defined qubit simulator backend.

= Constructor

IgsConfig(int num _qubits = 1,
std::string simulation type = "noiseless",
bool verbose = false,
std::size t seed = time(NULL),
bool synchronous = true,
double depolarizing rate = 0.01);

Specify configuration data for the IQS. Creates an IgsConfig which has the following properties:

int num_qubits: Number of qubits in simulation.

std::string simulation type: Type of simulation to be run. Valid simulation types are:
"noiseless", "depolarizing", and "custom". See Customizable Noise Modeling for de-

tails on the "custom" option.

std::size t seed: Custom seed for RNG. If no seed is provided, the current time will be used

as the seed.
double depolarizing rate: Depolarizing rate for noisy simulation.

= isValid()

bool IgsConfig::isValid();

Returns whether the given config instance is valid.

26

Revision 1.0 Intel® Quantum SDK

9.0 Intel® Quantum Simulator Backend

= Customizable noise modeling
= Custom operation definition
= Custom operation specification

* Using Custom IQS Noise Models in a Program

* Important Points on Performing Noisy Simulations with IQS

Intel® Quantum Simulator (IQS) is a full-state simulator working at the qubit level, abstracting the physics of the specific
implementaion. Itis available as a standalone open-source project, but it also comes fully integrated as one of the backends
of the Intel® Quantum SDK [KWPH2022]. IQS is designed to take full advantage of High Performance Computing (HPC)
infrastructure and allows both multi-thread (shared memory, using OpenMP) and multi-process parallelization (distributed
memory, using MPI) [GHBS2020].

The APl has already being described in the context of full-state simulators (see Configuring the FullStateSimulator). Here
we focus on the possibility of adding a customizable noise model in the simulation. The programmer does not need to be
familiar with 1QS, and no IQS code or APIs need to be used.

9.1 Customizable noise modeling

The user can customize the action of every quantum operation within the template provided below by defining appropriate
functions. The action of each operation is divided in three parts:

* Pre-operation: Apply one or more of the following phenomenological noise channels:

Dephasing channel

Depolarizing channel

Amplitude damping

Bitflip channel
Each effect is characterized by an intensity parameter.

= Operation itself: The choice here is whether to apply the ideal operation or a user-provided process matrix (also
known as the y matrix). In the latter case, the user can include all noise effects directly in the process matrix, and thus
avoid pre- or post-operation actions. However, we find it convenient to provide the pre-and post-operation templates
to facilitate writing standard noise models quickly.

» Post-operation: Similar to the pre-operation case, the user can apply one or more of the following phenomenological
noise models:

= Dephasing channel
= Depolarizing channel
= Amplitude damping
= Bitflip channel

Each effect is characterized by an intensity parameter.

27

Revision 1.0 Intel® Quantum SDK

9.1.1 Custom operation definition

The definition of a custom operationis provided by means of objects of type iqsdk: : IqsCustomOp, which can be initialized
as follows:

IgqsCustomOp op = {pre dephasing, pre depolarizing, pre amplitude damping, pre bitflip,
process matrix, label,
post dephasing, post depolarizing, post amplitude damping, post bitflip};

where:

* pre_dephasing, pre depolarizing, pre_amplitude damping, pre_bitflip are scalar values representing
the intensity of pre-operations.

* process matrixisastd::vector<std::complex<double>>inrow-majorformat. Whenthe operationisideal, one
can simply use an empty vectoras process _matrix.

= label is a string used as unique tag for the process matrix. If multiple operations use the same process matrix (for
example, the CZ gate on different pairs of simulated physical qubits), assigning the same label reduces the memory
and computation by using a single process matrix.

* post dephasing, post depolarizing, post amplitude damping, post bitflip are scalar values repre-
senting the intensity of post-operations.

If the complete operation is noiseless, one can simply use the global object:

igsdk::k_iqs_ideal op = {0, 0, 0, 0, {}, "ideal", 0, 0, 0, 0}

already defined in the header quantum_full state simulator backend.h.

9.1.2 Custom operation specification

While the subsection above explained how to define a single custom operation, we still need to specify the behavior of a
custom action. For example, one may want to return different IqsCustom0p objects for the same gate type depending on
the simulated physical qubit as a way of having the noise reflect that of a realistic, inhomogeneous device.

The user needs to write a function for every quantum operation returning the appropriate IqsCustomOp object for the given
parameters of the quantum operation. For example, one may want to use a simplified noise model for the one-qubit gates
by expressing them as ideal gates followed by depolarization. At the same time, they may want to use a process matrix
describing the action of the two-qubit CZ gates. One may even use different process matrices depending on the qubits
involved in the gate.

In a simple example, a custom CPhase operation with a 10% chance of a dephasing error prior to the gate executing would
be defined as:

igsdk: :IgsCustomOp CustomCPhaseRot(unsigned ql, unsigned g2, double g) {
return {0.1, 0, 0, 0, {}, "cphase dephasing", 0, 0, 0, 0};
}

9.2 Using Custom IQS Noise Models in a Program

To enable the IQS with a customizable noise model, an IgsConfig should be declared with "custom".

‘ igsdk::IgsConfig custom igs config(N, "custom");

where N is the number of qubits. Then, associate the desired functions to the customizable actions:

28

Revision 1.0 Intel® Quantum SDK

custom igs config.PrepZ = CustomPrepZ;
custom igs config.RotationXY = CustomRotXY;
custom igs config.CPhaseRotation = CustomCPhaseRot;

Here, custom_iqgs config.<name> are set to user-defined functions with the following signatures:

igsdk: :IqsCustomOp PrepZ(unsigned qubit);

igsdk: :IgsCustomOp MeasZ(unsigned qubit);

igsdk: :IgsCustomOp RotationXY(unsigned qubit, double phi, double gamma);

igsdk: :IgsCustomOp RotationZ(unsigned qubit, double gamma);

igsdk: :IgsCustomOp ISwapRotation(unsigned qubit 1, unsigned qubit 2, double gamma);
igsdk: :IgsCustomOp CPhaseRotation(unsigned qubit 1, unsigned qubit 2, double gamma);

Not all of the functions need to be defined. If they are not defined, they will default to the ideal operation. Since the cus-
tomizable noise model is compatible with full-state simulators, the IgsConfig is passed to an instantiation of a full-state
simulator.

igsdk::FullStateSimulator custom iqs device(custom igs config);

if (igsdk::QRT_ERROR SUCCESS !'= custom iqs device.ready()) return 1;

A complete code example can be foundinthe custom backend. cpp sample described in Code Samples.

9.3 Important Points on Performing Noisy Simulations with 1IQS

The Intel® Quantum SDK allows noisy simulations of qubits with the Intel® Quantum Simulator as the backend. Noise is
incorporated during a simulation via stochastic injection of noise based on the specified noise intensity parameter. Thus,
it is necessary to aggregate results from multiple simulations to accurately simulate a noisy qubit system. Given that the
stochastic nature is realized via the initial seed, it is imperative that the user instantiates the backend with a different seed
each time the same quantum circuit is run during sample collection. By processing the resulting samples, the probabilities
from noisy simulations can be reconstructed. This sampling process can be made efficient by using the asynchronous
mode of simulations, whereby multiple simulator backends initialized with different seeds are used to simultaneously per-
form simulations depending on the available memory and processing capability.

29

Revision 1.0 Intel® Quantum SDK

10.0 Quantum Dot Simulator Backend

» Simulation of Qubits

* Rotating vs. Laboratory Frame

= Usage in conjunction with getAmplitudes()
= Using Quantum Dot Simulator in a Program
* Important Points on Quantum Dot Simulator

= Tip for Faster Simulations

» Compilation with Quantum Dot Simulator as the Computing Backend

Quantum Dot Simulator (QD Simulator) is a simulator reproducing the physics of a Quantum Dot (QD) qubit chip in soft-
ware. Simulation of quantum systems is a field of great importance [GEAN2014]. In quantum computing, there are benefits
in accurately simulating quantum systems for the purpose of evaluating their strengths and weaknesses for use as qubits.
Simulations help drive design decisions on the critical characteristics for physical realizations [KPZC2022]. Though there
are many ways of performing quantum simulations, here we focus on Schrodinger evolution for simulating quantum dot
qubits. This QD Simulator is used as the realistic qubit simulation backend of the Intel® Quantum SDK [KWPH2022]
[KPZC2022].

10.1 Simulation of Qubits

Qubits are quantum mechanical systems with two distinct states, typically labeled |0) and |1) [BaSR2021], [NICH2010].
The current backend for quantum dot qubits utilizes qubit states encoded in the spin degree of freedom of single elec-
trons [ZKWL2022]. These qubits are typically referred to as Loss-DiVincenzo qubits [LODI1998]. Abstract qubits are
simple systems with only two isolated levels. However, practical quantum systems are never quite as simple, with careful
consideration required for selection of a suitable system to form a qubit [DIVI2000]. These requirements and the thought
process behind the selection of some currently favored types of qubits were reviewed in [LJLN2010]. One important fact
common to all of these qubits is the presence of a characteristic resonance frequency or natural frequency. The frequency
usually refers to the energy difference (expressed as a frequency) between the qubit levels (computational states) of the
guantum system being considered for digital gate-based quantum computing. Resonance frequencies for most types of
qubits are 1 GHz to 30 GHz, though there are exceptions with much higher or lower frequencies.

When using the QD Simulator backend, the simulation goes through the qubit control processor, the control electronics, to
the simulated quantum dot qubits. The qubit control processor takes the compiled instruction sequence and the platform
configuration files to generate the corresponding micro-instructions for the control electronics. The control electronics
generate the RF and DC pulses with the correct parameters to interact with the quantum dot qubit chip. All the control flow
and operations are modeled in simulation.

The primary supported gates are R, (8, ¢), referred to in code as RXY:

Ry, (0, ¢) = cos (g) I —isin (Z) [X cos ¢+ Y sin ¢}

B cos (%) —isin (4) [cos ¢ — ising]
- [—z’ sin (%) [cos ¢ + isin ¢] cos (%) }

30

Revision 1.0 Intel® Quantum SDK

and the two-qubit operation C Z:

100 O
01 0 O
Cz= 0 01 O
0 00 -1

The physical implementation of CZ involves the use of a “Decoupled CZ operation” [WAPK2018]. All the other operations
available via the Intel® Quantum SDK will be constructed using these operations.

10.2 Rotating vs. Laboratory Frame

Typically, if time dependence of the system can be set aside, simulation of quantum systems is convenient and fast. For
certain quantum systemes, it is possible to craft unitary transformations to analytically discard the overhead due to the res-
onance frequency of each qubit [SURI2015] [STEC2020] [NICH2010]. This is typically referred to as moving into the ro-
tating frame of the qubit. This terminology is apt since the qubit is always precessing and incrementing its phase around
the z-axis at a rate given by its resonance frequency. A further analytical approximation, known as the rotating wave ap-
proximation [ZHSD2020], is usually required to make the time-dependence fully transparent. These transformations and
approximations usually have the effect of drastically reducing the burden on simulation resources, since evolution will then
happen at kHz or MHz scales instead of GHz scales.

In the case of QD Simulator [KPZC2022], neither the rotating frame nor the rotating wave approximation is used. Cur-
rently, the evolution of the coupled multi-quantum-dot system (faithful to Intel®s quantum hardware) is performed in the
laboratory frame. The laboratory frame is the original environment of the quantum system, where the natural frequencies
of the qubits are fully visible. This also means that the qubits are constantly accumulating Z-phases as is the case for real
qubits.

10.3 Usage in conjunction with getAmplitudes ()

The Schrodinger evolutionis carried out in a Hilbert space that encompasses several energy levels per quantum dot, to en-
sure accurate modeling of the interactions. Since QD Simulator is performing a full quantum simulation, users have access
to the fully evolved state vector (following truncation to the computational subspace) at the end of a simulation. As evolu-
tionis happeninginthe lab frame, the probability amplitude results returned from FullStateSimulator: :getAmplitudes
will include the extra Z-phases that were accumulated due to natural precession, and the extra phases will be dependent
on the resonance frequencies as well as the full evolution history during algorithm execution. Since this detailed history is
unavailable to users, the use of the latter function for full state characterization is discouraged.

This further highlights how closely the simulations with QD Simulator reflect actual quantum dot qubits. With physical
qubits it is impossible to obtain actual probability amplitudes after evolution. Just as with physical qubits, techniques such
as quantum state tomography [PARE2004] are required to reconstruct the full state when using QD Simulator.

10.4 Using Quantum Dot Simulatorin a Program

To enable QD Simulator, a DeviceConfig should be declared with "QD_SIM".

’ igsdk::DeviceConfig qd sim config("QD SIM");

Then, create a FullStateSimulator with the QD Simulator DeviceConfig:

’ igsdk: :FullStateSimulator gqd_sim device(qd_sim_config);

Once the simulator is configured, then the quantum_kernel functions can be called to perform simulations on the QD
Simulator.

3l

Revision 1.0 Intel® Quantum SDK

10.5 Important Points on Quantum Dot Simulator

Because the QD Simulator behaves more like realistic hardware, it carries a few limitations on the kinds of quantum_kernel
functions that can be used in conjunction with it. Specifically, it expects that each quantum_kernelinmain() will consist
of a workload where

= Allthe qubits start in the |0) state
= A sequence of 1-qubit and 2-qubit operations are applied
* The final probabilities or amplitudes for each basis state are retrieved.

Thereis no continuity between quantum_kernel functions called withinmain (), because eachtimea quantum_kernelis
called withinmain (), the QD Simulator history is reset and all qubits will startin the |0) state.

If sub quantum_kernel functions are to be used, they must be specified outside of main () and combined as desired within
asingle quantum_kernel, and then calledinmain().

MeasZ operation is not advised to be used with the QD Simulator. This operation is designed to collapse the target qubit,
and to store the result in a cbit. Using this operation will set the cbit according to the probability distribution associated
with the quantum state at the end of the quantum_kernel, and will not collapse the state. In addition, MeasX and MeasY will
likely give incorrect results.

Prepare operations (e.g. PrepZ) should be reserved for use either at the beginning of a quantum_kernel, or not used
at all. Using PrepZ should provide benefits with compiler optimizations when using the -01 flag. Not using PrepZ at the
beginning will notimpact the QD Simulator, since the qubits will always be reset to |0) when starting a simulation. However,
using PrepZ or MeasZ in the middle of simulating a quantum_kernel on QD Simulator will result in unexpected behavior.

Note that Z rotations are currently not natively enabled for the hardware in simulation. Hence a user wishing to use RZ(6)
can expect the compiler to implement it in one of two ways:

= Ifusing compiler optimization (- 01), then the compiler will absorb all RZ operations into other single-qubit operations.

= |f not using compiler optimization (-00), the RZ operation (or related operations such as S, T, etc.) will be explicitly
decomposed into RXY operations as follows:

quantum_kernel void rzDecomp (gbit gb, double angle) {
RXY(gb, M PI, 0.5 * M PI);
RXY(gb, M PI, 0.5 * angle - 0.5 * M PI);

}

10.5.1 Tip for Faster Simulations

Avoid all operations on qubits that have no gates applied. Any operations, including prepare (Prepz), applied to a qubit
causes it to be simulated. This means that even if a qubit only has PrepZ &MeasZ applied to it, it will still be simulated which
adds overhead and increases runtime.

10.6 Compilation with Quantum Dot Simulator as the Computing Backend

To enable QD Simulator, a platform configuration file that describes the configuration of quantum operations and the con-
nectivity of the qubits must be given to the compiler. Users also need to specify flags and arguments for placement and
scheduling. The following example assumes the SDK location has already been added to the shell path,

$ intel-quantum-compiler -c /<path to config file>/intel-quantum-sdk-QDSIM.json -p trivial -S greedy qd
—GHZ. cpp

32

Revision 1.0 Intel® Quantum SDK

1.0 Clifford Simulator Backend

» Clifford Operations
= Using Clifford Simulator in a Program
* Important Points on Clifford Simulator
= Using the Pauli Error Model
= Collecting State Information

= Tip for Faster Simulations

» Compilation with Clifford Simulator as the Computing Backend

The Clifford Simulator is a specialized qubit simulator which can process and evaluate the outcome of quantum circuits
composed only of Clifford gates and Pauli measurements. The Clifford group [HDER2006] can be broadly described as
the group which transforms Pauli operators to Pauli operators. It is well known that Clifford operations are not universal
for quantum computation, and that they are efficiently simulatable with classical computers [GOTT1998] [NEST2010]. In
this sense, the Clifford Simulator is not a general purpose qubit simulator. However, Quantum Error Correction (QEC) isan
application area that makes extensive use of Clifford operations. Thus for studying QEC or related applications involving
only Clifford operations, the Clifford Simulator can serve as a powerful tool due to its scalability, low memory footprint, and
focus on application of Clifford operations and Pauli measurements.

The Clifford Simulator adapts the methods of the Pauli Tableau [SCG0O2004] using a sparse representation of the under-
lying Pauli operators to form the tableau. This means there is no cost to unused qubits in the tableau as the data structure
expands as gates are applied.

11.1 Clifford Operations

The Clifford group is super-exponentially large in the number of qubits. However, it is possible to efficiently decompose
any arbitrary Clifford unitary to the one-qubit gates H, S, and the two-qubit gate CNOT [HDER2006]. The gates in their
matrix representations are given below for convenience.

1 (1 1
"=k)

1 0

s=[o 3
[1 0 0 O
01 0 0
CNOT_0001
00 10

The supported gates of the Intel® Quantum SDK which are allowed for the Clifford Simulator are:
= Hadamard (H)
* Pauli X (X)
= PauliY (Y)
* PauliZ(2)

33

Revision 1.0 Intel® Quantum SDK

* Phase (S)

* Phase Inverse (Sdag)

= X axis Rotation (RX) For angles 0, /2, m, 37 /2
* Y axis Rotation (RY) For angles 0, /2, m, 37 /2
= Z axis Rotation (RZ) For angles 0, 7/2, w, 37 /2
= Controlled Z(C2)

= CNOT

= SWAP

* PrepZ

* PrepX

* PrepY

* MeasZ

= MeasX

= MeasY

* CPhaseforangle

= XY-plane Rotation (RXY) for both (theta, phi) anglesin $0, 7 /2, 7, 37 /2% and the angle pairs (, 7/4) and (7, 37 /4)

= SwapAforangle

1.2 Using Clifford Simulator in a Program

To enable the Clifford Simulator,a CliffordSimulatorConfig should be declared as shown below. The seed is optional
(defaults to a seed based on the time), but should be user-specified especially if modeling the effects of noise.

’ igsdk::CliffordSimulatorConfig clifford config(seed);

Then, createa CliffordSimulator withthe CliffordSimulatorConfig, and call the ready () APIfor the simulator just
before use; see API Reference for description.

igsdk::CliffordSimulator clifford device(clifford config);
clifford device.ready();

Once the simulator is configured and ready () is called, thenthe quantum_kernel functions can be called to perform sim-
ulations on the Clifford Simulator.

34

Revision 1.0 Intel® Quantum SDK

1.3 Important Points on Clifford Simulator

11.3.1 Using the Pauli Error Model

The Clifford Simulator includes a built-in Pauli error model which is off by default. To turn it on, set the flag for the passed
CliffordSimulatorConfig:

igsdk::CliffordSimulatorConfig clifford config(seed);
clifford config.use errors = true;

All gate errors are based on the Pauli Twirling Approximation [GEZH2013] where the exact gate action is applied to the
simulator, followed by a subset of Pauli operators with probability as defined by the parameters of the error model. The
parameters of the error model are specified gate-by-gate. These are collectively held in CliffordSimulatorConfig::
error_rates whichisoftype struct iqsdk::ErrorRates, and contains the members:

= igsdk::ErrSpeclQ prep

= iqsdk::ErrSpeclQ meas

= igsdk::ErrSpeclQ xyrot
= igsdk::ErrSpeclQ zrot

= iqsdk::ErrSpecIdle idle
= igsdk::ErrSpec2Q cz

= igsdk::ErrSpec2Q swap

where struct iqsdk::ErrSpeclQ, struct igsdk::ErrSpec2Q and struct iqsdk::ErrSpecIdle represent three
Pauli twirling error models.

= igsdk::ErrSpeclQis a general single qubit error model where the probability for each of the single-qubit Pauli op-
erators X, Y, Z can be individually specifed so long as their sum is less than 1. This can be set via the constructor
iqsdk::ErrSpeclQ(double x rate, double y rate, double z rate).

= igsdk::ErrSpec2Q is a more specific two-qubit error model based on the non-ideal CZ gate as described in
[SUDL2003]. Itis specified by an off-diagonal switching probability e, an off-diagonal phase phi and control-phase
error angle delta. These parameters can be set via the constructor iqsdk: :ErrSpec2Q(double e, double phi,
double delta).

= igsdk: :ErrSpecIdle is a single qubit decoherence model (o« = 0 from [GEZH2013]). Unlike the other two which
are a fixed amount of error for each gate, this model is time-dependent and is used for idle error. It is specified by two
time-like parameters, T1 representing the depolarization rate and T2 which represents the dephasing rate. These
parameters can be specified via the constructor igsdk: :ErrSpecIdle(double T1, double T2).

For the sake of generating idle error, the Clifford Simulator assumes as-soon-as-possible scheduling of the gates, and from
this, applies idle error based on gaps in this scheduling. For this purpose, gate times can be independently specified as
CliffordSimulatorConfig::gate times whichisoftype igsdk: : GateTimes and contains the data:

= double prep
= double meas
= double xyrot
= double zrot
= double idle
= double cz

= double swap

35

Revision 1.0 Intel® Quantum SDK

11.3.2 Collecting State Information

Since the Clifford simulator is not a full state simulator, the primary API function to retrieve results of quantum circuit execu-
tion is getExpectationValue. With this function, the user can specify a Pauli string (e.g. XX, YZ) for their desired observ-
able, and the simulator will directly return the expectation value. No state collapse is performed when this APl is called.

Such observables are specified by passing a std: :vector of std: : reference_wrapper<gbit>, representing the op-
erator’s support and a std: : string containing only characters fromthe set {'I', 'X', 'Y', 'Z'} representing the
single-qubit operator type as matched to the qubit support. A detailed example for the usage can be found in the example
api Simulator clifford test.cpp (see Samples).

As with the Intel® Quantum Simulator, it is also possible to utilize individual measurements (MeasZ, MeasX, or MeasY) to sim-
ulate single-shot results when using the Clifford simulator. Use of these measurement gates do result in state collapse.
This mode of collecting results is crucial in modeling applications such as Quantum Error Correction as it captures cor-
relation not represented through the getExpectationValue() APl The single-shot results can then be aggregated and
analyzed. This is the most straight forward way to compare with execution on the Intel® Quantum Simulator or Tensor
Network simulator.

11.3.3 Tip for Faster Simulations

Inthe case of modeling noise, it is necessary to use a different seed when initializing the CliffordSimulatorConfig. See
Important Points on Performing Noisy Simulations with IQS for the motivation behind this. A convenient method to follow
could be to create configurations with different seeds, and then spawn simulator instances based on each of the uniquely
seeded configurations, based on the number of samples required. If the running mode for the simulators is set to asyn-
chronous, then multiple simulators can be executed in parallel, and results collected later. Using the wait () simulator API
ensures that the given simulator has completed execution before moving onto the next part of the program. See Execution
Options.

Inthe asynchronous operation mode, care should also be taken when writing to cbit variables during measurements. One
possibility to avoid overwriting the same variables is to set up a multidimensional array of cbit type. With this technique,
each simulator will have its own dedicated set of cbit variables that will be populated during execution. If multiple sets of
cbits are required, the dimensionality of the array can be further extended. Another possibility is to use local cbit variables
and have them be returned for further analysis from the quantum_kernel function upon completion.

A detailed example for the above usage scenarios can be foundinthe example iqs _vs clifford comparison.cpp (see
Samples).

A detailed example of these methods for QEC scaling simulation can be found in the example rep _code clifford.cpp
(see Samples).

11.4 Compilation with Clifford Simulator as the Computing Backend

The Clifford Simulator can accommodate arbitrary qubits connectivities for compilation. The default connectivity is all-to-
all (fully-connected) with support for up to 256 qubits. See the Configuration files section for other available configura-
tions. Also, see the Scheduling section on how to enforce connectivity constraints during compilation.

36

Revision 1.0 Intel® Quantum SDK

12.0 Tensor Network Backend

The Tensor Network (TN) backend is a qubit simulator that represents a quantum circuit as a network of Tensors. Unlike
some Tensor Networks which take on a specific form (e.g. Matrix Product State (MPS) or Tree Tensor Network (TTN)),
the Tensor Network we use can take on an arbitrary geometry based on the simulated circuit. With the exception of calling
State Preparation & Measurement (SPAM) operations, running a quantum_kernel will build up the Tensor Network which
isaninexpensive operation. Since SPAM operations are treated as mid-circuit operations, itis recommended to avoid them
unless you specifically are intending to see the effects of mid-circuit measurements since they have a high cost to perform.

The most cost-effective way to sample an algorithm is to call getSamples (); unlike explicit SPAM gates, getSamples ()
will not collapse the state.

The part of the Tensor Network simulation that requires the most computation is when the Tensor Network requires a
contraction. Before a contraction, the TN simulator will do a search to try to find the best contraction path. Then, us-
ing the path found it will perform the contraction to the desired result. Finding a good contraction path can in some
cases drastically reduce the amount of computation needed to do the contraction. Depending on which APl s called (i.e.
getProbabilities() orgetExpectationValue()),adifferent contraction will be performed to get the result.

Tensor Networks are best at simulating circuits that have a low tree-depth.

When implementing variational quantum algorithms, such as a Quantum Approximate Optimization Algorithm (QAOA)-
style algorithm, it is best to use a new instantiation of the Tensor Network object each time. Simulating a circuit twice with
different parameters is inefficient:

1. The TN will need to reset the quantum state with expensive mid-circuit preparations.
2. During the second contraction, the tensors from both runs of the ansatz will be contracted.

In general, the user should take care in making sure that the result they are trying to get out of the Tensor Network simulator
is reasonable. Depending on the quantum circuit, retrieving amplitudes of a few states in a 100-qubit algorithm may be
possible, but retrieving all of them would not be.

12.1 Brief Overview of TensorNetworkConfig

Class to hold configuration data specifically used to configure the TensorNetworkSimulator.

= Constructor

TensorNetworkConfig(bool verbose = false,
bool synchronous = true);

Specify configuration data for the TN backend. Creates a TensorNetworkConfig which has the following
properties:

bool verbose: Verbosity of the simulator.
bool synchronous: Whether the simulator is synchronous.

= isValid()

bool TensorNetworkConfig::isValid();

Return whether the given config instance is valid.

37

Revision 1.0 Intel® Quantum SDK

TheTensorNetworkSimulatoristhe class used for doing Tensor Network simulation. The TensorNetworkConfiginitial-
izes the Tensor Network simulator.

The TensorNetworkSimulator canuse any APl fromthe FullStateSimulator.

As an example for Tensor Network Simulator-specific API details:

QssMap<double> TensorNetworkSimulator::getProbabilities(
std::vector<std::reference wrapper<gbit>>& qids,
std: :vector<QssIndex> bases,
double threshold=-1);

getProbabilities () returnsthe conditional probabilities of a subset of the qubits (qids) used in the simulation. If bases
is empty, then the Tensor Network will perform a single contraction directly to the tensor network of all conditional proba-
bilities of the given qubits. Otherwise, for each QssIndex inthe given bases, a contraction is done to compute the specific
conditional probability of the specified basis.

Three additional APlIs are available for the Tensor Network Simulator.

= draw() :

void draw();

Creates a graphical representation of the Tensor Network. The graphic will appear in a window.

= getExpectationValue():

double getExpectationValue(
std::vector<std::reference wrapper<gbit>> &qids, std::string pauli string);

Returns the expectation value of the given Pauli operator pauli string.

= setContractionPathOptimizer():

void setContractionPathOptimizer(std::string optimizer method);

Sets the contraction path optimizer to optimizer method. The default optimizer is "greedy".
Valid options are "optimal", "dynamic-programming”, "branch", "greedy", "random-greedy",
"random-greedy-128", "auto", and "auto-hq". See https://optimized-einsum.readthedocs.io/en/
stable/path_finding.html for more details.

38

https://optimized-einsum.readthedocs.io/en/stable/path_finding.html
https://optimized-einsum.readthedocs.io/en/stable/path_finding.html

Revision 1.0 Intel® Quantum SDK

13.0 Custom Backend

The custom backend feature allows a user to use the Intel® Quantum Compiler and Quantum Runtime (QRT) with their
own simulator.

Users will need to include the <quantum_custom_ backend. h>header file to use the Custom Backend.

In the header file there is a CustomInterface class and a CustomSimulator class. The CustomInterface class is
an abstract base class where the user can implement their own simulator. The CustomSimulator class is similar to
FullStateSimulator, TensorNetworkSimulator, or CliffordSimulator classes in that this is the class representing
the quantum device.

13.1 CustomInterface

The CustomInterface has the following abstract methods that must be implemented by the user in any derived class:
= RXY()

‘void RXY(gbit q, double theta, double phi) = 0;

The function called by the QRT to apply a Rotation-in-the-XY-plane (RXY, RXY Matrix Representation)
gate.

= RZ()

‘void RZ(gbit q, double angle) = 0;

The function called by the QRT to apply a Rotation-around-Z-axis (RZ) gate.
= CPhase()

‘void CPhase(qgbit ctrl, gbit target, double angle) = 0; ‘

The function called by the QRT to apply a Controlled-Phase (CPhase) gate.
= SwapA()

’void SwapA(gbit ql, gbit g2, double angle) = 0; ‘

The function called by the QRT to apply a Swap-Alpha (SwapA) gate.
* PrepZ()

‘void PrepZ(qbit q) = 0; ‘

The function called by the QRT to prepare the specified qubit in the Z basis (PrepZz).
= MeasZ()

‘cbit MeasZ(gbit q) = 0; ‘

The function called by the runtime to measure the qubit in the Z basis (MeasZ). The return value is the result
of the measurement. The QRT will map the measurement into the appropriate bool (or cbit) variable.

The user is free to implement any other functions that they may wish to call in this class as well. In addition, they can imple-
ment a constructor that takes in any number of arguments. Also, the base class does not include utilities to manage a state
vector or other representation of the quantum state. The user will also need to manage this information if it is needed.

39

Revision 1.0 Intel® Quantum SDK

13.2 CustomSimulator

The user needs to register their simulator with the QRT. The following example assumes that the user made a class called
MyCustomBackend that is publicly derived from CustomInterface.

’class MyCustomBackend : public igsdk::CustomInterface

The user will then need to create a device id which is a string that will refer to the device type, which must not be an
identifier for an already defined backend. Existing reserved identifiers include "IQS", "Tensor Network","QD SIM",and
"Clifford". Then they will need to call igsdk: : CustomSimulator::registerCustomInterface<MyCustomBackend>
(device_id, args...)

The template parameterto registerCustomInterface() is the class for the simulator, the first parameteristhe device -
id, and the rest of the parameters get passed into the constructor for MyCustomBackend (can be zero parameters).

As an example, if M\yCustomBackend has a constructor taking in a single integer, the following is possible:

std::string device id = "my custom device";
igsdk::QRT _ERROR T status = iqsdk::CustomSimulator::registerCustomInterface<MyCustomBackend>(device id, 3);

Then, the user can use igsdk: :DeviceConfig to make aninstance of the device.

iqgsdk: :DeviceConfig new device config(device id);
igsdk: :CustomSimulator generic simulator(new_device config);

As usual, you call ready () to indicate the next quantum kernel gets run on the custom backend.

‘status = generic_simulator.ready();

To get access to the custom simulator class, you can call getCustomBackend ().

‘iqsdk::CustomInterface *custom interface = generic simulator.getCustomBackend();

Then you can dynamic cast it to your class.

‘MyCustomBackend *custom_simulator_instance = dynamic cast<MyCustomBackend *>(custom_ interface);

Here, after running a quantum kernel, you can call any function you have implemented for the class.

Alternatively, for single use purposes, it is possible to register and get a generic simulator in a single call.

igsdk: :CustomSimulator *generic simulator = igsdk::CustomSimulator::createSimulator<MyCustomBackend>("my
—custom device", 3);

13.3 Methods

= getCustomBackend()

‘iqsdk::CustomInterface *getCustomBackend () ;

Gets the custom backend stored in the CustomSimulator object.

= registerCustomInterface()

40

Revision 1.0

Intel® Quantum SDK

template <typename T, typename... Ts>
static QRT ERROR T registerCustomInterface(std::string device id,
Ts... args);

Reqisters the custom backend with the QRT.

* createSimulator()

template <typename T, typename... Ts>

static CustomSimulator *createSimulator(std::string device id, Ts...

args);

Registers and creates a custom backend.

4]

Revision 1.0 Intel® Quantum SDK

14.0 Pythoninterface

= Introduction
= Python via OpenQASM 2.0
= Procedure
* Step 1: Write quantum programs
* Step 2: Write the Python script
= Compiling quantum_kernel to Shared Library (. so0)

Procedure

* Step 1: Write quantum_kernel functions in C++
* Step 2: Compile the source programto . so

* Step 3: Write the Python script which calls the APIs

How to get cbit values after running quantum_kernel functions?

How to get references to gbit variables to pass to runtime APIs?

Python objects and the corresponding C++ objects

C++ classes that can be imported

C++ functions that can be imported

Usage examples

» Using a Custom Backend with the Python Interface

= Known Limitations of the Python Interface

14.1 Introduction

The Python Interface provides users a way to run the Intel® Quantum SDK using Python3, through the intelqgsdk.
cbindings library. There are two modes for interacting with Python:

1. Write quantum circuits in OpenQASM 2.0 — write a quantum circuit, and convert that to a .cpp file that has quantum_ -
kernel functions, compile,andusethe intelqgsdk. cbindings library torunthe quantum_kernel functions and call
APIs, all from within Python.

2. Write quantum_kernel functions in C++, compile to a . so file, and call APIs from Python.

The Python Interface is installed in a virtual environment placed alongside the compiler in the virtualenv directory. To
run Python scripts using the intelgsdk. cbindings library, use either

$ source <path to Intel Quantum SDK>/virtualenv/bin/activate

or call the script with python3 located at

42

Revision 1.0 Intel® Quantum SDK

’$ <path to Intel Quantum SDK>/virtualenv/bin/python3

14.2 Python via OpenQASM 2.0

14.2.1 Procedure

Step 1: Write quantum programs

Using OpenQASM2.0, or alternatively, transpile the Python program into OpenQASM2.0, with the user’s choice of quan-
tum programming package. Aslongasthe program canbeturnedintoa . gasmfile, the Bridge library will be able to translate
it to a C++ source file for the Intel® Quantum SDK.

At the beginning of the Python script, include the following lines:

from intelgsdk.cbindings import *
loadSdk("/path/to/file.so", sdk name)

loadSdk™ “needs to be called before calling other functions or creating objects from " intelqgsdk.
cbindings library.

The sdk _nameis the user-created reference string givento this . so library. Later on, when calling functions from this library
or referencing cbit/qgbit variables, pass this identifier to indicate which library to use. Users can also access multiple . so
libraries to call functions or reference cbit/qbit variables from each library.

Step 2: Write the Python script

First, import several modules:

import intelgsdk.cbindings
from opengasm bridge.v2 import translate

Next, use Bridge to translate the OpenQASM file to C++:

with open('example.gasm', 'r', encoding='utf8') as input file:
input string: str = input file.read()

translated: list[str] = translate(input string, kernel name='my kernel')
with open('example.cpp', 'w', encoding='utf8') as output file:

for line in translated:
output file.write(line + "\n")

Now, compile the translated C++ code:

compiler path = "<path to Intel Quantum SDK>/intel-quantum-compiler"
intelgsdk.cbindings.compileProgram(compiler path, "example.cpp", "-s", sdk name)

From here, the user can start calling APIs to set up the simulator and run the quantum program. For example,

igqs _config = intelqsdk.cbindings.IqsConfig()

igqs_config.num qubits = 5

igs config.simulation type = "noiseless"

iqs device = intelgsdk.cbindings.FullStateSimulator(iqs config)
iqs _device.ready()

(continues on next page)

43

Revision 1.0 Intel® Quantum SDK

(continued from previous page)

intelgsdk.cbindings.callCppFunction("my kernel", sdk name)
gbit ref = intelgsdk.cbindings.RefVec()
for i in range(5):

gbit ref.append(intelqgsdk.cbindings.QbitRef("q", i, sdk name).get ref())
probabilities = iqs device.getProbabilities(qbit ref)
intelgsdk.cbindings.FullStateSimulator.displayProbabilities(probabilities, qgbit ref)

14.3 Compiling quantum kernel to Shared Library (. so)

14.3.1 Procedure

Step 1: Write quantum kernel functionsin C++

Given a C++ source file, quantum_algorithm. cpp,

Step 2: Compile the source programto . so

Compile the source program using the - s flag to compile to <source _program>. so. For example,

’$ <path to Intel Quantum SDK>/intel-quantum-compiler -s quantum algorithm.cpp ‘

Alternatively, in the Python script, compile and load the . so file. It is assumed that the output directory is the same as the
directory of the C++ file when loading the . sofile.

intelgsdk.cbindings.compileProgram("<path to Intel Quantum SDK>/intel-quantum-compiler", "path/to/cpp file
~", "flags", sdk_name)

Step 3: Write the Python script which calls the APIs

Next, set up a simulation device by using the following template:

number of qubits

N=14

iqs config = IqsConfig()

set the number of qubits for the simulation config
igs_config.num qubits = N

choose the type of noise model

igs config.simulation type = "noiseless"
igqs_config.synchronous = False

igqs device = FullStateSimulator(iqgs config)

iqs device.ready()

Then, create a Python equivalent of the C++ objects used by intelqgsdk.cbindings:

gids = RefVec()

cbits = []

for i in range(N):
cbits.append(CbitRef("CReg", i, sdk name))
gids.append(QbitRef("QubitReg", i, sdk name).get ref())

Call APIs which form the quantum circuit:

44

Revision 1.0 Intel® Quantum SDK

Prepare all qubits in the 0 state
callCppFunction("prepZAll", sdk name)

Apply QFT

callCppFunction("gft", sdk name)

Apply the inverse of QFT, effectively applying an Identity
callCppFunction("qft inverse", sdk name)

Call APIs to get the probabilities and measurement results:

probs = igs device.getProbabilities(qids)
amplitudes = iqs device.getAmplitudes(qids)
callCppFunction("measZAll", sdk name)

print("\nMeasurements:")
for cbit in cbits:
print(cbit.value())

print("\nProbabilities printed with QRT API")

Expect to see |0000> to have a probability of 1

since an identity has been applied
FullStateSimulator.displayProbabilities(probs, qids)

Required wait since device is asynchronous
iqs _device.wait()

14.3.2 How to get cbit values after running quantum kernel functions?

Create a CbitRef object. For example, if there are the following global variables in the C++ source:

chit c0;
cbit c arrayl[3];

then in the Python script, declare the following two variables:

cbit _c0 = intelqgsdk.cbindings.CbitRef("c0", sdk_name) # This refers to c0O
cbit c array = intelgsdk.cbindings.CbitRef("c array", 1, sdk name) # This refers to c array[1]

To get the value of cbit, callthe value () function on the CbitRef object:

bool val = cbit c0.value() # returns a bool representing the value of the cbit

14.3.3 How to getreferences to gbit variables to pass to runtime APIs?

Create an QbitRef object. For example, if there are the following global variables in the C++ source:

gbit q array[3];
gbit qO;

In the Python script, declare the following two variables:

gbit g0 = intelqgsdk.cbindings.QbitRef("q0", sdk name) # This refers to g0
gbit g array = intelqgsdk.cbindings.QbitRef("q array", 2, sdk name) # This refers to q array[2]

Thengbit g0.get ref() returns an Python object that canbe usedasastd:: reference wrapper<gbit>.

Alternatively, make a RefVec to get a Python object that can be used as a std::vector<std::reference -
wrapper<qbit>>. For example,

45

Revision 1.0 Intel® Quantum SDK

refvec = intelqgsdk.cbindings.RefVec()
refvec.append(gbit q0.get ref())
refvec.append(gbit q array.get ref())

Also, gbit q0.value() returns the physical qubit mapped to by this program qubit.

print(qbit qg0.value())

14.3.4 Python objects and the corresponding C++ objects

DoubleVec - std::vector<double>

ComplexVec - std::vector<std::complex<double>>
SamplesVec - std::vector<std::vector<int>>
SampleVec - std::vector<int>

BoolVec - std::vector<bool>

IntVec - std::vector<int>

RefVec - std::vector<std::reference wrapper<qbit>>
QssDoubleMap - QssMap<double>

QssComplexMap - QssMap<std::complex<double>>
QssIndexVec - std::vector<QssIndex>
QssUnsignedIntMap - QssMap<std::unsigned int>

14.3.5 C++classes that can be imported

QRT_ERROR T
DeviceConfig

IgsConfig
TensorNetworkConfig
ErrSpeclQ

ErrSpec2Q

ErrSpecIdle

ErrorRates

GateTimes
CliffordSimulatorConfig
QssIndex

Device
FullStateSimulator
CustomInterface
TensorNetworkSimulator
CliffordSimulator

14.3.6 C++functions that canbe imported

gssMapToVector<double>
gssMapToVector<std: :complex<double>>
gssMapVectorToMap<double>
gssMapVectorToMap<std: :complex<double>>

46

Revision 1.0 Intel® Quantum SDK

14.3.7 Usage examples

Suppose the user has aninstance of intelqsdk.cbindings.FullStateSimulator called iqs device:

iqs _device.getProbabilities(qids) # returns a DoubleVec

iqs device.getAmplitudes(qids) # returns a ComplexVec

igs device.getProbabilities(qids, QssIndexVec()) # returns a QssDoubleMap
iqs device.getAmplitudes(qgids, QssIndexVec()) # returns a QssComplexMap
iqs device.getSamples(num samples, qids) # returns a SamplesVec

igs device.getSingleQubitProbs(qids) # returns a DoubleVec

Example of using a map from C++:

#-- Iterating through a map in C++ gives a (key, value) pair --#
for prob in iqs device.getProbabilities(qids, QssIndexVec()):
print(prob.key().getIndex(), prob.data())

14.4 Using a Custom Backend with the Python Interface

To use a custom backend with the Python Interface, create a Python class that derives fromthe CustomInterfaceclassin
the intelgsdk.cbindings module. In this class, implement the RXY, RZ, SwapA, CPhase, PrepZ, and MeasZ methods, and
add a constructor for the Python class.

The following example assumes the user has defined a Python class MySimulator:

custom device id = "custom device"

CustomSimulator.registerCustomInterface(MySimulator, custom device id, <args>) // args is optional,
—depends on MySimulator's constructor

config = DeviceConfig(custom device id)

device = CustomSimulator(config)

Alternatively, if the user only intends to have one device, use the following shortcut:

device = CustomSimulator.createSimulator(MySimulator, "custom device", <args>)

Note the difference relative to the C++ interface: instead of the class being a template argument of
registerCustomInterfaceandcreateSimulator,itis the first parameter in the Python Interface.

Call the function getCustomBackend () to return the class that the user has created:

’simiobject = device.getCustomBackend()

14.5 Known Limitations of the Python Interface

* Any variables of cbit type must be global in order to access them.

* The C++ functions, including quantum_kernel, called from Python must return void and either take no parameters
or take an single array of double.

47

Revision 1.0 Intel® Quantum SDK

15.0 Running With MPI

15.1 MPI Support

The Intel® Quantum SDK leverages Message Passing Interface (MPI) in the qubit simulation backends for improved per-
formance. It also provides users the option to run IQS simulations distributed across multiple compute nodes, enabling
simulations involving larger numbers of qubits with the increased available memory.

15.2 Execution

To run the compiled executable, simply invoke it with

’$./quantum_algorithm

If your program distributes IQS across multiple nodes of machines for distributed memory, launch the application with the
mpirun command and use - n to specify the number of ranks. The total number of ranks must be a power of 2.

Here is an example command to run a program with 2 ranks.

’$ mpirun -n 2 ./quantum algorithm iqs distributed mem

15.3 Sourcing compiler variables

This is required once per interactive session or once per job script for running the executable.

’$ source /opt/intel/oneapi/setvars.sh

15.4 Known Limitations with MPI

Users can implement their own parallel code, but should not call MPI_Finalize(). Otherwise, Intel® Quantum SDK will
call MPI functions after users’MPI_Finalize() call, whichis not allowed.

While running a simulation with more than 35 qubits, the displayAmplitudes(), getAmplitudes(),
displayProbabilities(), and getProbabilities() APIs might not work properly if the user tries to get all ampli-
tudes or probabilities.

48

Revision 1.0 Intel® Quantum SDK

16.0 Running and Writing Custom Passes for the Intel® Quantum
Compiler

16.1 Introduction

The Intel® Quantum SDK is built on the LLVM compiler’s pass-based structure. The Intel® Quantum Compiler iteratively
performs transformations of the program including optimization and lowering to hardware specific gates to compile a quan-
tum program. This ordering can be changed, and extra transformations can be added to alter the compilation of the pro-
gram. While the Intel® Quantum SDK has a defined set of transformations, there is room for extra passes to be added. The
process of adding passes to the compilation flow from an external library are detailed below.

There are further details about how to access the development tools to create your own Intel® Quantum Passes as well.

16.2 RunningPasses

As mentioned, the Intel® Quantum SDK provides a driver script with mechanisms to insert LLVM passes, passes from the
Intel® Quantum SDK, or custom passes from external libraries, at specific points during the compilation flow of a quantum
program.

16.2.1 Defining Custom Passes to Run

$ intel-quantum-compiler -E <user defined library> -e <compilation stage 1> -a <pass 1>,...,<pass n> -A
—.<pass_option> -A <pass option> -e <compilation stage 2> -a <pass 1>,...,<pass _n> -A <pass option> -A
—<pass_option> <source file>

Custom passes will be defined in libraries external to the Intel® Quantum Passes library. The - E flag with the path to the cus-
tom library as the argument, gives the compilation process access to the passes defined in the library. There are additional
flags needed to define the compilation stage (when to run passes), pass lists (what passes to run), and a sequence’s argu-
ments that should be passed to those passes at each particular stage. First, a compilation stage is defined with the -e flag,
followed by the name of one of the compilation stages listed below. Next, define the passes to be run during that compila-
tion stage with the - a flag, followed by a comma-delimited list of pass names defining the passes that will be run during that
stage. Then, optionally add the -A flag to pass each argument to the compiler invocation specified during the current -e
specification. The arguments given to -A are concatenated together with a space between each argument. Compilation
passes during other stages can be defined by using additional instances of the - e flag and its supporting options.

However, you do not have to specify an external library if the custom passes are already defined within the Intel® Quantum
SDK or the LLVM Compiler. In this case, the - E flag and argument can be omitted. For example, to run the Dead Code
Elimination pass from LLVM, the invocation would be:

$ intel-quantum-compiler -e <compilation stage 1> -a dce <source file>

49

https://llvm.org/

Revision 1.0 Intel® Quantum SDK

16.2.2 Custom Pass Compilation Stages

There are five different stages where custom passes can be inserted:
= Preconditioning (precond)
= Presynthesis (presynth)
= Prelowering (prelower)
= Prescheduling (presched)
= Presplitting (presplit)

The first place that passes can be inserted into the pass pipeline is before the quantum program has been verified. At this
point, you can expect there are no native quantum gates, and there should be no control flow constructs in the quantum
kernels. Other optimizations expect a program with one execution within a quantum kernel. So, if additional control flow
structures like loops or branching instructions have been added that cannot be handled by the native “flattening” opti-
mizations provided by the SDK, they must be removed before this point with a custom pass. This is also a good place to
replace your own custom functions with an intrinsic, or set of intrinsics if needed. This is called the “Precondition” section
or precond.

The second stage where passes can be inserted is only available when using optimization level number 1. With this opti-
mization there is extra synthesis of quantum programs. To insert a custom passes prior to synthesis, use the “Presynthesis”
sectionor presynth.

The third stage where custom passes can be added is directly after the verification of the quantum program. If there are
optimizations that act on the canonical gate set provided by the frontend, they should be performed here. At this point, you
can expect that the remaining control flow structures will no quantum instructions. This is called the “Prelowered” section
or prelower. If a custom placement pass needs to be written, it should be performed here.

The fourth stage stage where custom passes can be inserted is after the lowering of the quantum gates to the canonical
gates for the device and the placement of the qubits on a device. At this point, there should be no canonical gates left,
they should be replaced with native gate decompositions. If a gate was added that is not caught by the decomposition
passes, this is the point to replace it with a native gate. Additionally, this is the stage before routing, and scheduling. This
is called the Prescheduling section or presched. If a custom routing and scheduling pass needs to be written, it should be
performed here.

The fifth and final opportunity is after routing, scheduling, but before the quantum kernels are separated from the rest of
the program. At this point, the program acts on physical qubits and spin-native gates rather than the canonical gates. Any
changes made at this point must honor the connectivity of a device. Passes that care about the physical qubits that the
circuit is being run on should be made here. Or, if you only want to optimize what will be run, and need guarantees about
which qubits you are acting on, or the kind of gate that is being used, this is the place to do it. This is the “Presplitting”
sectionorpresplit.

Putting all of this together, an example command line invocation from the an example external library, in this case from the
open-source Intel® Quantum Compiler Passes repository, is:

$ intel-quantum-compiler -E path/to/libExampleMultiPass.so -e prelower -a print-all-gates,x-to-hzh,print-
—all-gates -A -example-pass-opt -A testing -e presplit -a print-all-gates -A -example-pass-opt -A testing-
—two <source file>

" ou

This will run the sequence of passes “Print All Gates”, “X to HZH" and “Print All Gates” during the prelowering stage of the
compilation process along with the option -example-pass-opt testing. Thenitwillrunthe “Print All Gates” pass during
the presplitting stage using the option -example-pass-opt testing-two.

50

Revision 1.0 Intel® Quantum SDK

16.3 The Open-Source Compiler Passes Repository

The Intel® Quantum Passes repository, found here, provide a mechanism for developers to add their own functionality and
optimizations to the compilation process, or to modify the quantum passes to fit their needs.

This is not a necessary feature for most users of the Intel® Quantum SDK. Only developers looking to write and add their
own features and optimizations to the quantum comepilation process need to be aware of this section.

There are two main environments where building passes is supported, via the docker container oronthe |Intel| Developer's
Cloud.

The instructions for how to build the Quantum Passes can be found in the repositories themselves, but the basic steps are
detailed here as well. This process is only necessary to change the operation of the passes themselves, or to add passes
to the compilation process.

To build the repository you must have access to the Intel® Quantum SDK, CMake and either the Ninja or Make build sys-
tems.

The first step is to clone the Quantum Passes repository:

$ git clone https://github.com/intel/quantum-passes.git
$ cd quantum-passes

$ mkdir build

$ cd build

Then build the repository:

$ cmake -G Ninja -DLT INTEL QUANTUM SDK LOC=<sdk install dir> ../
$ ninja

The sdk_install diristhe location where the Intel® Quantum SDK is installed on your system, this contains the neces-
sary compiler tools and libraries to successfully build and run the Quantum Passes. If the Ninja build system is not available,
use -G "Unix Makefiles" instead.

5l

https://github.com/intel/quantum-passes
https://hub.docker.com/r/intellabs/intel_quantum_sdk
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://cmake.org/
https://ninja-build.org/
https://www.gnu.org/software/make/

Revision 1.0 Intel® Quantum SDK

17.0 Code Samples

See the quantum-examples and python-quantum-examples directories in the Intel® Quantum SDK root directory for
demonstrations of each of the included qubit simulators’ APIs, demos, sample algorithm implementations and application
simulations.

17.1 Algorithms and Simulations

deutsch jozsa q7.cpp:
An implementation of the Deutsch-Jozsa algorithm.
gec_qg5.cpp:
An implementation of Quantum Error Correction (QEC) on 5 qubits.
gft.cpp:
An implementation of the Quantum Fourier Transform (QFT) and Inverse QF T algorithms.
dynamic_mbl g3.cpp:
An implementation of Hamiltonian evolution simulating Many Body Localization (MBL).
tfd g4 hybrid demo.cpp:
A demonstration of generating Thermofield Double (TFD) state.
teleport.cpp:
A simulation of the procedure to teleport a quantum state.
gkd_bb84.cpp:

A simulation of establishing secure keys through Quantum Key Distribution (QKD) using the BB84 algorithm
[BeBr1984].

gnn_rus_nl.cpp,gnn_rus_nnl.cpp:

Examples for simulating small Quantum Neural Networks (QNN).

17.2 Programming

ghz. cpp:

An implementation of creating a Greenberger-Horne-Zeilinger state (GHZ) using a template approach and
compile time recursion to parameterize the number of qubits. The result is a quantum_kernel function that
can be changed to simulate any number of qubits up to a predefined maximum number of qubits at compile
time.

dynamic param.cpp:
A demonstration of using dynamic parameters in quantum_kernel functions.
custom_backend. cpp:

An example of implementing a user-defined backend qubit simulator.

52

Revision 1.0 Intel® Quantum SDK

igs_custom _noise.cpp:
An example for using the Intel® Quantum Simulator with a custom noise model.
custom backend mimicking iqs custom noise.cpp:

An example implementing user-defined noise in qubits with the Intel® Quantum Simulator and comparing it to
a user-defined backend that implements the same noise model.

gexpr_ghz.cpp,gexpr_qft.cpp,gexpr_teleport.cpp:

Re-implementations of preceding examples using FLEQ quantum kernel expressions (QExpr) to simplify and
modularize the code.

state preparation.cpp:
Uses a FLEQ Datalist to prepare a list of qubits according to a string specification of n basis states.
pauli rotations.cpp:

Uses a FLEQ Datalist to prepare multi-qubit Pauli rotations, preparations, and measurements given a Pauli
string specification.

ideal GHZ.cpp,sampled GHZ.cpp,qd_GHZ.cpp:

Several teaching examples demonstrating a development workflow. See Tutorials.
igs_vs_clifford comparison.cpp, rep _code clifford.cpp:

A basic example and an advanced example for using the Clifford Simulator backend.
run_ghz.py, run_qft.py, run_tfd demo.py:

Several examples demonstrating how to use the Python Interface. Each interacts with one of the above exam-
ples.

api_<backend> test.cpp:

A demonstration of the API for each qubit simulator <backend>.

53

Revision 1.0 Intel® Quantum SDK

18.0 Summary of Known Limitations / Issues

The maximum number of qubits supported is bounded by the total memory available to the Intel® Quantum Simulator
and is a machine and application dependent quantity. See Getting Started Guide (Memory Requirements). The
Tensor Network and Clifford Simulator backends are limited to 256 qubits.

All operations on classical variables inside a quantum_kernel function will be executed at the beginning of that
quantum_kernel, unless placed after the final quantum gate in the quantum_kernel. This applies to quantum_-
kernel functions called in the middle of other quantum_kernel functions, i.e. adding the return value of the interior
quantum_kernel to an integer inside the higher scope quantum_kernel will be moved to the beginning of the re-
sulting set of instructions. See In-lining & quantum_kernel functions.

All source code must be located in a single . cpp file or included through header files.
Top-level quantum_kernel functions cannot support gbit arguments. See In-lining & quantum_kernel functions.

For quantum_kernel functions that use many qubit preparation operations, i.e. significantly more than the number
of qubits used, use of -01 flag is known to dramatically slow down the compilation. See Compiling.

Custom placement can only be used on global gbit variables. See Placement.

If the scheduler pass -S flag is not set, the compiler assumes an all-to-all connection even if a non-all-to-all connec-
tivity is given in the platform configuration . j son file. Conversely, to invoke the - S flag, the - ¢ flag must be given. See
Scheduling.

When the -S flag is not set and -01 optimization is set, some quantum_kernel functions may see additional
quswapalp gate operations at the end of the quantum_kernel. See Scheduling.

Users should not call MPI_Finalize() in the user program. Otherwise, MPI functions will be called after MPI_ -
Finalize(), whichis not allowed. See Running with MPI.

When running a simulation with more than 35 qubits, the display and get APIs for the FullStateSimulator
might not work properly if the user tries these methods to retrieve or show all amplitudes or probabilities. See
Running with MPI.

A compilation failure could occur if code which supports exception handling is invoked within a quantum_kernel
function. The compilation error will likely be reported as a result of invalid branching. One such case would be the
initialization of a quantum simulator within a quantum_kernel function. To avoid undesirable behavior, it is recom-
mended to initialize the simulator in the main () function.

54

Revision 1.0 Intel® Quantum SDK

19.0 Support and Bugreporting

You can get technical support and report any bugs encountered by visiting |Intel| Communities. This is also a great place
to ask questions and share ideas.

55

https://community.intel.com/t5/Intel-Quantum-SDK/bd-p/intel-quantum-sdk

Revision 1.0 Intel® Quantum SDK

20.0 FAQ

* Why is the amplitude of this state not the same as my by-hand calculation?
* What to do if I'm getting the “API called with qubits that are duplicated!” error?

* What to do if I'm getting the “1-qubit gate X on qubit Y is not available in the platform” error?

* Where can | find the Intel Quantum SDK?

20.1 Why is the amplitude of this state not the same as my by-hand calculation?

The amplitude of a state may differ between the result you compute when you work the problem by hand, algebraic solver,
or other quantum computing tool chain. Take for example, the quantum circuit:

0)

You may be surprised to find the amplitude of this qubit is —i |1)

Printing amplitude register of size 2
| 0> 1 (0,0) | 1> : (0,-1)

This is a consequence of the compiler being designed to compute in terms of the gate set for quantum dot qubits. The
decomposition of X into the native gates gives a different, but physically equivalent, global phase than we might write doing
the math by hand (where we implicitly assume our qubits directly support the gates in the textbook). The global phase will
have no effect on observable quantities; i.e., the probability is still guaranteed to be computed correctly. To wit: the only
outcome of a measurement on the above qubit is |1).

Inspecting the corresponding line in the . s (quantum assembly file generated by the compiler) for the above gate shows
the instruction given is

qurotxy QUBIT[O], 3.141593e+00, 0.000000e+00

The qurotxy native quantum dot gate was applied to the Oth qubit with the parameters = and 0. The matrix elements of
this gate are

R,y (8,¢) = cos (g) I —isin (g) [X cos ¢ + Y sin gzb}

_ cos (%) —isin () [cos ¢ — ising)]
N [—i sin (%) [cos ¢ + i sin ¢] cos (%) }

and substitutingin = mand ¢ = 0, we find

- 0

-y

So the —i becomes a global phase, and will not contribute to a change in the probability of observing a given state.

X = Ry (7,0) = [0- _Z}

56

Revision 1.0 Intel® Quantum SDK

20.2 What to do if I'm getting the “API called with qubits that are duplicated!”
error?

This error is caused when the following scenario occurs:

gbit a;
gbit b;
gbit c;

quantum_kernel void example() {
X(a);
H(b);
Y(c);

int main() {
using namespace iqgsdk;
// Set up IQS device
IgsConfig iqs config;
igs config.num qubits = N;
FullStateSimulator iqs device(iqgs config);
igs_device.ready();

example();

std::vector<std::reference wrapper<qgbit>> qids =
// This line will trigger the above error since qubit a is added to qids twice
{std::ref(a); std::ref(a); std::ref(c)};

std::vector<double> ProbabilityRegister;

ProbabilityRegister = iqs device.getProbabilities(qids);

To resolve this issue, ensure that each qubit is added exactly once. For example, replace the qids definition with:

std::vector<std::reference wrapper<gbit>> qids =
{std::ref(a); std::ref(b); std::ref(c)};

20.3 What to do if I'm getting the “1-qubit gate X on qubit Y is not available in
the platform” error?
This is likely caused by compiling the source code with a platform configuration file that is incompatible with the choice of

compilation flags and/or simulation backend. One solution is to recompile the source code with -01 flag. Alternatively, the
source code can be recompiled with a different platform configuration file.

57

Revision 1.0 Intel® Quantum SDK

20.4 Where canlfind the Intel Quantum SDK?

Depending on what system you are using the location of the Intel® Quantum SDK can vary. Throughout this document we
have refered to this location as a generalized <path to Intel Quantum SDK>/.Below is atable of common paths where
the Intel® Quantum SDK can be found.

Table 2: Common Paths to the Intel Quantum SDK

System Name <path to Intel Quantum SDK>
Intel Developers Cloud /opt/intel/quantum_sdk/
Docker Container /opt/intel/quantum-sdk/latest/

Note: For convenience, consider appending the SDK path to your shell's $PATH environment variable. The typical bash
syntax for thisis:

export PATH=$PATH:<path to Intel Quantum SDK>

58

Revision 1.0 Intel® Quantum SDK

Bibliography

[BELL1964] Bell, J.S. (1964) On the Einstein Podolsky Rosen Paradox. Physics, 1, 195-200. https://doi.org/10.1103/
PhysicsPhysiqueFizika.1.195

[EIPR1935] Einstein, A., Podolsky, B., & Rosen, N. Can quantum-mechanical description of physical reality be considered
complete? Physical Review, 47(10), 777-780 (1935). https://doi.org/10.1103/PhysRev.47.777

[Schmitz2021] Schmitz, A. T, Sawaya, N. P, Johri, S, & Matsuura, A. Y. (2021). Graph optimiza-
tion perspective for low-depth Trotter-Suzuki decomposition. arXiv:2103.08602 [quant-ph].
https://doi.org/10.48550/arXiv.2103.08602

[Paykin2023] Paykin, J., Schmitz, A. T, Ibrahim, M., Wu, X. C., & Matsuura, A.Y.(2023). PCOAST: A Pauli-based Quantum
Circuit Optimization Framework. arXiv:2305.10966 [quant-ph]. https://doi.org/10.48550/arXiv.2305.10966

[Schmitz2023] Schmitz, A. T, Ibrahim, M., Sawaya, N. P, Guerreschi, G. G., Paykin, J., Wu, X. C., & Matsuura, A. Y. (2023).
Optimization at the Interface of Unitary and Non-unitary Quantum Operations in PCOAST. arXiv:2305.09843
[quant-ph]. https://doi.org/10.48550/arXiv.2305.09843

[NICH2010] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition
(Cambridge University Press, 2010). https://doi.org/10.1017/CBO9780511976667

[GEAN2014] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86, 153 (2014). https://link.
aps.org/doi/10.1103/RevModPhys.86.153

[KPZC2022] R.Kotlyar, S.Premaratne, G. Zheng, J. Corrigan, R. Pillarisetty, S. Neyens, O. Zietz, T. Watson, F. Luthi, F. Bor-
jans, L. Lampert, E. Henry, H. George, S. Bojarski, J. Roberts, A. Y. Matsuura, and J. S. Clarke, Mitigating Impact
of Defects On Performance with Classical Device Engineering of Scaled Si/SiGe Qubit Arrays, in 2022 Inter-
national Electron Devices Meeting (IEDM) (2022) pp. 8.4.1-8.4.4 https://doi.org/10.1109/IEDM45625.2022.
10019382

[KWPH2022] Khalate, P, Wu, X.-C., Premaratne, S., Hogaboam, J., Holmes, A., Schmitz, A., Guerreschi, G. G., Zou, X. &
Matsuura, A. Y., arXiv:2202.11142 (2022). https://doi.org/10.48550/arXiv.2202.11142

[BaSR2021] J.C.Bardin, D.H. Slichter, and D. J. Reilly, Microwaves in Quantum Computing, IEEE Journal of Microwaves
1,403 (2021). https://doi.org/10.1109/JMW.2020.3034071

[ZKWL2022] Zwerver, AM.J., Krahenmann, T, Watson, T.F. et al. Qubits made by advanced semiconductor manufac-
turing. Nat Electron 5, 184-190 (2022). https://doi.org/10.1038/s41928-022-00727-9

[LODIN998] Loss D., DiVincenzo D.P. Quantum computation with quantum dots. Phys Rev A, 57 (1) (1998), pp. 120-126
https://doi.org/10.1103/PhysRevA.57.120

[DIVI2000] D. P. DiVincenzo, The Physical Implementation of Quantum Computation, Fortschritte der Physik 48, 771
(2000). https://doi.org/10.1002/1521-3978(200009)48:9/11<771:: AID-PROP771>3.0.CO;2-E

[LULN2010] T.D.Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, Quantum computers, Nature
464, 45 (2010). https://doi.org/10.1038/nature08812

[WAPK2018] Watson, T., Philips, S., Kawakami, E. et al. A programmable two-qubit quantum processor in silicon. Nature
555, 633-637 (2018). https://doi.org/10.1038/nature25766

[SURI2015] B. Suri, Transmon qubits coupled to superconducting lumped element resonators, Ph.D. the-
sis, University of Maryland College Park (2015). https://www.proquest.com/dissertations-theses/
transmon-qubits-coupled-superconducting-lumped/docview/1702138107/se-2

[STEC2020] D. A. Steck, Quantum and Atom Optics (2020), revision 0.13.1. Accessed 05/01/2020. https://atomoptics.
uoregon.edu/~dsteck/teaching/

59

https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1017/CBO9780511976667
https://link.aps.org/doi/10.1103/RevModPhys.86.153
https://link.aps.org/doi/10.1103/RevModPhys.86.153
https://doi.org/10.1109/IEDM45625.2022.10019382
https://doi.org/10.1109/IEDM45625.2022.10019382
https://doi.org/10.1109/JMW.2020.3034071
https://doi.org/10.1038/s41928-022-00727-9
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1002/1521-3978(200009)48:9
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature25766
https://www.proquest.com/dissertations-theses/transmon-qubits-coupled-superconducting-lumped/docview/1702138107/se-2
https://www.proquest.com/dissertations-theses/transmon-qubits-coupled-superconducting-lumped/docview/1702138107/se-2
https://atomoptics.uoregon.edu/~dsteck/teaching/
https://atomoptics.uoregon.edu/~dsteck/teaching/

Revision 1.0 Intel® Quantum SDK

[ZHSD2020] D.Zeuch, F. Hassler, J. J. Slim, and D. P. DiVincenzo, Exact rotating wave approximation, Annals of Physics
423,168327 (2020). https://doi.org/10.1016/j.a0p.2020.168327

[PARE2004] M. Paris and J. Reha&ek, eds., Quantum State Estimation (Springer Berlin Heidelberg, 2004). https://doi.
org/10.1007/b98673

[GHBS2020] Guerreschi, G. G., Hogaboam, J., Baruffa, F.,, & Sawaya, N. P. D., Intel Quantum Simulator: A cloud-ready
high-performance simulator of quantum circuits. Quantum Science and Technology, 5, 034007 (2020).
https://doi.org/10.1088/2058-9565/ab8505

[NEST2010] Van den Nest, M,, Classical simulation of quantum computation, the Gottesman-Knill theorem, and slightly
beyond. Quantum Info. Comput. 10, 3 (2010). https://doi.org/10.5555/2011350.2011356

[GOTT1998] Gottesman, D., The Heisenberg Representation of Quantum Computers, Group22: Proceedings of the XX
International Colloquium on Group Theoretical Methods in Physics, eds. S. P. Corney, R. Delbourgo, and P.D.
Jarvis, (1999). https://doi.org/10.48550/arXiv.quant-ph/9807006

[SCGO2004] Scott Aaronson, S., Daniel Gottesman, D., Improved simulation of stabilizer circuits, Phys. Rev. A 70,
052328 (2004). https://link.aps.org/doi/10.1103/PhysRevA.70.052328

[HDER2006] Hein, M., Dur, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H. -J., Entanglement in Graph States
and its Applications, (2006). https://doi.org/10.48550/arXiv.quant-ph/0602096

[GEZH2013] Geller, M.R., Zhou, Z., Efficient error models for fault-tolerant architectures and the Pauli twirling approxima-
tion, Phys. Rev. A 88, 012314 (2013). https://link.aps.org/doi/10.1103/PhysRevA.88.012314

[SJUDL2003] Strauch, F.W., Johnson, P.R., Dragt, A. J., Lobb, C. J.,Anderson, J. R, Wellstood, F. C., Quantum Logic Gates
for Coupled Superconducting Phase Qubits, Phys. Rev. Lett. 91, 167005 (2003). https://link.aps.org/doi/10.
1103/PhysRevLett.91.167005

[BeBr1984] C.H.Bennettand G.Brassard, Quantum cryptography: Public key distribution and coin tossing, Proceedings
of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175, pg. 8, (1984). https:
//doi.org/10.1016/j.tcs.2014.05.025

60

https://doi.org/10.1016/j.aop.2020.168327
https://doi.org/10.1007/b98673
https://doi.org/10.1007/b98673
https://doi.org/10.1088/2058-9565/ab8505
https://doi.org/10.5555/2011350.2011356
https://doi.org/10.48550/arXiv.quant-ph/9807006
https://link.aps.org/doi/10.1103/PhysRevA.70.052328
https://doi.org/10.48550/arXiv.quant-ph/0602096
https://link.aps.org/doi/10.1103/PhysRevA.88.012314
https://link.aps.org/doi/10.1103/PhysRevLett.91.167005
https://link.aps.org/doi/10.1103/PhysRevLett.91.167005
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1016/j.tcs.2014.05.025

	How to Cite
	Overview
	Introduction to Quantum Computing
	Supported Quantum Logic Gates
	Quantum Dot Qubit Gates

	Language Extensions
	Built-in Types & Intrinsic Functions
	Namespaces
	Includes & Classes

	Programming with the Intel® Quantum SDK
	In-lining & quantum_kernel functions
	Measurements using Simulated Quantum Backends
	Local qbit Variables

	Compiling
	Output of the Intel® Quantum SDK Compiler
	Compiler Optimization
	Qubit Placement and Scheduling
	Circuit Printing & LaTeX
	Support for OpenQASM 2.0
	Other Compiler Flags

	Configuring the FullStateSimulator
	Overview of FullStateSimulator
	Execution Options
	Overview of IqsConfig

	Intel® Quantum Simulator Backend
	Customizable noise modeling
	Using Custom IQS Noise Models in a Program
	Important Points on Performing Noisy Simulations with IQS

	Quantum Dot Simulator Backend
	Simulation of Qubits
	Rotating vs. Laboratory Frame
	Usage in conjunction with getAmplitudes()
	Using Quantum Dot Simulator in a Program
	Important Points on Quantum Dot Simulator
	Compilation with Quantum Dot Simulator as the Computing Backend

	Clifford Simulator Backend
	Clifford Operations
	Using Clifford Simulator in a Program
	Important Points on Clifford Simulator
	Compilation with Clifford Simulator as the Computing Backend

	Tensor Network Backend
	Brief Overview of TensorNetworkConfig

	Custom Backend
	CustomInterface
	CustomSimulator
	Methods

	Python Interface
	Introduction
	Python via OpenQASM 2.0
	Compiling quantum_kernel to Shared Library (.so)
	Using a Custom Backend with the Python Interface
	Known Limitations of the Python Interface

	Running With MPI
	MPI Support
	Execution
	Sourcing compiler variables
	Known Limitations with MPI

	Running and Writing Custom Passes for the Intel® Quantum Compiler
	Introduction
	Running Passes
	The Open-Source Compiler Passes Repository

	Code Samples
	Algorithms and Simulations
	Programming

	Summary of Known Limitations / Issues
	Support and Bug reporting
	FAQ
	Why is the amplitude of this state not the same as my by-hand calculation?
	What to do if I’m getting the “API called with qubits that are duplicated!” error?
	What to do if I’m getting the “1-qubit gate X on qubit Y is not available in the platform” error?
	Where can I find the Intel Quantum SDK?

	Bibliography

