
Intel®QuantumSDK
Developer Guide and Reference

February 15, 2024

ReleaseVersion 1.1

Contents:

1 How toCite 1

2 Overview 2

3 Introduction toQuantumComputing 5

4 SupportedQuantumLogicGates 7
4.1 QuantumDotQubit Gates . 9

5 LanguageExtensions 10
5.1 Built-in Types & Intrinsic Functions . 10
5.2 Namespaces . 11
5.3 Includes &Classes . 11

6 Programmingwith the Intel®QuantumSDK 14
6.1 In-lining & quantum_kernel functions . 14
6.2 Measurements using SimulatedQuantumBackends . 15
6.3 Local qbitVariables . 17

7 Compiling 19
7.1 Output of the Intel® QuantumSDKCompiler . 19
7.2 Compiler Optimization . 19
7.3 Qubit Placement and Scheduling . 20
7.4 Circuit Printing & LaTeX . 23
7.5 Support for OpenQASM2.0 . 23
7.6 Other Compiler Flags . 24

8 Configuring the FullStateSimulator 25
8.1 Overview of FullStateSimulator . 25
8.2 ExecutionOptions . 25
8.3 Overview of IqsConfig . 26

9 Intel®QuantumSimulatorBackend 27
9.1 Customizable noisemodeling . 27
9.2 UsingCustom IQSNoiseModels in a Program . 28
9.3 Important Points on PerformingNoisy Simulations with IQS . 29

10 QuantumDotSimulatorBackend 30
10.1 Simulation of Qubits . 30
10.2 Rotating vs. Laboratory Frame . 31
10.3 Usage in conjunction with getAmplitudes() . 31
10.4 UsingQuantumDot Simulator in a Program . 31
10.5 Important Points onQuantumDot Simulator . 32
10.6 Compilation withQuantumDot Simulator as the Computing Backend . 32

1

11 CliffordSimulatorBackend 33
11.1 CliffordOperations . 33
11.2 UsingClifford Simulator in a Program . 34
11.3 Important Points onClifford Simulator . 35
11.4 Compilation with Clifford Simulator as the Computing Backend . 36

12 TensorNetworkBackend 37
12.1 Brief Overview of TensorNetworkConfig . 37

13 CustomBackend 39
13.1 CustomInterface . 39
13.2 CustomSimulator . 40
13.3 Methods . 40

14 Python Interface 42
14.1 Introduction . 42
14.2 Python via OpenQASM2.0 . 43
14.3 Compiling quantum_kernel to Shared Library (.so) . 44
14.4 Using aCustomBackendwith the Python Interface . 47
14.5 Known Limitations of the Python Interface . 47

15 RunningWithMPI 48
15.1 MPI Support . 48
15.2 Execution . 48
15.3 Sourcing compiler variables . 48
15.4 Known Limitations withMPI . 48

16 Running andWritingCustomPasses for the Intel®QuantumCompiler 49
16.1 Introduction . 49
16.2 Running Passes . 49
16.3 TheOpen-SourceCompiler Passes Repository . 51

17 CodeSamples 52
17.1 Algorithms and Simulations . 52
17.2 Programming . 52

18 SummaryofKnownLimitations / Issues 54

19 Support andBug reporting 55

20 FAQ 56
20.1 Why is the amplitude of this state not the same asmy by-hand calculation? 56
20.2 What to do if I’m getting the “API called with qubits that are duplicated!” error? 57
20.3 What to do if I’m getting the “1-qubit gate X on qubit Y is not available in the platform” error? 57
20.4 Where can I find the Intel QuantumSDK? . 58

Bibliography 59

2

Revision 1.0 Intel® QuantumSDK

1.0 How toCite

To cite the Intel® QuantumSDK, please reference:

Khalate, P., Wu, X.-C., Premaratne, S., Hogaboam, J., Holmes, A., Schmitz, A., Guerreschi, G. G., Zou, X. &Matsuura, A. Y.,
arXiv:2202.11142 (2022).

1

https://doi.org/10.48550/arXiv.2202.11142

Revision 1.0 Intel® QuantumSDK

2.0 Overview

The Intel® Quantum Software Development Kit (SDK) is a high level programming environment that allows users to write
software targeted to the Intel® quantum hardware. The Intel® Quantum SDK currently provides a choice of several simu-
lation backends specialized for different tasks. When Intel® quantum hardware backends are available in the future, users
will be able to seamlessly transition their simulations to execute on physical qubits withminimal software changes.

Developing applications that run onquantum computers involves considerable challengeswhose solutionsweoften take
for granted when programming the classical computers we use every day. The Intel® Quantum Computing Stack en-
capsulates these challenges as internal modules that include: quantum compilation (front-end and back-end), runtime
mapping and scheduling, fault tolerance support, control electronics, and qubit management. The Intel® Quantum SDK
is designed to fully integrate with these modules of the Intel® Quantum Computing Stack. It includes optimizations and
decompositions based on the LLVMcompiler framework targeting the Intel® QuantumComputing Stack.

The Intel® QuantumSDK provides an intuitive C++ based application programming interface (API). This API allows users
to express quantum circuit diagrams using C++ code. At this point, readers new to quantum computing and interpreting
quantumcircuit diagramsmaybenefit fromvisiting the Introduction toQuantumComputing section and the collection of
Tutorials.

Let’s consider a simple example. The following quantumcircuit, which represents the famous entangled EPRor Bell State
[EIPR1935] [BELL1964],

|0⟩ H •

|0⟩

is expressedwith the Intel® QuantumSDK using the followingC++ code:

2

https://en.wikipedia.org/wiki/Bell_state

Revision 1.0 Intel® QuantumSDK

Listing 1: Bell State Preparation &Measurement Example

1 /* Gate definitions and key words */
2 #include <clang/Quantum/quintrinsics.h>
3

4 /* Quantum Runtime APIs */
5 #include <quantum_full_state_simulator_backend.h>
6

7 #include <iostream>
8

9 const int num_qubits = 2;
10 /* Declare 2 qubits */
11 qbit q[num_qubits];
12

13 /* The quantum logic must be in a function with the keyword quantum_kernel */
14 /* pre-pended to the signature */
15 quantum_kernel void prep_and_meas_bell(cbit read_out) {
16 /* Prepare both qubits in the |0> state */
17 PrepZ(q[0]);
18 PrepZ(q[1]);
19

20 /* Apply a Hadamard gate to the top qubit */
21 H(q[0]);
22

23 /* Apply a Controlled-NOT gate with the top qubit as
24 * the control and the bottom qubit as the target */
25 CNOT(q[0], q[1]);
26

27 /* Measure qubit 0 */
28 MeasZ(q[0], read_out);
29 }
30

31 int main() {
32 /* Configure the simulator */
33 iqsdk::IqsConfig settings(num_qubits, "noiseless");
34 iqsdk::FullStateSimulator quantum_8086(settings);
35 if (iqsdk::QRT_ERROR_SUCCESS != quantum_8086.ready()) return 1;
36

37 /* Declare 2 measurement readouts */
38 /* Measurements are stored here as "classical bits" */
39 cbit classical_bit;
40

41 prep_and_meas_bell(classical_bit);
42

43 /* Here we can use the FullStateSimulator APIs to get data */
44 /* or we can write classical logic that interacts with our measurement */
45 /* results, as below. */
46 bool result = classical_bit;
47 if (result) {
48 std::cout << "True\n";
49 }
50 else {
51 std::cout << "False\n";
52 }
53

54 return 0;
55 }

3

Revision 1.0 Intel® QuantumSDK

Ready to get started building quantum circuits? If so, feel free to jump straight to theGetting StartedGuide to learn about
theSDK’s software requirements, installation, usage, and how to interpret the output. Otherwise, it may be helpful to brush
up on the basics and investigate the resource material found in the Introduction to Quantum Computing section. The
collection of Tutorials andSamplesmay also be of interest.

To summarize, the Intel® QuantumSDK includes:

• An intuitive user interface based on theC++ programming language.

• Optimizations anddecompositions based on the LLVMcompiler framework specifically targeted at the Intel®Quan-
tumComputing Stack.

• A full compilation flow that produces an executable using a user’s selected backend.

Authoringaquantum-acceleratedapplication in the Intel®QuantumSDKfollows theprogrammingparadigmofotherhard-
ware accelerators. Quantumprograms arewritten in aC++ programmingenvironment that has been extended to allow the
user to express quantum circuits as quantum logical operations. Depending onwhether the user is targeting a simulation
environment or qubit hardware, our quantum runtime library will direct the quantumworkload to the appropriate backend
during runtime execution.

Currently available backends:

• The Intel QuantumSimulator (IQS) backend, a full-state-vector qubit simulationwith a complete description of the
quantum state of the qubits defined.

• TheQuantumDot (QD)simulator, a physics-basedsimulationof thephysical qubitspairedwitha state-vector front-
end.

• TheTensorNetwork backend, a simulator that uses tensor contractions to evaluate quantum circuits.

• TheClifford Circuit backend, a simulator that provides extremely fast results for quantum algorithms implemented
using only Clifford quantumgates.

• An interface for a user-definedbackend; with this option, users can develop their ownbehavior for qubit simulators.

4

Revision 1.0 Intel® QuantumSDK

3.0 Introduction toQuantumComputing

Quantumcomputing is anewmodelof computation that solvesproblemsbymanipulatingandmeasuring thepropertiesof
special systems that exhibit quantummechanical phenomena. These special quantummechanical systems are referred
to as quantum computers. Quantum computers are particularly well-suited to certain kinds of computational problems,
suchascryptography,QuantumFourierTransforms(QFTs), optimization/search, physics/chemistrysimulation, andmany
more.

To better understand how a quantum computer works, it helps to compare the basic unit of quantum information, a qubit,
with the well-known classical binary bit. A binary bit can be in only one of two possible states: a 0 or a 1. This is similar to
howwe consider the state of a standard coin lying on a table; it is either heads or tails.

Note: Herewe focus on the paradigmof gate-based quantum computing using qubits. Other types of quantum systems
are not directly supported by the Intel® QuantumSDK.

In this analogy we consider the state of a quantum coin to be “spinning” on the table top; that is, it is in neither the heads
nor the tails state, it is inboth states at the same time. In the quantum realm, this concept is called superposition: a qubit is
simultaneously in both the 0 and the 1 state (in quantummechanics, these are referred to as |0⟩ , |1⟩). In fact, a qubit is in a
linear combinationof these two states. So in somesense, a qubit ismore like aweighted spinningcoin; it has somechance
of being in the 0 state, and some chance of being in the 1 state. In quantummechanics we oftenwrite this scenario as:

|ψ⟩ = α |0⟩+ β |1⟩

where |ψ⟩ represents the state of the qubit andα andβ represent the probability “amplitude” of the qubit being in the |0⟩or
the |1⟩ state, respectively. Actually, theα and β coefficients are complex numbers, and the square of their absolute values
(as in, |α|2 and |β|2) represents the real-world probability of that qubit being in the |0⟩ or the |1⟩ states, respectively. Since
there areonly2possible states,weknow that |α|2+ |β|2 = 1, which simplymeans there is a 100%chance that thequbit is in
either the |0⟩ or the |1⟩ state. Just as we can stop a spinning coin at any timewith our finger, we can alsomeasure the state
of a qubit |ψ⟩ to see exactly which state it is in at a given time: we represent this measurement with a very simple quantum
circuit diagram:

|ψ⟩

5

Revision 1.0 Intel® QuantumSDK

Note: This quantum circuit diagram represents measuring an arbitrary single-qubit state |ψ⟩. Quantum circuit diagrams
are read left-to-right. Moreoperationsona singlequbit extend thecircuit horizontally, andmorequbits are addedvertically.

Immediately uponmeasuring the qubit’s state, wewill see that is it in either the |0⟩ state or the |1⟩ state. The probability the
qubit is |0⟩ is |α|2, and the probability the qubit is |1⟩ is |β|2. An important property of quantummeasurements is that they
change the state of the underlying qubits, irreversibly collapsing the qubit’s state from a superposition to a single state.

Applying operations like measurements or other quantum gates (such as a qubit “flip”) is fundamental to quantum com-
puting. For example, we can flip the |0⟩ state to the |1⟩ state with an X gate, as represented by this circuit diagram:

|0⟩ X |1⟩

Furthermore, qubits can be entangledwith each other. That is, the combined state ofmultiple qubits can be correlated. In
our coin analogy above, 2 spinning coins could represent 4 possible states via superposition. But if the two spinning coins
are entangled, the result of one coin will necessarily inform us of the result of the other. In the similar case of measuring
an entangled Bell pair of qubits, measuring the state of one qubit lets us know the state of the second qubit, even without
measuring the second qubit.

These two properties, superposition and entanglement, enable quantum computers to solve certain problems far more
efficiently thanaclassical computer. Generally speaking, quantumcomputing isperformingquantumoperationsonqubits
to solve these interesting problems. One example is applying aQuantumFourier Transform (QFT); with onlyO(n2)gates,
specifically theHadamard and phase-shift gates (see the quantumgates and theQFTsample sections formore details),
we can apply a Fourier transform onO(2n) amplitudes. The corresponding 4-qubit QFT circuit diagram looks like this:

|ψ0⟩ H Rπ/2 Rπ/4 Rπ/8

|ψ1⟩ • H Rπ/2 Rπ/4

|ψ2⟩ • • H Rπ/2

|ψ3⟩ • • • H

To learnmore about quantum computing and how to develop quantum algorithms like the one above, see suggestions in
theGetting StartedGuide.

6

Revision 1.0 Intel® QuantumSDK

4.0 SupportedQuantumLogicGates

Below is a list of quantum logic gates supported in the Intel® QuantumSDK and their signatures. To see thematrix defini-
tions for these gates, refer to the file:

<path to Intel Quantum SDK>/iqc/include/clang/Quantum/quintrinsics.h

1. Hadamard (H)

void H(qbit& q);

2. Pauli X (X)

void X(qbit& q);

This is equivalent to a rotation around the X-axis by π.

3. Pauli Y (Y)

void Y(qbit& q);

This is equivalent to a rotation around the Y-axis by π.

4. Pauli Z (Z)

void Z(qbit& q);

This is equivalent to a rotation around the Z-axis by π.

5. Phase (S)

void S(qbit& q);

Phase shift with half the rotation of Z (i.e. a π/2 rotation). Equivalent toRZ(π/2).

6. Phase Inverse (Sdag)

void Sdag(qbit& q);

Conjugate transpose of S.

Note: Dag here is an abbreviation for “dagger”, which denotes the conjugate transpose of a Hermitianmatrix.

7. T

void T(qbit& q);

Phase shift, with one quarter the rotation of Z (i.e. a π/4 rotation). Equivalent toRZ(π/4).

8. T Inverse (Tdag)

void Tdag(qbit& q);

Conjugate transpose of T.

9. X axis Rotation (RX)

void RX(qbit& q, double angle);

10. Y axis Rotation (RY)

7

Revision 1.0 Intel® QuantumSDK

void RY(qbit& q, double angle);

11. Z axis rotation (RZ)

void RZ(qbit& q, double angle);

12. Controlled Z (CZ)

void CZ(qbit& ctrl, qbit& target);

13. CNOT

void CNOT(qbit& ctrl, qbit& target);

14. SWAP

void SWAP(qbit& ctrl, qbit& target);

15. Toffoli

void Toffoli(qbit& ctrl0, qbit& ctrl1, qbit& tgt);

Toffoli gate with two controls.

16. PrepZ

void PrepZ(qbit& q);

Initialize/reset qubit to the |0⟩ computational state.

17. PrepX

void PrepX(qbit& q);

Initialize/reset qubit to the |+⟩ computational state.

18. PrepY

void PrepY(qbit& q);

Initialize/reset qubit to the |R⟩ computational state.

19. MeasZ

void MeasZ(qbit& q, bool& c);

void MeasZ(qbit& q, cbit& c);

Measure the qubit q in the |0⟩ or |1⟩ computational states and store the result in c.

20. MeasX

void MeasX(qbit& q, bool& c);

void MeasX(qbit& q, cbit& c);

Measure the qubit q in the |+⟩ or |−⟩ computational states and store the result in c.

21. MeasY

void MeasY(qbit& q, bool& c);

void MeasY(qbit& q, cbit& c);

Measure the qubit q in the |R⟩ or |L⟩ computational states and store the result in c.

22. CPhase

8

Revision 1.0 Intel® QuantumSDK

void CPhase(qbit& ctrl, qbit& target, double angle);

Controlled Phase gate.

23. XY-plane Rotation

void RXY(qbit& q, double theta, double phi);

Define a rotation in the XY-plane of the Bloch sphere (RXYMatrix Representation).

24. SwapAlpha

void SwapA(qbit& q1, qbit& q2, double angle);

Rotation in the Span{|01⟩ |10⟩} subspace.

4.1 QuantumDotQubitGates

Some physical systems will find it easier to implement certain quantum gates because of differences in the underlying
quantumsystemsused tocreatehardwarequbits. If two sets of quantumgates areeachuniversal for quantumcomputing,
then a quantum algorithm can be implemented in either set of quantum gates. Below is the list of the quantum gates that
the Intel®QuantumSDK targets during compilation. Thegateswritten in thequantum_kernel functions aredecomposed
by the compiler into the gates below, and the results can be found in the human-readable .qs file. This list is for reference.

1. quprepz(qbit q)

An incoherent reset to computational |0⟩ state.

2. qumeasz(qbit q)

Measurement in theZ basis. This collapses the qubit to themeasured state, either |0⟩ or |1⟩.

3. qurotxy (qbit q, double theta, double phi)

A rotation of theta around arbitrary axis in X-Y plane of the Bloch sphere as characterized by angle phi, i.e. the
operator exp

{
−i θ/2

(
cos(ϕ)X̂+ sin(ϕ)Ŷ

)}
.

4. qucphase(qbit q1, qbit q2, double theta)

An arbitrary phase of exp (−i θ) on the |11⟩ state of the given qubits.

5. quswapalp(qbit q1, qbit q2, double theta)

An arbitrary rotation of theta in the {|01⟩ , |10⟩} state subspace.

6. qurotz(qbit q, double theta)

An arbitrary rotation of theta about theZ-axis of the Bloch sphere. Optimizers shouldminimize occurrences.

9

Revision 1.0 Intel® QuantumSDK

5.0 LanguageExtensions

The Intel® Quantum SDK defines a number of data types, keywords, and classes to facilitate expressing quantum algo-
rithms aswell as some common tasks associatedwithworkingwith quantumqubit simulators. A complete list of themeth-
ods is provided in API Reference. This section summarizes the key concepts developers should know when writing C++-
based programs in the Intel® QuantumSDK.

5.1 Built-inTypes& Intrinsic Functions

qbit:

Data type for variables representingqubits. qbitvariablescanbedeclaredeitherglobally in theglobal names-
pace or locally within a quantum_kernel function (see Local variables). A qbit variable cannot be used as a
member variable of any class.

cbit:

Data type for variables to represent a classical bit returned by a quantummeasurement. Equivalent to bool.

quantum_kernel:

Attribute fora function thatwill containquantumlogic, e.g. agateactingonaqubitoranotherquantum_kernel.

release_quantum_state():

An intrinsic function thatonce invoked inaquantum_kernel, indicates that thequantumstate isunconstrained
from that point onwards. Quantum variables can be re-used in a new quantum_kernel, but they must be re-
initialized using PrepX, PrepY, or PrepZ since the quantum states are unspecified after being released. Calling
release_quantum_state() facilitatesoptimizationswhencompilingwith the-O1flag,whichcan leadtomore-
efficient execution of the quantum algorithm. For an example of the effects of optimization on a quantum_-
kernel using release_quantum_state(), seeUsing release_quantum_state() in the Tutorial document.

std::vector<std::reference_wrapper<qbit>>

Data structure used to specify the order of qubits or a subset of qubits for reporting data froma full state quan-
tum simulator. Referencewrappers are constructed by calling std::ref(q) for qubit variables q. This idiom is
important because there is no a priori relationship between qbit type variables and hardware qubits. Concep-
tually, this is similar to an object instance that does not necessarily occupy the samememory address during
each execution.

For example, suppose a user has two qubits: q1 in state |0⟩ and q2 in state |1⟩. If getProbabilities is invoked
with the vector {std::ref(q1), std::ref(q2)} of reference wrappers, the reported state will be |01⟩; if it is
invokedwith {std::ref(q2), std::ref(q1)}, the state will be: |10⟩.

5.1.1 KnownLimitations

Top-level quantum_kernel functions can only refer to global qbit variables or local qbit variables defined inside a
quantum_kernel function. In other words, the following is not a valid top-level quantum_kernel function signature:
quantum_kernel void my_single_qubit_function(qbit &q);. This restriction does not apply to quantumkernel ex-
pressions, which are described in FLEQGuide and Reference (Local qubits).

10

Revision 1.0 Intel® QuantumSDK

5.2 Namespaces

iqsdk

Namespace providing access to the classes andmethods of the Intel® QuantumSDK.

qexpr

Namespace providing access to quantum kernel expressions. Part of the Functional Language Extension for
Quantum (FLEQ). See FLEQGuide and Reference (Quantum kernel expressions).

qlist

Namespace providing access to compile-time quantum lists (see FLEQGuide and Reference (QList)).

datalist

Namespace providing access to compile-time strings (see FLEQGuide and Reference (DataList)).

5.3 Includes&Classes

<clang/Quantum/quintrinsics.h>: Required header file that provides access to the supported quantumgates aswell
as the instructions to prepare the state of a qubit and perform ameasurement on a qubit. SeeSupportedQuantum
LogicGates and Intel QuantumDotQubit Gates for additional details about the gates.

5.3.1 QuantumBackends

<quantum_full_state_simulator_backend.h>:

This header file is needed for full state simulators, and provides access to the FullStateSimulator class as
well as auxiliary helper classes.

IqsConfig:

Configuration data for the FullStateSimulator class.

FullStateSimulator:

Class with API calls to both set up a quantum simulator device and access the underlying quantum
state during simulation. SeeConfiguring theFullStateSimulator for a quick explanation orAPI Ref-
erence for a complete description of the class’s methods.

<quantum_clifford_simulator_backend.h>:

Header file needed for using theClifford Simulator.

ErrSpec1Q:

Configuration struct for single qubit gate errors.

ErrSpec2Q:

Configuration struct for two qubit gate errors.

ErrSpecIdle:

Configuration struct for idling.

ErrorRates:

Configuration struct for error rates of each gate type.

GateTimes:

11

Revision 1.0 Intel® QuantumSDK

Configuration struct for duration of each gate type.

CliffordSimulatorConfig:

Configuration struct for setting up aClifford Simulator Device.

CliffordSimulator:

Backend interface for using theClifford Simulator.

<quantum_tensor_network_backend.h>:

Header file needed for using the Tensor Network Backend.

TensorNetworkConfig:

Configuration struct for setting up a Tensor Network Device.

TensorNetworkSimulator:

Backend interface for using Tensor Network Simulation.

<quantum_custom_backend.h>:

Header file needed for using or developing aCustomBackend.

CustomInterface:

Abstract base class for user to implement their own simulator.

CustomSimulator:

Backend interface for using the custombackend.

<qrt_errors.hpp>:

This header file is included by any quantum backend. It defines the data type for communicating success or
failure from the quantum runtime.

QRT_ERROR_T:

Data type representingpotential errors in settingupaquantumdevice. EitherQRT_ERROR_SUCCESS,
QRT_ERROR_WARNING, or QRT_ERROR_FAIL.

<quantum_backend.h>:

This header file contains base classes for simulationdevices. It is includedbyanyneeded simulation interface.

<quantum.hpp>:

Deprecated. Includes headers for all backends.

5.3.2 AccessingResults

<qrt_indexing.hpp>:

This header file is included by any quantumbackend. It defines the data types for accessing backend results.

QssIndex:

Data type for representing quantum basis elements. Used for indexing into data structures repre-
senting quantum state spaces (QSS).

QssMap<T>:

A map from QssIndex values to type T values. Used for representing total or partial quantum state
spaces where T is double for probabilities or complex for amplitudes.

12

Revision 1.0 Intel® QuantumSDK

5.3.3 Functional LanguageExtension forQuantum(FLEQ)

<clang/Quantum/qexpr.h>:

Header file that provides resources for building quantumkernel expressions. SeeFLEQGuide andReference
(Quantum kernel expressions).

QExpr:

Data typeof quantumkernel expressions, a representationof quantumkernel functionsprovidedby
FLEQ. See FLEQGuide and Reference (Quantum kernel expressions) for more information.

<qlist-utils.h>:

Header file that provides useful utilities for workingwith quantum kernel expressions.

<clang/Quantum/qlist.h>:

Header file that provides access to compile-time qubit lists. See FLEQGuide and Reference (QList).

qlist::QList:

Data type for compile-time qubit lists.

<clang/Quantum/datalist.h>:

Header file that provides access to compile-time strings. See FLEQGuide and Reference (DataList).

datalist::DataList:

Data type for compile-time strings.

13

Revision 1.0 Intel® QuantumSDK

6.0 Programmingwith the Intel®QuantumSDK

6.1 In-lining& quantum_kernel functions

When the compiler prepares a quantum_kernel function, it separates all the quantum instructions (as Intermediate Rep-
resentation (IR)) from the classical IR so that it can deliver a complete set of instructions to the quantumbackend.

Local declarations and operationswith traditional C++ data types are supported inside a quantum_kernel function, which
aids readability and preserves programming concepts. At compile time, these “classical” instructions are pulled out of the
quantum_kernel. This has a consequence on classical instructions, especially bool and cbitmeasurement results: any
operations on classical variables written inside a quantum_kernel will be executed at the beginning of that quantum_-
kernel, unless they are written after the final quantumgate in the quantum_kernel.

qbit q0;
qbit q1;

quantum_kernel void myKernel() {
bool b = false;
std::cout << "b has value false (0) here after initialization: "

<< b << "\n";
PrepZ(q0);
X(q0);
MeasZ(q0, b);
std::cout << "b still has value 0 here since the quantum gates are not complete: "

<< (int)c << "\n";
PrepZ(q1);
std::cout << "After all gates in quantum_kernel have executed, b has value true (1): "

<< b << "\n";
}

A quantum_kernelmay be called from within another quantum_kernel. Here, too, the compiler in-lines the quantum in-
structions from the innermost quantum_kernel and continues until it produces one sequence of instructions that corre-
sponds to the “top-level” quantum_kernel call that begins the quantum algorithm.

In-liningcombinedwith theearlier ruleon rearrangingoperationsonmeasurement resultsmeans that forquantum_kernel
functions containing a measurement which are called in the middle of another quantum_kernel function, the operations
on thosecbitandboolmeasurement resultswill bemoved to thebeginningof the resultingsetof instructions. Thismeans
that the following code:

If a user needs classical instructions to be executed strictly in the middle of a quantum algorithm, they should break up
the algorithm into multiple top-level quantum kernel functions. Alternatively, they can use the bind operator on quantum
kernel expressions (see FLEQGuide and Reference (Barriers and binding)).

The restriction that the entire quantum_kernel be known at compile time together with the in-lining behavior means that
the top-level kernel cannot accept an arbitrary variable of type qbit as a parameter. The variables of qbit type that will be
operated on must be explicitly defined in the “top-level” kernel’s instructions; however, inner quantum_kernel functions
may bewritten to accept qbit type variables as parameters.

Note: This restriction applies primarily to quantum_kernel functions, and not to FLEQ. See FLEQGuide andReference
if you need this feature.

14

Revision 1.0 Intel® QuantumSDK

qbit qs[3];

// A nested quantum_kernel may take either classical or quantum arguments
quantum_kernel void bell(qbit &a, qbit &b) {
PrepZ(a);
PrepZ(b);
H(a);
CNOT(a,b);

}

// A top level quantum_kernel may take classical arguments, but not quantum
// arguments
quantum_kernel void topLevelBell() {
bell(q[0],q[2]);

}

int main() {

// may call top-level quantum_kernel
topLevelBell();

// may not call quantum_kernel with quantum arguments
// invalid: bell(q[0], q[2]);

}

6.2 Measurements usingSimulatedQuantumBackends

Atypical quantumprogramusing the Intel®QuantumSDKwill do effectively the following sequence: 1. Submitquantum_-
kernel functions to a quantum backend. 2. Execute quantum_kernel on the backend. 3. Retrieve results. 4. Repeat 1-3
as needed.

After the quantum_kernel has finished executing, users will need to retrieve results from the backend. This section de-
scribes the result retrieval and aggregation process, using the example of the FullStateSimulator backend.

The FullStateSimulator class provides threemain approaches to obtain statistical measurements:

1. getProbabilities() (and/or other simulation data)

2. getSamples()

3. Repeated execution of explicit measurement operations e.g. MeasZ (sampling).

Thesemethodswill be elaborated in the following sections.

Both Intel®QuantumSimulator (IQS)andQuantumDot(QD)Simulatorbackendssupportcollecting thesimulationdetails,
such as the quantum amplitudes, conditional probabilities, or single-qubit probabilities. The FullStateSimulator class
provides these data regardless of which backend is selected to run the simulation.

6.2.1 SimulationData

Table 1: SimulationMethodComparison

15

Revision 1.0 Intel® QuantumSDK

Method Returned object Effi-
ciency
(with
IQS)

Recom-
mended?

Other Notes

getProbabilities() vector<double> or
QssMap<double>

Best Yes

getSingleQubitProbs() vector<double> Best Yes
getSamples() vector<vector<bool>> Good Yes
getAmplitudes() vector<complex<double>>

or
QssMap<complex<double>>

Good No Accurate up to global
phase

Repeated sampling calls User-defined Worst No Complexityscaleswith
number of samples

Working with the simulation data returned by FullStateSimulatormethods such as getProbabilities() is often the
mostcomputationallyefficient route tosimulatingaquantumalgorithm. This isbecausequantumalgorithmsoftenencode
their results as probabilities of different states. If the entire algorithm needed to run many times to sample the probability,
as required on a hardware quantumbackend, the simulation timewould increase significantly.

For applications that need a set of measurement outcomes, both backends of the FullStateSimulator offer a second
route to obtain the simulation data, which avoids the need for repeated executions of a given quantum_kernel function.
This route consists of calling getSamples() to get sequences of outcomes as if measurements were applied to the qubit
register. This sampling of results doesn’t affect the state and can even be applied asmany times as an application calls for.

6.2.2 CombiningSimulationData andMeasurementOperations

IQS offers the ability to retrieve simulation results (i.e. from getProbabilities() or getSamples()) when quantum_-
kernel functions includemeasurement gates (e.g. MeasZ()).

Note: This feature is not available in QD Simulator because it doesn’t collapse the state (see the Quantum Dot (QD)
Simulator). This means combining results of measurement operations and sampling results with the QD Simulator can
yield unexpected results.

When using probability measurement and explicit measurement gates on a qubit in simulations, IQS will cause a ‘partial
collapse’ of the state in the simulator to a sub-space. You can combine such operations with a sampling technique like
getProbability or getSamples to compute data or collect statistics on the sub-space. To support combiningmeasure-
mentoperationsandsimulationdata, IQSwill alwayscollapse thequantumstateof thesimulatorwhen it encountersamea-
surement operation in a quantum_kernel. Any subsequent querying of the FullStateSimulator aftermeasurementwill
always give the same result on the qubits that had one of MeasX, MeasY, or MeasZ applied, and other qubits will have any
correlated effects on their probabilities present.

Measuringaqubit leaves it inoneof the twostates intowhich themeasurementwasprojected; e.g. measuringaqubit along
theZ-axis (in aBlochsphere representation) leaves it ineither a |0⟩or |1⟩ state. Anotherperspectiveon this is that thepost-
measurement state of the entire set of qubits now occupies a sub-space of the Hilbert space previously occupied by the
pre-measurement qubits. This can be qualitatively understood by noting that there is no uncertainty in the state of the
measured qubit. A measurement also has consequences on the correlations arising from entanglement between qubits.
More simply,measuringonequbit can affect theprobabilities of the outcomesofmeasuring adifferent qubit (provided the
two qubits were entangled). In the extreme case, a large amount of correlation present in the system could mean that a
singlemeasurement applied on one qubit results in the state of the entire set of qubits being determined, such as for a Bell
pair or GHZ state.

16

Revision 1.0 Intel® QuantumSDK

6.2.3 UsingOnlyMeasurementOperations

A third option is to collect your own statistical results by executing the entire quantum algorithmwith all the requiredmea-
surement operations many times in a loop (or other control-flow structure) to direct execution flow. Each iteration of the
quantumalgorithmproduces and then stores, analyzes, or accumulates the result of themeasurements. Under ideal con-
ditions (no noise), the sampling &measurement approaches will each produce statistically-equivalent results, especially
with large sample sizes. Because quantum algorithms running on quantum hardware must use the measurement ap-
proach, the simulation data and sampling approaches can be seen as a debuggingmode for themeasurement approach.
IQS supports using measurements anywhere in the quantum algorithm; in contrast, QD Simulator only supports reading
measurements at the end of the quantum_kernel.

6.3 Local qbitVariables

qbit variables can be declared globally or locally. When the compiler maps the program qubits to physical qubits, each
qbit variable will be assigned to a physical qubit. Since the compiler cannot guarantee the state that a local qbit variable
is in, local qbit variablesmust be initialized using PrepX, PrepY, or PrepZ before being used. At the end of the quantum_-
kernel, the local qbit variablesmust be released. This can be achieved throughmeasurements or release_quantum_-
state().

Note that if using release_quantum_state(), the quantum states are unspecified after the function call (see Language
Extensions). Without releasing the quantum states, the physical qubits assigned to the local qbit variables might be as-
signed to other local qbit variables in a new quantum_kernel function while still holding the quantum states of the out-
of-scope variables. The out-of-scope variables’ physical qubits will not be assigned to unreleased global qbit variables,
however.

In the following example, a local qbit variable is declared, initialized, andmeasured.

quantum_kernel void kernel() {
qbit q;
bool b; // can also be of type cbit

PrepZ(q); // prepare the qbit variable before applying gates
H(q);

MeasZ(q, b); // release the qbit variable at the end of the quantum_kernel
}

If local qbit variables are entangled with global qbit variables, the entanglement persists after the local qbit variables
go out of scope. The user must insert gates needed to disentangle the local qbit variables from the global ones before
releasing the local variables’ quantum states.

qbit global;

quantum_kernel void errorExampleEntangledQubits() {
qbit local;

PrepZ(local); // Prep the qbit variable before applying gates
H(local);
CNOT(local, global);

// After local goes out of scope, the physical qubit it was assigned to
// is still entangled with global

}

The recommended best practice with regards to local qbit variables is therefore to prep them before they are used and
insert gates to undo the entanglement between local andglobal qbit variables before releasing the quantumstates at the
end of quantum_kernel functions.

17

Revision 1.0 Intel® QuantumSDK

For information on how to use local qbit variables with quantum kernel expressions and FLEQ, refer to FLEQGuide and
Reference (Local qubits).

18

Revision 1.0 Intel® QuantumSDK

7.0 Compiling
The compiler’s operation can be modified using command-line flags, allowing functionality such as specifying header in-
clude paths and library paths, redirecting output files, and specifying different qubit hardware or connectivity. These op-
tions can be printed by running

$./intel-quantum-compiler -h

7.1 Output of the Intel®QuantumSDKCompiler

Three files are generated from the compilation stage andwritten to the working or user-specified output directory. These
files are:

<algo-name>.ll: Intermediate representation (IR) of source file.

This file shows the LLVM IR of both quantum and classical parts of the code combined, with the quantum_-
kernels and operations represented as function calls.

<algo-name>.qs: Human-readable assembly file for Intel® Quantumbackend target.

This file shows the assembly for each quantum_kernelwritten by the user andmapped to the quantumback-
end. Thus, it will reflect someof the quantum target’s attributes, such as its native gate set, and limited connec-
tivity (in the form of additional swap gates).

<algo-name>: Executable corresponding to <algo-name>.

This is the binary and final result of the Intel® QuantumSDK compiler.

The details in the .ll and .qs files can provide a better understanding of the program’s low-level execution flow. When
debugging or trying to understand the results of optimization, referring to both .ll and .qs can be informative. For ex-
ample, in optimizingmeasurement operations, when the compiler can be sure that a given boolean or cbitmeasurement
outcome is dependent on another outcome or set of outcomes, then that measurement outcome can ultimately be de-
termined by the classical part of the IR (especially in conjunction with a call to release_quantum_state()) and themea-
surement that set it can be omitted. Similarly, the dynamic parameters passed to some quantum gates can sometimes
be combined by the compiler, reducing the number of operations on dynamic variables. Inspecting the .qs file will reveal
whichmeasurements and operations will be executed.

7.2 CompilerOptimization

As in compilation for classical programs, the LLVM-based Intel® Quantum SDK quantum compiler can look for oppor-
tunities to reduce the required quantum instructions and/or order and execute them more optimally. This optimization
accounts for logical and physical constraints, and can be activated by passing one of the following optimization options:

• -O0:

This optimization flag represents no optimization at this time. This is the default if no flag is provided. Cer-
tain compiler passes will still be applied, such as converting to native gates.

• -O1:

Thisoptimizationflagenableshigh-levelquantumoptimizationson thequantum_kernel functions. At this
time, the -O1 optimization converts all quantum_kernel functions to a high-level representation we refer
to as a “product-of-Pauli-rotations” representation. The overall unitary (andmore generally, the quantum
channel) is converted to an abstract Pauli-based form, consisting of:

19

Revision 1.0 Intel® QuantumSDK

– A sequence of Pauli-operator-based elements of the form e−itP , where P is a general Pauli operator
(tensor product of single-qubit Pauli operators) and t is any real number.

– Analogous elements for Clifford operations and non-unitary quantum operations such as measure-
ment and qubit preparation.

Optimizations areperformedon this representation,which is thenused to synthesize anewcircuit directly
using native gates for the target backend. The synthesis process minimizes entangling gates and overall
depth. The synthesismethods are adapted from [Schmitz2021], [Paykin2023], [Schmitz2023].

For quantum_kernel functions that use many qubit preparation operations, i.e. significantly more than the number of
qubits used, use of -O1 flag is known to dramatically slow down the compilation due to the intense amount of computa-
tion needed.

7.3 Qubit Placement andScheduling

Note: This section distinguishes between a physical qubit, and a program qubit, which is the model used in users’ pro-
grams. A “programqubit” is sometimes referred toasavirtual qubit. For thepurposesof this section, theprimaryconstraint
of aphysicalqubit is that itwill nothaveall-to-all connectivity,meaning it isnotpossible toperforma two-qubitgatebetween
every pair of qubits. A physical qubit does not need to be implemented in hardware, and can exist solely in simulation.

The backends of the Intel® Quantum SDK provide features to simulate quantum hardware at different levels of idealiza-
tion. For example, the FullStateSimulatorbackendprovides an idealizedquantumcomputerwith unlimited (“all-to-all”)
physical connectivity between simulated physical qubits, so there is no “placement” decision required to map program
qbit objects in the source code onto the physical qubits.

When all-to-all physical qubit connectivity is not available, some algorithmswill requiremoving the programqubits around
over the physical qubits.

The Intel® QuantumSDK compiler integrates the solution to this constraint into the quantum basic block functions it con-
structs from quantum_kernel functions. The placement compiler pass assigns program qubits (as declared in user’s
source code) to physical qubits (as defined in a platform configuration .json file). This is the initial placement of the pro-
gram qubits whichmay change once the circuit has been processed by the scheduler compiler pass.

The scheduler compiler pass sequences the quantum instructions & gates, accounting for physical qubit connectivity
by adding quantum instructions required to implement the algorithm. These additional quantum instructions effectively
“move” the quantum information across physical qubits to perform a quantumgate between programqubits whose phys-
ical qubits were not directly connected.

7.3.1 Placement

By default, the placement pass assumes an all-to-all connectivity between the physical qubits and assigns the program
qubits to physical qubits trivially,meaningprogramqubit 0 is assigned tophysical qubit 0, programqubit 1 to physical qubit
1, and so on. If using the default mode, the -c flag (specifying a configuration file) is optional when invoking the compiler.

For example,

$./intel-quantum-compiler quantum_algorithm.cpp

In this case, -c is not required and the placement pass uses the default trivial placement.

When a configuration file is provided, the compiler offers four placementmethods:

1. Trivial (-p trivial): Map programqubits to physical ones trivially (see above).

20

Revision 1.0 Intel® QuantumSDK

2. Dense (-p dense): Map the program qubits in a cluster of the highest connected portion of the given connectivity
as defined in the platform configuration file.

3. Local (-p local): Use a local search optimization technique to place qubits that occur in the same gate close to
each other.

4. Custom (-p custom): User provides the desired placement in their source code (see below).

In general, if the user wishes to select a placement method, the -c flag must also be specified. To invoke the placement
pass, use the -p flag. Only one -p flag is accepted at a time.

$./intel-quantum-compiler -c configuration_file -p trivial quantum_algorithm.cpp
$./intel-quantum-compiler -c configuration_file -p dense quantum_algorithm.cpp
$./intel-quantum-compiler -c configuration_file -p local quantum_algorithm.cpp

If using customplacement, both insert the following line to define the placement in the source code:

// When defining the global qubit register, provide the custom placement.
qbit qreg[3] = {2, 0, 1}
// This places program qubit qreg[0] to physical qubit 2, qreg[1] to physical qubit 0, and qreg[2] to␣
↪→physical qubit 1.

And invoke the placement pass with the -p custom flag:

$./intel-quantum-compiler -c configuration_file -p custom quantum_algorithm.cpp

Details about Local SearchPlacement

The local search compares two graphs with sets of vertices and edges. The application graph has vertices of program
qubitsandedgesdefinedbetween twovertices if their respectiveprogramqubitsappear in thesamegate. It alsoconsiders
the qubit connectivity graph, where the vertices are the physical qubits and the edges are the pairs of qubits for which the
qubit chip natively supports operations between them. It would be ideal to place the qubits such that the placementmaps
an edge on the application graph maps to an edge on the qubit connectivity graph. However, this is not always possible.
The local search can be configured with a certain amount of resets and a certain amount of iterations per reset. This can
be passed through -i=n or -r=n as a compilation option.

Each reset starts out at a randomplacement, and iteratively swapsqubits using twoqubits connected in the qubit connec-
tivitygraph. Half the time, it greedily choosesanedge tominimizeaheuristic, and theotherhalf of the time it doesa random
move to get out of a local minima.

The heuristic is based on iterating over all edges on the application graph, and for each edge adding up the minimal path
length on the qubit connectivity graph between the two physical qubits that the placement maps the two program qubits
onto that make up the edge in the application graph. There are some optimizations related to the fact that many of the
terms in these sums do not need to be recomputed each time.

KnownLimitationswith thePlacement pass

Customplacement can only be used on global qbit variables, not local qbit variables.

7.3.2 Scheduling

By default, the scheduler pass is disabled and an all-to-all connection is assumed of the device.

When the qubit connectivity is constrained, the scheduler adds SWAP gates to dynamically change the map specifying
the program-to-physical-qubit assignment. For simplicity, we refer to this map as the “qubit map”.

Updating the qubit map is often referred as “routing” since it can be visualized as amovement of the program qubits onto
the physical qubit graph. Routing consists of two parts, performed once per QBB:

21

Revision 1.0 Intel® QuantumSDK

1. Forward routing: needed tosatisfy theconnectivity constraintswhen2-qubit gates in theQBBneed tobescheduled
for execution. This changes the program-to-physical-qubit map.

2. Backward routing: needed to re-schedule the program qubits to the qubit map expected at the end of the QBB.
This is a requirement of advanced quantum programs in which the order of QBB execution is not known at compile
time. No backward routing is needed when the qubits are released after execution, i.e. when the QBB contains the
command release_quantum_state().

The forward routingmethod can be set by using the -S flag:

• none: connectivity constraints are neglected.

• greedy: given gate G between program qubits (qA, qB) currently mapped to physical qubits (QA, QB), themethod
search for two physical qubits (QC, QD) such that:

1. GateG is available between (QC, QD).

2. The duration of a SWAP chains from QA to QC and from QB to QD, plus the duration of gate G(QC, QD) is
minimized.

3. The SWAP chains in point 2 are computed via A* searchwith the SWAP chain duration as the cost function.

4. Ties in point 2 are broken by favoring solutionswith balanced durations of the SWAPchainsQA toQCandQB
toQD.

Thismethodworks for any connectivity.

The backward routingmethod can be set by using the -K flag:

• retrace: performall theSWAPgatesadded in the forward routingbut inoppositeorder. Cancel consecutiveSWAP
gates on the same pair of physical qubits. This method is often inefficient, but the overhead is at most twice the
forward routing cost. It works for any qubit connectivity.

• bubble-sort: for linear connectivity only, based on the bubble-sort algorithm. It considers the qubit map desired at
the end of theQBB as defining the order among programqubits and the qubit map at the end of the forward routing
asanunorderedprogramqubit sequence (tobeorderedviabubble sort). Thisworksalso fornon-linear connectivity
when aHamiltonian path can be identified via a simple heuristic.

• oddeven-sort: as for bubble-sort but using the odd-even transposition sort algorithm.

• grid: for 2Dgrid connectivity only, basedon the successive ordering along rows, columns, and rowsagain. The size
of the 2D grid is identified automatically given that the physical qubits are orderedwith the row-major ordering.

To invoke the scheduler pass, use the -S and -K flags:

$./intel-quantum-compiler -c configuration_file -S greedy -K bubble-sort quantum_algorithm.cpp

KnownLimitationswith theScheduler pass

If the scheduler pass -S flag is not set or set to “none”, the compiler assumes an all-to-all connectivity even if a non-all-to-all
connectivity is given in the config .json. Conversely, to invoke the -S flag, the -c flagmust be given.

If the -p flag is given, the scheduler will use the placement generated by the placement pass as an initial placement. If the
-p flag is not given but the -S flag is set, the scheduler will assume a trivial initial placement.

When the -S flag is not set and -O1 optimization is set, some quantum_kernel functions may see additional quswapalp
gate operations at the end of the quantum_kernel.

When the-Kflag is set toeitherbubble-sortoroddeven-sortbut aHamiltonianpathcannotbe found in theconnectivity
graph of physical qubits, the default retracemethod is used.

When the-Kflag isset togridbut theconnectivitygraphdoesnotcorrespond toa row-major2Darrayofqubits, thedefault
retracemethod is used.

22

Revision 1.0 Intel® QuantumSDK

7.3.3 Combining the -p and -Sflags

Placement and scheduling passes can be invoked together with the -p and the -S flags:

$./intel-quantum-compiler -c configuration_file -p custom -S greedy quantum_algorithm.cpp

7.3.4 SamplePlatformConfigurationfiles

The SDK comes with example platform configuration files representing the details of a different implementation of quan-
tum hardware. They are:

• 8 qubits: Linear connectivity targeting the quantumdot simulator backend.

• 9 qubits: Square grid connectivity targeting non quantumdot simulation backends.

• 34 qubits: Linear connectivity targeting non quantumdot simulation backends.

• 256 qubits: Square grid connectivity targeting non quantumdot simulator backends.

• 256 qubits: Ladder connectivity targeting non quantumdot simulator backends.

• 256 qubits: Linear connectivity targeting non quantumdot simulator backends.

Forusagewith thequantumdotsimulator, useintel-quantum-sdk-QDSIM.jsonwhichpoints to the8qubit configuration
file. For usage with the non quantum dot simulator backends or just the compiler, use intel-quantum-sdk.json. By
default, intel-quantum-sdk.json points to the 256 qubit configuration file. If you wish to use other configuration files,
please copy intel-quantum-sdk.json to your own directory, modify the pointed to configuration file and use the -c flag
to point to your copy.

7.4 Circuit Printing&LaTeX

To invoke the circuit printer, user the -P flag:

$./intel-quantum-compiler -P console quantum_algorithm.cpp
$./intel-quantum-compiler -P tex quantum_algorithm.cpp
$./intel-quantum-compiler -P json quantum_algorithm.cpp

For each quantum_kernel function in the source code compiled, the circuit printer feature will output a representation
of the quantum kernel to the target specified. The console target will result in ascii-style circuits being displayed to the
console. The tex and json targets will output, for each quantum_kernel function, a separate .tex or .json file.

ATeXdistributiononyour localmachinewith theqcircuitpackage (maintainedat theComprehensiveTeXArchiveNet-
work (CTAN)) and its dependencies are required to produce an imageor PDFfile from the .tex file. Manyoptions for TeX
distributions exist for each platform. Those familiar with the LaTeX typesetting language will be able to incorporate the
.tex file or part of its contents into their projects. Those familiar with the commands of the qcircuit package may cus-
tomize and extend the diagram at will.

7.5 Support forOpenQASM2.0

The Intel® Quantum SDK provides a source-to-source converter which takes OpenQASM code and converts it into C++
forusewith the Intel®QuantumSDK.Thisconverter requiresPython3; seeGettingStartedGuide (SystemRequirements)
section for specifics and recommendations. Currently, it processes OpenQASM 2.0 compliant code as described by the
OpenQuantumAssembly Language paper (arXiv:1707.03429 [quant-ph]).

To translate an OpenQASM file to C++ file, you can run the compiler with the -B flag to generate the corresponding
quantum_kernel functions in C++ format.

23

https://doi.org/10.48550/arXiv.1707.03429

Revision 1.0 Intel® QuantumSDK

$./intel-quantum-compiler -B example.qasm

7.6 OtherCompiler Flags

Verbosity - -v:

Provides a summary of each quantum_kernel in terms of both the supported gates set and the quantum dot
qubit gates set.

24

Revision 1.0 Intel® QuantumSDK

8.0 Configuring the FullStateSimulator

Before a quantum_kernel can be called, a properly configured instance of the FullStateSimulator class is required.
This can be done by creating an IqsConfig object with the desired values and passing it to the constructor or initializer of
the FullStateSimulator.The type QRT_ERROR_T is used to check-on the status of simulator instance. For example,

// configure to use N qubits; accepts defaults for remaining
iqsdk::IqsConfig iqs_config(/*num_qubits*/ N);

// setup quantum device
iqsdk::FullStateSimulator iqs_device(iqs_config);
iqs_device.printVerbose(true);

// ensure setup was successful
if (iqsdk::QRT_ERROR_SUCCESS != iqs_device.ready()) return 1;

The essential classes and methods for configuration are detailed below. See API Reference for the full list of APIs to find
details about retrieving data.

8.1 Overviewof FullStateSimulator

ClasswithAPI calls toboth set upaquantumsimulator deviceandaccess theunderlyingquantumstateduring simulation.

• Constructor

FullStateSimulator(IqsConfig &device_config);

Instantiates a simulator object that is initialized to the settings in device_config.

• printVerbose()

QRT_ERROR_T FullStateSimulator::printVerbose(bool printVerbose);

Sets the status of the simulator’s verbose output.

• ready()

QRT_ERROR_T FullStateSimulator::ready();

Returns an enum of QRT_ERROR_T; QRT_ERROR_SUCCESS if the simulator is ready to run a quantum_kernel,
else returns QRT_ERROR_FAIL. Ensure the simulator is readybefore executing quantum_kernel functions
ormaking any queries.

Provides a trigger for opportunities to define error handling logic.

8.2 ExecutionOptions

The Intel® QuantumSDKbackends have two executionmodes:

• Synchronous (default): pauses the execution of the program whenever a QBB is called. Execution resumes once
theQBB is done running.

• Asynchronous: the host puts theQBB into a queue of QBBs to be run.

25

Revision 1.0 Intel® QuantumSDK

Prior to using the results of anymeasurements, the user should call wait()on thedevice to ensure that the device has fin-
ished runningandset theappropriatecbit(s). AnyAPI that sets adeviceproperty (e.g. settingcontractionpathmethod)
is put on the queue, while anyAPI that gets simulation data from the device blocks until the device has finished running.

Thesynchronousparameter in theDeviceConfigspecifieswhether thebackendwill run insynchronousorasynchronous
mode. Other backends such asCliffordSimulator,TensorNetworkSimulator, and a user-definedCustomBackend can
also utilize the asynchronous executionmode for faster simulations.

8.3 Overviewof IqsConfig

Class to hold configuration data used to configure the FullStateSimulator or user-defined qubit simulator backend.

• Constructor

IqsConfig(int num_qubits = 1,
std::string simulation_type = "noiseless",
bool verbose = false,
std::size_t seed = time(NULL),
bool synchronous = true,
double depolarizing_rate = 0.01);

Specify configuration data for the IQS. Creates an IqsConfigwhich has the following properties:

int num_qubits: Number of qubits in simulation.

std::string simulation_type: Type of simulation to be run. Valid simulation types are:
"noiseless", "depolarizing", and "custom". SeeCustomizable NoiseModeling for de-
tails on the "custom" option.

std::size_t seed: Custom seed for RNG. If no seed is provided, the current time will be used
as the seed.

double depolarizing_rate: Depolarizing rate for noisy simulation.

• isValid()

bool IqsConfig::isValid();

Returns whether the given config instance is valid.

26

Revision 1.0 Intel® QuantumSDK

9.0 Intel®QuantumSimulatorBackend

• Customizable noisemodeling

– Customoperation definition

– Customoperation specification

• UsingCustom IQSNoiseModels in a Program

• Important Points onPerformingNoisy Simulationswith IQS

Intel® Quantum Simulator (IQS) is a full-state simulator working at the qubit level, abstracting the physics of the specific
implementaion. It is availableasastandaloneopen-sourceproject, but it alsocomes fully integratedasoneof thebackends
of the Intel® QuantumSDK [KWPH2022]. IQS is designed to take full advantage of High PerformanceComputing (HPC)
infrastructure andallowsbothmulti-thread (sharedmemory, usingOpenMP)andmulti-processparallelization (distributed
memory, usingMPI) [GHBS2020].

TheAPIhasalreadybeingdescribed in thecontextof full-statesimulators (seeConfiguringtheFullStateSimulator). Here
we focus on the possibility of adding a customizable noisemodel in the simulation. The programmer does not need to be
familiar with IQS, and no IQS code or APIs need to be used.

9.1 Customizable noisemodeling

Theuser cancustomize theactionof everyquantumoperationwithin the templateprovidedbelowbydefiningappropriate
functions. The action of each operation is divided in three parts:

• Pre-operation: Apply one ormore of the following phenomenological noise channels:

– Dephasing channel

– Depolarizing channel

– Amplitude damping

– Bitflip channel

Each effect is characterized by an intensity parameter.

• Operation itself: The choice here is whether to apply the ideal operation or a user-provided process matrix (also
knownas theχmatrix). In the latter case, theuser can include all noise effects directly in theprocessmatrix, and thus
avoidpre-orpost-operationactions. However,wefind it convenient toprovide thepre- andpost-operation templates
to facilitate writing standard noisemodels quickly.

• Post-operation: Similar to thepre-operationcase, theusercanapplyoneormoreof the followingphenomenological
noisemodels:

– Dephasing channel

– Depolarizing channel

– Amplitude damping

– Bitflip channel

Each effect is characterized by an intensity parameter.

27

Revision 1.0 Intel® QuantumSDK

9.1.1 Customoperationdefinition

Thedefinitionofacustomoperation isprovidedbymeansofobjectsof typeiqsdk::IqsCustomOp, whichcanbe initialized
as follows:

IqsCustomOp op = {pre_dephasing, pre_depolarizing, pre_amplitude_damping, pre_bitflip,
process_matrix, label,
post_dephasing, post_depolarizing, post_amplitude_damping, post_bitflip};

where:

• pre_dephasing, pre_depolarizing, pre_amplitude_damping, pre_bitflip are scalar values representing
the intensity of pre-operations.

• process_matrix is astd::vector<std::complex<double>> in row-major format. When theoperation is ideal, one
can simply use an empty vector as process_matrix.

• label is a string used as unique tag for the process matrix. If multiple operations use the same process matrix (for
example, theCZgate on different pairs of simulated physical qubits), assigning the same label reduces thememory
and computation by using a single processmatrix.

• post_dephasing, post_depolarizing, post_amplitude_damping, post_bitflip are scalar values repre-
senting the intensity of post-operations.

If the complete operation is noiseless, one can simply use the global object:

iqsdk::k_iqs_ideal_op = {0, 0, 0, 0, {}, "ideal", 0, 0, 0, 0}

already defined in the header quantum_full_state_simulator_backend.h.

9.1.2 Customoperation specification

While the subsection above explained how to define a single custom operation, we still need to specify the behavior of a
custom action. For example, onemay want to return different IqsCustomOp objects for the same gate type depending on
the simulated physical qubit as a way of having the noise reflect that of a realistic, inhomogeneous device.

Theuserneeds towritea function foreveryquantumoperation returning theappropriateIqsCustomOpobject for thegiven
parameters of the quantum operation. For example, onemaywant to use a simplified noisemodel for the one-qubit gates
by expressing them as ideal gates followed by depolarization. At the same time, they may want to use a process matrix
describing the action of the two-qubit CZ gates. One may even use different process matrices depending on the qubits
involved in the gate.

In a simple example, a customCPhase operationwith a 10%chance of a dephasing error prior to the gate executingwould
be defined as:

iqsdk::IqsCustomOp CustomCPhaseRot(unsigned q1, unsigned q2, double g) {
return {0.1, 0, 0, 0, {}, "cphase_dephasing", 0, 0, 0, 0};

}

9.2 UsingCustom IQSNoiseModels in aProgram

To enable the IQSwith a customizable noisemodel, an IqsConfig should be declaredwith "custom".

iqsdk::IqsConfig custom_iqs_config(N, "custom");

where N is the number of qubits. Then, associate the desired functions to the customizable actions:

28

Revision 1.0 Intel® QuantumSDK

custom_iqs_config.PrepZ = CustomPrepZ;
custom_iqs_config.RotationXY = CustomRotXY;
custom_iqs_config.CPhaseRotation = CustomCPhaseRot;

Here, custom_iqs_config.<name> are set to user-defined functions with the following signatures:

iqsdk::IqsCustomOp PrepZ(unsigned qubit);
iqsdk::IqsCustomOp MeasZ(unsigned qubit);
iqsdk::IqsCustomOp RotationXY(unsigned qubit, double phi, double gamma);
iqsdk::IqsCustomOp RotationZ(unsigned qubit, double gamma);
iqsdk::IqsCustomOp ISwapRotation(unsigned qubit_1, unsigned qubit_2, double gamma);
iqsdk::IqsCustomOp CPhaseRotation(unsigned qubit_1, unsigned qubit_2, double gamma);

Not all of the functions need to be defined. If they are not defined, they will default to the ideal operation. Since the cus-
tomizable noise model is compatible with full-state simulators, the IqsConfig is passed to an instantiation of a full-state
simulator.

iqsdk::FullStateSimulator custom_iqs_device(custom_iqs_config);

if (iqsdk::QRT_ERROR_SUCCESS != custom_iqs_device.ready()) return 1;

Acomplete code example can be found in the custom_backend.cpp sample described inCodeSamples.

9.3 ImportantPoints onPerformingNoisySimulationswith IQS

The Intel® Quantum SDK allows noisy simulations of qubits with the Intel® Quantum Simulator as the backend. Noise is
incorporated during a simulation via stochastic injection of noise based on the specified noise intensity parameter. Thus,
it is necessary to aggregate results from multiple simulations to accurately simulate a noisy qubit system. Given that the
stochastic nature is realized via the initial seed, it is imperative that the user instantiates the backend with a different seed
each time the samequantumcircuit is run during sample collection. By processing the resulting samples, the probabilities
from noisy simulations can be reconstructed. This sampling process can be made efficient by using the asynchronous
mode of simulations, wherebymultiple simulator backends initialized with different seeds are used to simultaneously per-
form simulations depending on the availablememory and processing capability.

29

Revision 1.0 Intel® QuantumSDK

10.0 QuantumDotSimulatorBackend

• Simulation ofQubits

• Rotating vs. Laboratory Frame

• Usage in conjunctionwith getAmplitudes()

• UsingQuantumDot Simulator in a Program

• Important Points onQuantumDot Simulator

– Tip for Faster Simulations

• CompilationwithQuantumDot Simulator as theComputingBackend

QuantumDot Simulator (QD Simulator) is a simulator reproducing the physics of a QuantumDot (QD) qubit chip in soft-
ware. Simulationofquantumsystems isafieldofgreat importance [GEAN2014]. Inquantumcomputing, therearebenefits
in accurately simulating quantum systems for the purpose of evaluating their strengths andweaknesses for use as qubits.
Simulations helpdrivedesigndecisionson the critical characteristics for physical realizations [KPZC2022]. Though there
are many ways of performing quantum simulations, here we focus on Schrodinger evolution for simulating quantum dot
qubits. This QD Simulator is used as the realistic qubit simulation backend of the Intel® Quantum SDK [KWPH2022]
[KPZC2022].

10.1 SimulationofQubits

Qubits are quantum mechanical systems with two distinct states, typically labeled |0⟩ and |1⟩ [BaSR2021], [NICH2010].
The current backend for quantum dot qubits utilizes qubit states encoded in the spin degree of freedom of single elec-
trons [ZKWL2022]. These qubits are typically referred to as Loss-DiVincenzo qubits [LODI1998]. Abstract qubits are
simple systems with only two isolated levels. However, practical quantum systems are never quite as simple, with careful
consideration required for selection of a suitable system to formaqubit [DIVI2000]. These requirements and the thought
process behind the selection of some currently favored types of qubits were reviewed in [LJLN2010]. One important fact
common toall of thesequbits is thepresenceof acharacteristic resonance frequencyornatural frequency. The frequency
usually refers to the energy difference (expressed as a frequency) between the qubit levels (computational states) of the
quantum system being considered for digital gate-based quantum computing. Resonance frequencies for most types of
qubits are 1 GHz to 30GHz, though there are exceptions withmuch higher or lower frequencies.

Whenusing theQDSimulatorbackend, thesimulationgoes through thequbit control processor, thecontrol electronics, to
the simulated quantumdot qubits. The qubit control processor takes the compiled instruction sequence and the platform
configuration files to generate the corresponding micro-instructions for the control electronics. The control electronics
generate theRFandDCpulseswith thecorrect parameters to interactwith thequantumdotqubit chip. All the control flow
and operations aremodeled in simulation.

The primary supported gates areRxy (θ, ϕ), referred to in code as RXY:

Rxy (θ, ϕ) = cos
(
θ

2

)
Î − i sin

(
θ

2

)[
X̂ cosϕ+ Ŷ sinϕ

]
=

[
cos

(
θ
2

)
−i sin

(
θ
2

)
[cosϕ− i sinϕ]

−i sin
(
θ
2

)
[cosϕ+ i sinϕ] cos

(
θ
2

)]

30

Revision 1.0 Intel® QuantumSDK

and the two-qubit operationCZ :

CZ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

Thephysical implementationofCZ involves theuseof a “DecoupledCZoperation” [WAPK2018]. All theother operations
available via the Intel® QuantumSDKwill be constructed using these operations.

10.2 Rotatingvs. LaboratoryFrame

Typically, if time dependence of the system can be set aside, simulation of quantum systems is convenient and fast. For
certain quantum systems, it is possible to craft unitary transformations to analytically discard the overhead due to the res-
onance frequency of each qubit [SURI2015] [STEC2020] [NICH2010]. This is typically referred to asmoving into the ro-
tating frame of the qubit. This terminology is apt since the qubit is always precessing and incrementing its phase around
the z-axis at a rate given by its resonance frequency. A further analytical approximation, known as the rotating wave ap-
proximation [ZHSD2020], is usually required tomake the time-dependence fully transparent. These transformations and
approximationsusually have theeffect of drastically reducing theburdenon simulation resources, sinceevolutionwill then
happen at kHz orMHz scales instead of GHz scales.

In the case of QD Simulator [KPZC2022], neither the rotating frame nor the rotating wave approximation is used. Cur-
rently, the evolution of the coupled multi-quantum-dot system (faithful to Intel®’s quantum hardware) is performed in the
laboratory frame. The laboratory frame is the original environment of the quantum system, where the natural frequencies
of the qubits are fully visible. This alsomeans that the qubits are constantly accumulatingZ-phases as is the case for real
qubits.

10.3 Usage in conjunctionwith getAmplitudes()

TheSchrodingerevolution iscarriedout inaHilbert space thatencompassesseveral energy levelsperquantumdot, toen-
sure accuratemodelingof the interactions. SinceQDSimulator is performinga full quantumsimulation, users haveaccess
to the fully evolved state vector (following truncation to the computational subspace) at the end of a simulation. As evolu-
tion ishappening in the lab frame, theprobabilityamplitude results returned fromFullStateSimulator::getAmplitudes
will include the extraZ-phases that were accumulated due to natural precession, and the extra phases will be dependent
on the resonance frequencies as well as the full evolution history during algorithm execution. Since this detailed history is
unavailable to users, the use of the latter function for full state characterization is discouraged.

This further highlights how closely the simulations with QD Simulator reflect actual quantum dot qubits. With physical
qubits it is impossible to obtain actual probability amplitudes after evolution. Just aswith physical qubits, techniques such
as quantum state tomography [PARE2004] are required to reconstruct the full state when usingQDSimulator.

10.4 UsingQuantumDotSimulator in aProgram

To enableQDSimulator, a DeviceConfig should be declaredwith "QD_SIM".

iqsdk::DeviceConfig qd_sim_config("QD_SIM");

Then, create a FullStateSimulatorwith theQDSimulator DeviceConfig:

iqsdk::FullStateSimulator qd_sim_device(qd_sim_config);

Once the simulator is configured, then the quantum_kernel functions can be called to perform simulations on the QD
Simulator.

31

Revision 1.0 Intel® QuantumSDK

10.5 ImportantPoints onQuantumDotSimulator

Because theQDSimulatorbehavesmore like realistic hardware, it carries a few limitationson thekindsofquantum_kernel
functions that can be used in conjunction with it. Specifically, it expects that each quantum_kernel in main()will consist
of a workloadwhere

• All the qubits start in the |0⟩ state

• A sequence of 1-qubit and 2-qubit operations are applied

• The final probabilities or amplitudes for each basis state are retrieved.

There is no continuity between quantum_kernel functions calledwithin main(), because each time a quantum_kernel is
called within main(), theQDSimulator history is reset and all qubits will start in the |0⟩ state.

If subquantum_kernel functionsare tobeused, theymustbespecifiedoutsideofmain()andcombinedasdesiredwithin
a single quantum_kernel, and then called in main().

MeasZ operation is not advised to be used with the QD Simulator. This operation is designed to collapse the target qubit,
and to store the result in a cbit. Using this operation will set the cbit according to the probability distribution associated
with the quantum state at the end of the quantum_kernel, and will not collapse the state. In addition, MeasX and MeasYwill
likely give incorrect results.

Prepare operations (e.g. PrepZ) should be reserved for use either at the beginning of a quantum_kernel, or not used
at all. Using PrepZ should provide benefits with compiler optimizations when using the -O1 flag. Not using PrepZ at the
beginningwill not impact theQDSimulator, since thequbitswill always be reset to |0⟩when starting a simulation. However,
using PrepZ or MeasZ in themiddle of simulating a quantum_kernel onQDSimulator will result in unexpected behavior.

Note thatZ rotations are currently not natively enabled for the hardware in simulation. Hence a user wishing to useRZ(θ)
can expect the compiler to implement it in one of twoways:

• Ifusingcompileroptimization(-O1), then thecompilerwill absorballRZoperations intoothersingle-qubitoperations.

• If not using compiler optimization (-O0), the RZ operation (or related operations such as S, T, etc.) will be explicitly
decomposed into RXY operations as follows:

quantum_kernel void rzDecomp (qbit qb, double angle) {
RXY(qb, M_PI, 0.5 * M_PI);
RXY(qb, M_PI, 0.5 * angle - 0.5 * M_PI);

}

10.5.1 Tip for FasterSimulations

Avoid all operations on qubits that have no gates applied. Any operations, including prepare (PrepZ), applied to a qubit
causes it to be simulated. Thismeans that even if a qubit only has PrepZ& MeasZ applied to it, it will still be simulatedwhich
adds overhead and increases runtime.

10.6 CompilationwithQuantumDotSimulator as theComputingBackend

ToenableQDSimulator, a platform configuration file that describes the configuration of quantumoperations and the con-
nectivity of the qubits must be given to the compiler. Users also need to specify flags and arguments for placement and
scheduling. The following example assumes the SDK location has already been added to the shell path,

$ intel-quantum-compiler -c /<path to config file>/intel-quantum-sdk-QDSIM.json -p trivial -S greedy qd_
↪→GHZ.cpp

32

Revision 1.0 Intel® QuantumSDK

11.0 CliffordSimulatorBackend

• CliffordOperations

• UsingCliffordSimulator in a Program

• Important Points onCliffordSimulator

– Using the Pauli ErrorModel

– Collecting State Information

– Tip for Faster Simulations

• CompilationwithCliffordSimulator as theComputingBackend

The Clifford Simulator is a specialized qubit simulator which can process and evaluate the outcome of quantum circuits
composed only of Clifford gates and Pauli measurements. The Clifford group [HDER2006] can be broadly described as
the group which transforms Pauli operators to Pauli operators. It is well known that Clifford operations are not universal
for quantum computation, and that they are efficiently simulatable with classical computers [GOTT1998] [NEST2010]. In
this sense, theCliffordSimulator is not a general purposequbit simulator. However,QuantumErrorCorrection (QEC) is an
application area that makes extensive use of Clifford operations. Thus for studying QEC or related applications involving
only Clifford operations, theClifford Simulator can serve as a powerful tool due to its scalability, lowmemory footprint, and
focus on application of Clifford operations and Pauli measurements.

TheCliffordSimulator adapts themethodsof thePauli Tableau [SCGO2004] using a sparse representationof theunder-
lying Pauli operators to form the tableau. This means there is no cost to unused qubits in the tableau as the data structure
expands as gates are applied.

11.1 CliffordOperations

The Clifford group is super-exponentially large in the number of qubits. However, it is possible to efficiently decompose
any arbitrary Clifford unitary to the one-qubit gatesH, S, and the two-qubit gate CNOT [HDER2006]. The gates in their
matrix representations are given below for convenience.

H =
1√
2

[
1 1
1 −1

]
S =

[
1 0
0 i

]

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

The supported gates of the Intel® QuantumSDKwhich are allowed for the Clifford Simulator are:

• Hadamard (H)

• Pauli X (X)

• Pauli Y (Y)

• Pauli Z (Z)

33

Revision 1.0 Intel® QuantumSDK

• Phase (S)

• Phase Inverse (Sdag)

• X axis Rotation (RX) For angles 0, π/2, π, 3π/2

• Y axis Rotation (RY) For angles 0, π/2, π, 3π/2

• Z axis Rotation (RZ) For angles 0, π/2, π, 3π/2

• Controlled Z (CZ)

• CNOT

• SWAP

• PrepZ

• PrepX

• PrepY

• MeasZ

• MeasX

• MeasY

• CPhase for angle π

• XY-plane Rotation (RXY) for both (theta, phi) angles in {0, π/2, π, 3π/2} and the angle pairs (π, π/4) and (π, 3π/4)

• SwapA for angle π

11.2 UsingCliffordSimulator in aProgram

To enable the Clifford Simulator, a CliffordSimulatorConfig should be declared as shown below. The seed is optional
(defaults to a seed based on the time), but should be user-specified especially if modeling the effects of noise.

iqsdk::CliffordSimulatorConfig clifford_config(seed);

Then, create a CliffordSimulatorwith the CliffordSimulatorConfig, and call the ready()API for the simulator just
before use; seeAPI Reference for description.

iqsdk::CliffordSimulator clifford_device(clifford_config);
clifford_device.ready();

Once the simulator is configured and ready() is called, then the quantum_kernel functions can be called to perform sim-
ulations on theClifford Simulator.

34

Revision 1.0 Intel® QuantumSDK

11.3 ImportantPoints onCliffordSimulator

11.3.1 Using thePauli ErrorModel

The Clifford Simulator includes a built-in Pauli error model which is off by default. To turn it on, set the flag for the passed
CliffordSimulatorConfig:

iqsdk::CliffordSimulatorConfig clifford_config(seed);
clifford_config.use_errors = true;

All gate errors are based on the Pauli Twirling Approximation [GEZH2013] where the exact gate action is applied to the
simulator, followed by a subset of Pauli operators with probability as defined by the parameters of the error model. The
parameters of the error model are specified gate-by-gate. These are collectively held in CliffordSimulatorConfig::
error_rateswhich is of type struct iqsdk::ErrorRates, and contains themembers:

• iqsdk::ErrSpec1Q prep

• iqsdk::ErrSpec1Q meas

• iqsdk::ErrSpec1Q xyrot

• iqsdk::ErrSpec1Q zrot

• iqsdk::ErrSpecIdle idle

• iqsdk::ErrSpec2Q cz

• iqsdk::ErrSpec2Q swap

where struct iqsdk::ErrSpec1Q, struct iqsdk::ErrSpec2Q and struct iqsdk::ErrSpecIdle represent three
Pauli twirling error models.

• iqsdk::ErrSpec1Q is a general single qubit error model where the probability for each of the single-qubit Pauli op-
erators X, Y, Z can be individually specifed so long as their sum is less than 1. This can be set via the constructor
iqsdk::ErrSpec1Q(double x_rate, double y_rate, double z_rate).

• iqsdk::ErrSpec2Q is a more specific two-qubit error model based on the non-ideal CZ gate as described in
[SJDL2003]. It is specified by an off-diagonal switchingprobability e, an off-diagonal phase phi and control-phase
error angle delta. Theseparameters canbe set via the constructor iqsdk::ErrSpec2Q(double e, double phi,
double delta).

• iqsdk::ErrSpecIdle is a single qubit decoherence model (α = 0 from [GEZH2013]). Unlike the other two which
are a fixed amount of error for each gate, thismodel is time-dependent and is used for idle error. It is specified by two
time-like parameters, T1 representing the depolarization rate and T2 which represents the dephasing rate. These
parameters can be specified via the constructor iqsdk::ErrSpecIdle(double T1, double T2).

For the sakeof generating idle error, theCliffordSimulator assumesas-soon-as-possible schedulingof thegates, and from
this, applies idle error based on gaps in this scheduling. For this purpose, gate times can be independently specified as
CliffordSimulatorConfig::gate_timeswhich is of type iqsdk::GateTimes and contains the data:

• double prep

• double meas

• double xyrot

• double zrot

• double idle

• double cz

• double swap

35

Revision 1.0 Intel® QuantumSDK

11.3.2 CollectingState Information

Since theClifford simulator is not a full state simulator, theprimaryAPI function to retrieve results of quantumcircuit execu-
tion is getExpectationValue. With this function, the user can specify a Pauli string (e.g. XX, YZ) for their desired observ-
able, and the simulator will directly return the expectation value. No state collapse is performedwhen this API is called.

Such observables are specified by passing a std::vector of std::reference_wrapper<qbit>, representing the op-
erator’s support and a std::string containing only characters from the set {'I', 'X', 'Y', 'Z'} representing the
single-qubit operator type asmatched to the qubit support. A detailed example for the usage can be found in the example
api_Simulator_clifford_test.cpp (seeSamples).

Aswith the Intel®QuantumSimulator, it is also possible to utilize individualmeasurements (MeasZ, MeasX, or MeasY) to sim-
ulate single-shot results when using the Clifford simulator. Use of these measurement gates do result in state collapse.
This mode of collecting results is crucial in modeling applications such as Quantum Error Correction as it captures cor-
relation not represented through the getExpectationValue()API. The single-shot results can then be aggregated and
analyzed. This is the most straight forward way to compare with execution on the Intel® Quantum Simulator or Tensor
Network simulator.

11.3.3 Tip for FasterSimulations

In the case ofmodeling noise, it is necessary to use a different seedwhen initializing the CliffordSimulatorConfig. See
ImportantPointsonPerformingNoisySimulationswith IQS for themotivationbehind this. Aconvenientmethod to follow
could be to create configurationswith different seeds, and then spawn simulator instances based on each of the uniquely
seeded configurations, based on the number of samples required. If the running mode for the simulators is set to asyn-
chronous, thenmultiple simulators can be executed in parallel, and results collected later. Using the wait() simulator API
ensures that thegivensimulatorhascompletedexecutionbeforemovingon to thenextpartof theprogram. SeeExecution
Options.

In theasynchronousoperationmode, careshouldalsobe takenwhenwriting tocbitvariablesduringmeasurements. One
possibility to avoid overwriting the same variables is to set up a multidimensional array of cbit type. With this technique,
each simulator will have its own dedicated set of cbit variables that will be populated during execution. If multiple sets of
cbits are required, thedimensionality of the array canbe further extended. Another possibility is to use localcbit variables
and have thembe returned for further analysis from the quantum_kernel function upon completion.

Adetailed example for the aboveusage scenarios canbe found in the exampleiqs_vs_clifford_comparison.cpp (see
Samples).

A detailed example of these methods for QEC scaling simulation can be found in the example rep_code_clifford.cpp
(seeSamples).

11.4 CompilationwithCliffordSimulator as theComputingBackend

TheCliffordSimulator can accommodate arbitrary qubits connectivities for compilation. The default connectivity is all-to-
all (fully-connected) with support for up to 256 qubits. See the Configuration files section for other available configura-
tions. Also, see theScheduling section on how to enforce connectivity constraints during compilation.

36

Revision 1.0 Intel® QuantumSDK

12.0 TensorNetworkBackend

The Tensor Network (TN) backend is a qubit simulator that represents a quantum circuit as a network of Tensors. Unlike
some Tensor Networks which take on a specific form (e.g. Matrix Product State (MPS) or Tree Tensor Network (TTN)),
theTensorNetworkweuse can take on an arbitrary geometry based on the simulated circuit. With the exception of calling
StatePreparation&Measurement (SPAM)operations, running aquantum_kernelwill build up theTensorNetworkwhich
isan inexpensiveoperation. SinceSPAMoperationsare treatedasmid-circuitoperations, it is recommended toavoid them
unless you specifically are intending to see theeffects ofmid-circuitmeasurements since theyhaveahighcost toperform.

The most cost-effective way to sample an algorithm is to call getSamples(); unlike explicit SPAM gates, getSamples()
will not collapse the state.

The part of the Tensor Network simulation that requires the most computation is when the Tensor Network requires a
contraction. Before a contraction, the TN simulator will do a search to try to find the best contraction path. Then, us-
ing the path found it will perform the contraction to the desired result. Finding a good contraction path can in some
cases drastically reduce the amount of computation needed to do the contraction. Depending onwhich API is called (i.e.
getProbabilities() or getExpectationValue()), a different contraction will be performed to get the result.

Tensor Networks are best at simulating circuits that have a low tree-depth.

When implementing variational quantum algorithms, such as a Quantum Approximate Optimization Algorithm (QAOA)-
style algorithm, it is best to use a new instantiation of the Tensor Network object each time. Simulating a circuit twice with
different parameters is inefficient:

1. The TNwill need to reset the quantum state with expensivemid-circuit preparations.

2. During the second contraction, the tensors from both runs of the ansatz will be contracted.

Ingeneral, theuser should takecare inmaking sure that the result theyare trying toget out of theTensorNetwork simulator
is reasonable. Depending on the quantum circuit, retrieving amplitudes of a few states in a 100-qubit algorithm may be
possible, but retrieving all of themwould not be.

12.1 BriefOverviewof TensorNetworkConfig

Class to hold configuration data specifically used to configure the TensorNetworkSimulator.

• Constructor

TensorNetworkConfig(bool verbose = false,
bool synchronous = true);

Specify configurationdata for theTNbackend. Creates aTensorNetworkConfigwhichhas the following
properties:

bool verbose: Verbosity of the simulator.

bool synchronous: Whether the simulator is synchronous.

• isValid()

bool TensorNetworkConfig::isValid();

Return whether the given config instance is valid.

37

Revision 1.0 Intel® QuantumSDK

TheTensorNetworkSimulator is the class used for doingTensorNetwork simulation. TheTensorNetworkConfig initial-
izes the Tensor Network simulator.

The TensorNetworkSimulator can use anyAPI from the FullStateSimulator.

As an example for Tensor Network Simulator-specific API details:

QssMap<double> TensorNetworkSimulator::getProbabilities(
std::vector<std::reference_wrapper<qbit>>& qids,
std::vector<QssIndex> bases,
double threshold=-1);

getProbabilities() returns the conditional probabilities of a subset of the qubits (qids) used in the simulation. If bases
is empty, then the Tensor Network will perform a single contraction directly to the tensor network of all conditional proba-
bilities of the given qubits. Otherwise, for each QssIndex in the given bases, a contraction is done to compute the specific
conditional probability of the specified basis.

Three additional APIs are available for the Tensor Network Simulator.

• draw() :

void draw();

Creates a graphical representation of the Tensor Network. The graphic will appear in a window.

• getExpectationValue() :

double getExpectationValue(
std::vector<std::reference_wrapper<qbit>> &qids, std::string pauli_string);

Returns the expectation value of the given Pauli operator pauli_string.

• setContractionPathOptimizer():

void setContractionPathOptimizer(std::string optimizer_method);

Sets the contraction path optimizer to optimizer_method. The default optimizer is "greedy".
Valid options are "optimal", "dynamic-programming", "branch", "greedy", "random-greedy",
"random-greedy-128", "auto", and "auto-hq". See https://optimized-einsum.readthedocs.io/en/
stable/path_finding.html for more details.

38

https://optimized-einsum.readthedocs.io/en/stable/path_finding.html
https://optimized-einsum.readthedocs.io/en/stable/path_finding.html

Revision 1.0 Intel® QuantumSDK

13.0 CustomBackend

The custom backend feature allows a user to use the Intel® Quantum Compiler and Quantum Runtime (QRT) with their
own simulator.

Users will need to include the <quantum_custom_backend.h> header file to use theCustomBackend.

In the header file there is a CustomInterface class and a CustomSimulator class. The CustomInterface class is
an abstract base class where the user can implement their own simulator. The CustomSimulator class is similar to
FullStateSimulator, TensorNetworkSimulator, or CliffordSimulator classes in that this is the class representing
the quantumdevice.

13.1 CustomInterface

The CustomInterface has the following abstract methods that must be implemented by the user in any derived class:

• RXY()

void RXY(qbit q, double theta, double phi) = 0;

The function called by the QRT to apply a Rotation-in-the-XY-plane (RXY, RXYMatrix Representation)
gate.

• RZ()

void RZ(qbit q, double angle) = 0;

The function called by theQRT to apply a Rotation-around-Z-axis (RZ) gate.

• CPhase()

void CPhase(qbit ctrl, qbit target, double angle) = 0;

The function called by theQRT to apply a Controlled-Phase (CPhase) gate.

• SwapA()

void SwapA(qbit q1, qbit q2, double angle) = 0;

The function called by theQRT to apply a Swap-Alpha (SwapA) gate.

• PrepZ()

void PrepZ(qbit q) = 0;

The function called by theQRT to prepare the specified qubit in the Z basis (PrepZ).

• MeasZ()

cbit MeasZ(qbit q) = 0;

Thefunctioncalledby the runtime tomeasure thequbit in theZbasis (MeasZ).Thereturnvalue is the result
of themeasurement. TheQRTwill map themeasurement into the appropriate bool (or cbit) variable.

The user is free to implement any other functions that theymaywish to call in this class aswell. In addition, they can imple-
ment a constructor that takes in any number of arguments. Also, the base class does not include utilities tomanage a state
vector or other representation of the quantum state. The user will also need tomanage this information if it is needed.

39

Revision 1.0 Intel® QuantumSDK

13.2 CustomSimulator

The user needs to register their simulator with theQRT. The following example assumes that the usermade a class called
MyCustomBackend that is publicly derived from CustomInterface.

class MyCustomBackend : public iqsdk::CustomInterface

The user will then need to create a device_id which is a string that will refer to the device type, which must not be an
identifier for an already defined backend. Existing reserved identifiers include "IQS", "Tensor_Network", "QD_SIM", and
"Clifford". Then they will need to call iqsdk::CustomSimulator::registerCustomInterface<MyCustomBackend>
(device_id, args...)

The templateparameter toregisterCustomInterface() is theclass for the simulator, the first parameter is thedevice_-
id, and the rest of the parameters get passed into the constructor for MyCustomBackend (can be zero parameters).

As an example, if MyCustomBackend has a constructor taking in a single integer, the following is possible:

std::string device_id = "my_custom_device";
iqsdk::QRT_ERROR_T status = iqsdk::CustomSimulator::registerCustomInterface<MyCustomBackend>(device_id, 3);

Then, the user can use iqsdk::DeviceConfig tomake an instance of the device.

iqsdk::DeviceConfig new_device_config(device_id);
iqsdk::CustomSimulator generic_simulator(new_device_config);

As usual, you call ready() to indicate the next quantum kernel gets run on the custombackend.

status = generic_simulator.ready();

To get access to the custom simulator class, you can call getCustomBackend().

iqsdk::CustomInterface *custom_interface = generic_simulator.getCustomBackend();

Then you can dynamic cast it to your class.

MyCustomBackend *custom_simulator_instance = dynamic_cast<MyCustomBackend *>(custom_interface);

Here, after running a quantum kernel, you can call any function you have implemented for the class.

Alternatively, for single use purposes, it is possible to register and get a generic simulator in a single call.

iqsdk::CustomSimulator *generic_simulator = iqsdk::CustomSimulator::createSimulator<MyCustomBackend>("my_
↪→custom_device", 3);

13.3 Methods

• getCustomBackend()

iqsdk::CustomInterface *getCustomBackend();

Gets the custombackend stored in the CustomSimulator object.

• registerCustomInterface()

40

Revision 1.0 Intel® QuantumSDK

template <typename T, typename... Ts>
static QRT_ERROR_T registerCustomInterface(std::string device_id,

Ts... args);

Registers the custombackendwith theQRT.

• createSimulator()

template <typename T, typename... Ts>
static CustomSimulator *createSimulator(std::string device_id, Ts... args);

Registers and creates a custombackend.

41

Revision 1.0 Intel® QuantumSDK

14.0 Python Interface

• Introduction

• Python viaOpenQASM2.0

– Procedure

* Step 1: Write quantumprograms

* Step 2: Write the Python script

• Compiling quantum_kernel to Shared Library (.so)

– Procedure

* Step 1: Write quantum_kernel functions inC++

* Step 2: Compile the source program to .so

* Step 3: Write the Python script which calls theAPIs

– How to get cbit values after running quantum_kernel functions?

– How to get references to qbit variables to pass to runtimeAPIs?

– Python objects and the correspondingC++ objects

– C++ classes that can be imported

– C++ functions that can be imported

– Usage examples

• Using aCustomBackendwith the Python Interface

• KnownLimitations of the Python Interface

14.1 Introduction

The Python Interface provides users a way to run the Intel® Quantum SDK using Python3, through the intelqsdk.
cbindings library. There are twomodes for interactingwith Python:

1. Writequantumcircuits inOpenQASM2.0–write aquantumcircuit, andconvert that toa .cppfile that hasquantum_-
kernel functions, compile, anduse theintelqsdk.cbindings library to run thequantum_kernel functionsandcall
APIs, all fromwithin Python.

2. Write quantum_kernel functions in C++, compile to a .so file, and call APIs fromPython.

The Python Interface is installed in a virtual environment placed alongside the compiler in the virtualenv directory. To
run Python scripts using the intelqsdk.cbindings library, use either

$ source <path to Intel Quantum SDK>/virtualenv/bin/activate

or call the script with python3 located at

42

Revision 1.0 Intel® QuantumSDK

$ <path to Intel Quantum SDK>/virtualenv/bin/python3

14.2 PythonviaOpenQASM2.0

14.2.1 Procedure

Step 1: Write quantumprograms

Using OpenQASM2.0, or alternatively, transpile the Python program into OpenQASM2.0, with the user’s choice of quan-
tumprogrammingpackage. As longas theprogramcanbe turned intoa.qasmfile, theBridge librarywill beable to translate
it to a C++ source file for the Intel® QuantumSDK.

At the beginning of the Python script, include the following lines:

from intelqsdk.cbindings import *
loadSdk("/path/to/file.so", sdk_name)

loadSdk``needs to be called before calling other functions or creating objects from ``intelqsdk.
cbindings library.

Thesdk_name is theuser-created referencestringgiven to this.so library. Later on,whencalling functions from this library
or referencing cbit/qbit variables, pass this identifier to indicatewhich library to use. Users can also accessmultiple .so
libraries to call functions or reference cbit/qbit variables from each library.

Step2: Write thePython script

First, import several modules:

import intelqsdk.cbindings
from openqasm_bridge.v2 import translate

Next, use Bridge to translate theOpenQASMfile to C++:

with open('example.qasm', 'r', encoding='utf8') as input_file:
input_string: str = input_file.read()

translated: list[str] = translate(input_string, kernel_name='my_kernel')

with open('example.cpp', 'w', encoding='utf8') as output_file:
for line in translated:

output_file.write(line + "\n")

Now, compile the translatedC++ code:

compiler_path = "<path to Intel Quantum SDK>/intel-quantum-compiler"
intelqsdk.cbindings.compileProgram(compiler_path, "example.cpp", "-s", sdk_name)

From here, the user can start calling APIs to set up the simulator and run the quantumprogram. For example,

iqs_config = intelqsdk.cbindings.IqsConfig()
iqs_config.num_qubits = 5
iqs_config.simulation_type = "noiseless"
iqs_device = intelqsdk.cbindings.FullStateSimulator(iqs_config)
iqs_device.ready()

(continues on next page)

43

Revision 1.0 Intel® QuantumSDK

(continued from previous page)

intelqsdk.cbindings.callCppFunction("my_kernel", sdk_name)
qbit_ref = intelqsdk.cbindings.RefVec()
for i in range(5):

qbit_ref.append(intelqsdk.cbindings.QbitRef("q", i, sdk_name).get_ref())
probabilities = iqs_device.getProbabilities(qbit_ref)
intelqsdk.cbindings.FullStateSimulator.displayProbabilities(probabilities, qbit_ref)

14.3 Compiling quantum_kernel toSharedLibrary (.so)

14.3.1 Procedure

Step 1: Write quantum_kernel functions inC++

Given aC++ source file, quantum_algorithm.cpp,

Step2: Compile the sourceprogram to .so

Compile the source program using the -s flag to compile to <source_program>.so. For example,

$ <path to Intel Quantum SDK>/intel-quantum-compiler -s quantum_algorithm.cpp

Alternatively, in the Python script, compile and load the .so file. It is assumed that the output directory is the same as the
directory of the C++ file when loading the .so file.

intelqsdk.cbindings.compileProgram("<path to Intel Quantum SDK>/intel-quantum-compiler", "path/to/cpp_file
↪→", "flags", sdk_name)

Step3: Write thePython scriptwhich calls theAPIs

Next, set up a simulation device by using the following template:

number of qubits
N = 4
iqs_config = IqsConfig()
set the number of qubits for the simulation config
iqs_config.num_qubits = N
choose the type of noise model
iqs_config.simulation_type = "noiseless"
iqs_config.synchronous = False
iqs_device = FullStateSimulator(iqs_config)
iqs_device.ready()

Then, create a Python equivalent of the C++ objects used by intelqsdk.cbindings:

qids = RefVec()
cbits = []
for i in range(N):

cbits.append(CbitRef("CReg", i, sdk_name))
qids.append(QbitRef("QubitReg", i, sdk_name).get_ref())

Call APIs which form the quantum circuit:

44

Revision 1.0 Intel® QuantumSDK

Prepare all qubits in the 0 state
callCppFunction("prepZAll", sdk_name)
Apply QFT
callCppFunction("qft", sdk_name)
Apply the inverse of QFT, effectively applying an Identity
callCppFunction("qft_inverse", sdk_name)

Call APIs to get the probabilities andmeasurement results:

probs = iqs_device.getProbabilities(qids)
amplitudes = iqs_device.getAmplitudes(qids)
callCppFunction("measZAll", sdk_name)

print("\nMeasurements:")
for cbit in cbits:

print(cbit.value())

print("\nProbabilities printed with QRT API")
Expect to see |0000> to have a probability of 1
since an identity has been applied
FullStateSimulator.displayProbabilities(probs, qids)

Required wait since device is asynchronous
iqs_device.wait()

14.3.2 How toget cbit values after running quantum_kernel functions?

Create a CbitRef object. For example, if there are the following global variables in the C++ source:

cbit c0;
cbit c_array[3];

then in the Python script, declare the following two variables:

cbit_c0 = intelqsdk.cbindings.CbitRef("c0", sdk_name) # This refers to c0
cbit_c_array = intelqsdk.cbindings.CbitRef("c_array", 1, sdk_name) # This refers to c_array[1]

To get the value of cbit, call the value() function on the CbitRef object:

bool_val = cbit_c0.value() # returns a bool representing the value of the cbit

14.3.3 How toget references toqbit variables topass to runtimeAPIs?

Create an QbitRef object. For example, if there are the following global variables in the C++ source:

qbit q_array[3];
qbit q0;

In the Python script, declare the following two variables:

qbit_q0 = intelqsdk.cbindings.QbitRef("q0", sdk_name) # This refers to q0
qbit_q_array = intelqsdk.cbindings.QbitRef("q_array", 2, sdk_name) # This refers to q_array[2]

Then qbit_q0.get_ref() returns an Python object that can be used as a std::reference_wrapper<qbit>.

Alternatively, make a RefVec to get a Python object that can be used as a std::vector<std::reference_-
wrapper<qbit>>. For example,

45

Revision 1.0 Intel® QuantumSDK

refvec = intelqsdk.cbindings.RefVec()
refvec.append(qbit_q0.get_ref())
refvec.append(qbit_q_array.get_ref())

Also, qbit_q0.value() returns the physical qubit mapped to by this programqubit.

print(qbit_q0.value())

14.3.4 Pythonobjects and the correspondingC++ objects

DoubleVec - std::vector<double>
ComplexVec - std::vector<std::complex<double>>
SamplesVec - std::vector<std::vector<int>>
SampleVec - std::vector<int>
BoolVec - std::vector<bool>
IntVec - std::vector<int>
RefVec - std::vector<std::reference_wrapper<qbit>>
QssDoubleMap - QssMap<double>
QssComplexMap - QssMap<std::complex<double>>
QssIndexVec - std::vector<QssIndex>
QssUnsignedIntMap - QssMap<std::unsigned int>

14.3.5 C++ classes that canbe imported

QRT_ERROR_T
DeviceConfig
IqsConfig
TensorNetworkConfig
ErrSpec1Q
ErrSpec2Q
ErrSpecIdle
ErrorRates
GateTimes
CliffordSimulatorConfig
QssIndex
Device
FullStateSimulator
CustomInterface
TensorNetworkSimulator
CliffordSimulator

14.3.6 C++ functions that canbe imported

qssMapToVector<double>
qssMapToVector<std::complex<double>>
qssMapVectorToMap<double>
qssMapVectorToMap<std::complex<double>>

46

Revision 1.0 Intel® QuantumSDK

14.3.7 Usageexamples

Suppose the user has an instance of intelqsdk.cbindings.FullStateSimulator called iqs_device:

iqs_device.getProbabilities(qids) # returns a DoubleVec
iqs_device.getAmplitudes(qids) # returns a ComplexVec
iqs_device.getProbabilities(qids, QssIndexVec()) # returns a QssDoubleMap
iqs_device.getAmplitudes(qids, QssIndexVec()) # returns a QssComplexMap
iqs_device.getSamples(num_samples, qids) # returns a SamplesVec
iqs_device.getSingleQubitProbs(qids) # returns a DoubleVec

Example of using amap fromC++:

#-- Iterating through a map in C++ gives a (key, value) pair --#
for prob in iqs_device.getProbabilities(qids, QssIndexVec()):

print(prob.key().getIndex(), prob.data())

14.4 Using aCustomBackendwith thePython Interface

Touse a custombackendwith thePython Interface, create aPythonclass that derives from the CustomInterface class in
the intelqsdk.cbindingsmodule. In this class, implement the RXY, RZ, SwapA, CPhase, PrepZ, and MeasZmethods, and
add a constructor for the Python class.

The following example assumes the user has defined a Python class MySimulator:

custom_device_id = "custom device"
CustomSimulator.registerCustomInterface(MySimulator, custom_device_id, <args>) // args is optional,␣
↪→depends on MySimulator's constructor
config = DeviceConfig(custom_device_id)
device = CustomSimulator(config)

Alternatively, if the user only intends to have one device, use the following shortcut:

device = CustomSimulator.createSimulator(MySimulator, "custom_device", <args>)

Note the difference relative to the C++ interface: instead of the class being a template argument of
registerCustomInterface and createSimulator, it is the first parameter in the Python Interface.

Call the function getCustomBackend() to return the class that the user has created:

sim_object = device.getCustomBackend()

14.5 KnownLimitationsof thePython Interface

• Any variables of cbit typemust be global in order to access them.

• The C++ functions, including quantum_kernel, called from Pythonmust return void and either take no parameters
or take an single array of double.

47

Revision 1.0 Intel® QuantumSDK

15.0 RunningWithMPI

15.1 MPISupport

The Intel® Quantum SDK leverages Message Passing Interface (MPI) in the qubit simulation backends for improved per-
formance. It also provides users the option to run IQS simulations distributed across multiple compute nodes, enabling
simulations involving larger numbers of qubits with the increased availablememory.

15.2 Execution

To run the compiled executable, simply invoke it with

$./quantum_algorithm

If your programdistributes IQS acrossmultiple nodes ofmachines for distributedmemory, launch the applicationwith the
mpirun command and use -n to specify the number of ranks. The total number of ranksmust be a power of 2.

Here is an example command to run a programwith 2 ranks.

$ mpirun -n 2 ./quantum_algorithm_iqs_distributed_mem

15.3 Sourcing compiler variables

This is required once per interactive session or once per job script for running the executable.

$ source /opt/intel/oneapi/setvars.sh

15.4 KnownLimitationswithMPI

Users can implement their own parallel code, but should not call MPI_Finalize(). Otherwise, Intel® Quantum SDK will
call MPI functions after users’ MPI_Finalize() call, which is not allowed.

While running a simulation with more than 35 qubits, the displayAmplitudes(), getAmplitudes(),
displayProbabilities(), and getProbabilities() APIs might not work properly if the user tries to get all ampli-
tudes or probabilities.

48

Revision 1.0 Intel® QuantumSDK

16.0 Running andWriting CustomPasses for the Intel® Quantum
Compiler

16.1 Introduction

The Intel® Quantum SDK is built on the LLVM compiler’s pass-based structure. The Intel® Quantum Compiler iteratively
performs transformationsof theprogram includingoptimizationand lowering tohardwarespecificgates tocompileaquan-
tum program. This ordering can be changed, and extra transformations can be added to alter the compilation of the pro-
gram. While the Intel®QuantumSDKhas a defined set of transformations, there is room for extra passes to be added. The
process of adding passes to the compilation flow from an external library are detailed below.

There are further details about how to access the development tools to create your own Intel® QuantumPasses as well.

16.2 RunningPasses

Asmentioned, the Intel® QuantumSDKprovides a driver script withmechanisms to insert LLVMpasses, passes from the
Intel® QuantumSDK, or custom passes from external libraries, at specific points during the compilation flow of a quantum
program.

16.2.1 DefiningCustomPasses toRun

$ intel-quantum-compiler -E <user_defined_library> -e <compilation_stage_1> -a <pass_1>,...,<pass_n> -A
↪→<pass_option> -A <pass_option> -e <compilation_stage_2> -a <pass_1>,...,<pass_n> -A <pass_option> -A
↪→<pass_option> <source_file>

Custompasseswill bedefined in librariesexternal to the Intel®QuantumPasses library. The-Eflagwith thepath to thecus-
tom library as the argument, gives the compilationprocess access to thepassesdefined in the library. There are additional
flags needed to define the compilation stage (when to run passes), pass lists (what passes to run), and a sequence’s argu-
ments that should be passed to those passes at each particular stage. First, a compilation stage is definedwith the -e flag,
followed by the name of one of the compilation stages listed below. Next, define the passes to be run during that compila-
tion stagewith the-a flag, followedbyacomma-delimited list of pass namesdefining thepasses thatwill be runduring that
stage. Then, optionally add the -A flag to pass each argument to the compiler invocation specified during the current -e
specification. The arguments given to -A are concatenated together with a space between each argument. Compilation
passes during other stages can be defined by using additional instances of the -e flag and its supporting options.

However, you do not have to specify an external library if the custompasses are already definedwithin the Intel®Quantum
SDK or the LLVM Compiler. In this case, the -E flag and argument can be omitted. For example, to run the Dead Code
Elimination pass from LLVM, the invocation would be:

$ intel-quantum-compiler -e <compilation_stage_1> -a dce <source_file>

49

https://llvm.org/

Revision 1.0 Intel® QuantumSDK

16.2.2 CustomPassCompilationStages

There are five different stages where custompasses can be inserted:

• Preconditioning (precond)

• Presynthesis (presynth)

• Prelowering (prelower)

• Prescheduling (presched)

• Presplitting (presplit)

The first place that passes can be inserted into the pass pipeline is before the quantumprogram has been verified. At this
point, you can expect there are no native quantum gates, and there should be no control flow constructs in the quantum
kernels. Other optimizations expect a program with one execution within a quantum kernel. So, if additional control flow
structures like loops or branching instructions have been added that cannot be handled by the native “flattening” opti-
mizations provided by the SDK, they must be removed before this point with a custom pass. This is also a good place to
replace your own custom functions with an intrinsic, or set of intrinsics if needed. This is called the “Precondition” section
or precond.

The second stage where passes can be inserted is only available when using optimization level number 1. With this opti-
mization there is extra synthesisofquantumprograms. To insert acustompassesprior to synthesis, use the “Presynthesis”
section or presynth.

The third stage where custom passes can be added is directly after the verification of the quantum program. If there are
optimizations that act on thecanonical gate set providedby the frontend, they shouldbeperformedhere. At this point, you
can expect that the remaining control flow structures will no quantum instructions. This is called the “Prelowered” section
or prelower. If a customplacement pass needs to bewritten, it should be performed here.

The fourth stage stage where custom passes can be inserted is after the lowering of the quantum gates to the canonical
gates for the device and the placement of the qubits on a device. At this point, there should be no canonical gates left,
they should be replaced with native gate decompositions. If a gate was added that is not caught by the decomposition
passes, this is the point to replace it with a native gate. Additionally, this is the stage before routing, and scheduling. This
is called the Prescheduling section or presched. If a custom routing and scheduling pass needs to bewritten, it should be
performed here.

The fifth and final opportunity is after routing, scheduling, but before the quantum kernels are separated from the rest of
the program. At this point, the program acts on physical qubits and spin-native gates rather than the canonical gates. Any
changes made at this point must honor the connectivity of a device. Passes that care about the physical qubits that the
circuit is being run on should be made here. Or, if you only want to optimize what will be run, and need guarantees about
which qubits you are acting on, or the kind of gate that is being used, this is the place to do it. This is the “Presplitting”
section or presplit.

Putting all of this together, an example command line invocation from the an example external library, in this case from the
open-source Intel® QuantumCompiler Passes repository, is:

$ intel-quantum-compiler -E path/to/libExampleMultiPass.so -e prelower -a print-all-gates,x-to-hzh,print-
↪→all-gates -A -example-pass-opt -A testing -e presplit -a print-all-gates -A -example-pass-opt -A testing-
↪→two <source_file>

This will run the sequence of passes “Print All Gates”, “X toHZH” and “Print All Gates” during the prelowering stage of the
compilationprocess alongwith theoption-example-pass-opt testing. Then itwill run the “PrintAllGates” passduring
the presplitting stage using the option -example-pass-opt testing-two.

50

Revision 1.0 Intel® QuantumSDK

16.3 TheOpen-SourceCompiler PassesRepository

The Intel®QuantumPasses repository, foundhere, provide amechanism for developers to add their own functionality and
optimizations to the compilation process, or tomodify the quantumpasses to fit their needs.

This is not a necessary feature for most users of the Intel® Quantum SDK. Only developers looking to write and add their
own features and optimizations to the quantum compilation process need to be aware of this section.

Thereare twomainenvironmentswherebuildingpasses is supported, via thedockercontaineroron the |Intel|Developer’s
Cloud.

The instructions for how to build theQuantumPasses can be found in the repositories themselves, but the basic steps are
detailed here as well. This process is only necessary to change the operation of the passes themselves, or to add passes
to the compilation process.

To build the repository you must have access to the Intel® Quantum SDK, CMake and either the Ninja or Make build sys-
tems.

The first step is to clone theQuantumPasses repository:

$ git clone https://github.com/intel/quantum-passes.git
$ cd quantum-passes
$ mkdir build
$ cd build

Then build the repository:

$ cmake -G Ninja -DLT_INTEL_QUANTUM_SDK_LOC=<sdk_install_dir> ../
$ ninja

The sdk_install_dir is the locationwhere the Intel® QuantumSDK is installed on your system, this contains the neces-
sarycompiler tools and libraries to successfullybuild and run theQuantumPasses. If theNinjabuild system isnot available,
use -G "Unix Makefiles" instead.

51

https://github.com/intel/quantum-passes
https://hub.docker.com/r/intellabs/intel_quantum_sdk
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://cmake.org/
https://ninja-build.org/
https://www.gnu.org/software/make/

Revision 1.0 Intel® QuantumSDK

17.0 CodeSamples

See the quantum-examples and python-quantum-examples directories in the Intel® Quantum SDK root directory for
demonstrations of each of the included qubit simulators’ APIs, demos, sample algorithm implementations and application
simulations.

17.1 AlgorithmsandSimulations

deutsch_jozsa_q7.cpp:

An implementation of the Deutsch-Jozsa algorithm.

qec_q5.cpp:

An implementation of QuantumError Correction (QEC) on 5 qubits.

qft.cpp:

An implementation of theQuantumFourier Transform (QFT) and InverseQFT algorithms.

dynamic_mbl_q3.cpp:

An implementation of Hamiltonian evolution simulatingMany Body Localization (MBL).

tfd_q4_hybrid_demo.cpp:

A demonstration of generating Thermofield Double (TFD) state.

teleport.cpp:

A simulation of the procedure to teleport a quantum state.

qkd_bb84.cpp:

A simulation of establishing secure keys throughQuantum Key Distribution (QKD) using the BB84 algorithm
[BeBr1984].

qnn_rus_n1.cpp, qnn_rus_nn1.cpp:

Examples for simulating small QuantumNeural Networks (QNN).

17.2 Programming

ghz.cpp:

An implementation of creating a Greenberger-Horne-Zeilinger state (GHZ) using a template approach and
compile time recursion to parameterize the number of qubits. The result is a quantum_kernel function that
can be changed to simulate any number of qubits up to a predefined maximum number of qubits at compile
time.

dynamic_param.cpp:

A demonstration of using dynamic parameters in quantum_kernel functions.

custom_backend.cpp:

An example of implementing a user-defined backend qubit simulator.

52

Revision 1.0 Intel® QuantumSDK

iqs_custom_noise.cpp:

An example for using the Intel® QuantumSimulator with a custom noisemodel.

custom_backend_mimicking_iqs_custom_noise.cpp:

An example implementing user-defined noise in qubits with the Intel® QuantumSimulator and comparing it to
a user-defined backend that implements the same noisemodel.

qexpr_ghz.cpp, qexpr_qft.cpp, qexpr_teleport.cpp:

Re-implementations of preceding examples using FLEQ quantum kernel expressions (QExpr) to simplify and
modularize the code.

state_preparation.cpp:

Uses a FLEQ DataList to prepare a list of qubits according to a string specification of n basis states.

pauli_rotations.cpp:

Uses a FLEQ DataList to prepare multi-qubit Pauli rotations, preparations, and measurements given a Pauli
string specification.

ideal_GHZ.cpp, sampled_GHZ.cpp, qd_GHZ.cpp:

Several teaching examples demonstrating a development workflow. See Tutorials.

iqs_vs_clifford_comparison.cpp, rep_code_clifford.cpp:

A basic example and an advanced example for using theClifford Simulator backend.

run_ghz.py, run_qft.py, run_tfd_demo.py:

Several examples demonstrating how to use the Python Interface. Each interacts with one of the above exam-
ples.

api_<backend>_test.cpp:

A demonstration of the API for each qubit simulator <backend>.

53

Revision 1.0 Intel® QuantumSDK

18.0 SummaryofKnownLimitations / Issues

• Themaximumnumberofqubits supported isboundedby the totalmemoryavailable to the Intel®QuantumSimulator
and is a machine and application dependent quantity. See Getting Started Guide (Memory Requirements). The
Tensor Network andClifford Simulator backends are limited to 256 qubits.

• All operations on classical variables inside a quantum_kernel function will be executed at the beginning of that
quantum_kernel, unless placed after the final quantum gate in the quantum_kernel. This applies to quantum_-
kernel functions called in themiddle of other quantum_kernel functions, i.e. adding the return value of the interior
quantum_kernel to an integer inside the higher scope quantum_kernel will be moved to the beginning of the re-
sulting set of instructions. See In-lining&quantum_kernel functions.

• All source codemust be located in a single .cpp file or included through header files.

• Top-level quantum_kernel functions cannot support qbit arguments. See In-lining&quantum_kernel functions.

• For quantum_kernel functions that use many qubit preparation operations, i.e. significantly more than the number
of qubits used, use of -O1 flag is known to dramatically slow down the compilation. SeeCompiling.

• Customplacement can only be used on global qbit variables. SeePlacement.

• If the scheduler pass -S flag is not set, the compiler assumes an all-to-all connection even if a non-all-to-all connec-
tivity is given in theplatformconfiguration .json file. Conversely, to invoke the -S flag, the -c flagmust begiven. See
Scheduling.

• When the -S flag is not set and -O1 optimization is set, some quantum_kernel functions may see additional
quswapalp gate operations at the end of the quantum_kernel. SeeScheduling.

• Users should not call MPI_Finalize() in the user program. Otherwise, MPI functions will be called after MPI_-
Finalize(), which is not allowed. SeeRunningwithMPI.

• When running a simulation with more than 35 qubits, the display_ and get_ APIs for the FullStateSimulator
might not work properly if the user tries these methods to retrieve or show all amplitudes or probabilities. See
RunningwithMPI.

• A compilation failure could occur if code which supports exception handling is invoked within a quantum_kernel
function. The compilation error will likely be reported as a result of invalid branching. One such case would be the
initialization of a quantum simulator within a quantum_kernel function. To avoid undesirable behavior, it is recom-
mended to initialize the simulator in the main() function.

54

Revision 1.0 Intel® QuantumSDK

19.0 Support andBug reporting

You can get technical support and report any bugs encountered by visiting |Intel| Communities. This is also a great place
to ask questions and share ideas.

55

https://community.intel.com/t5/Intel-Quantum-SDK/bd-p/intel-quantum-sdk

Revision 1.0 Intel® QuantumSDK

20.0 FAQ

• Why is the amplitude of this state not the same asmyby-hand calculation?

• What to do if I’m getting the “API calledwith qubits that are duplicated!” error?

• What to do if I’m getting the “1-qubit gateXon qubit Y is not available in the platform” error?

• Where can I find the Intel QuantumSDK?

20.1 Whyistheamplitudeofthisstatenotthesameasmyby-handcalculation?

The amplitude of a statemaydiffer between the result you computewhen youwork the problemby hand, algebraic solver,
or other quantum computing tool chain. Take for example, the quantum circuit:

|0⟩ X

Youmay be surprised to find the amplitude of this qubit is−i |1⟩

Printing amplitude register of size 2
|0> : (0,0) |1> : (0,-1)

This is a consequence of the compiler being designed to compute in terms of the gate set for quantum dot qubits. The
decompositionofX into thenativegatesgivesadifferent, butphysicallyequivalent, globalphase thanwemightwritedoing
themath by hand (wherewe implicitly assumeour qubits directly support the gates in the textbook). The global phasewill
have no effect on observable quantities; i.e., the probability is still guaranteed to be computed correctly. To wit: the only
outcome of ameasurement on the above qubit is |1⟩.

Inspecting the corresponding line in the .qs (quantumassembly file generated by the compiler) for the above gate shows
the instruction given is

qurotxy QUBIT[0], 3.141593e+00, 0.000000e+00

The qurotxy native quantum dot gatewas applied to the 0th qubit with the parameters π and 0. The matrix elements of
this gate are

Rxy (θ, ϕ) = cos
(
θ

2

)
Î − i sin

(
θ

2

)[
X̂ cosϕ+ Ŷ sinϕ

]
=

[
cos

(
θ
2

)
−i sin

(
θ
2

)
[cosϕ− i sinϕ]

−i sin
(
θ
2

)
[cosϕ+ i sinϕ] cos

(
θ
2

)]
and substituting in θ = π and ϕ = 0, we find

X = Rxy (π, 0) =

[
0 −i
−i 0

]
= −i

[
0 1
1 0

]
So the−i becomes a global phase, andwill not contribute to a change in the probability of observing a given state.

56

Revision 1.0 Intel® QuantumSDK

20.2 What to do if I’mgetting the “API calledwith qubits that are duplicated!”
error?

This error is causedwhen the following scenario occurs:

qbit a;
qbit b;
qbit c;

quantum_kernel void example() {
X(a);
H(b);
Y(c);

}

int main() {
using namespace iqsdk;
// Set up IQS device
IqsConfig iqs_config;
iqs_config.num_qubits = N;
FullStateSimulator iqs_device(iqs_config);
iqs_device.ready();

example();

std::vector<std::reference_wrapper<qbit>> qids =
// This line will trigger the above error since qubit a is added to qids twice
{std::ref(a); std::ref(a); std::ref(c)};

std::vector<double> ProbabilityRegister;
ProbabilityRegister = iqs_device.getProbabilities(qids);

}

To resolve this issue, ensure that each qubit is added exactly once. For example, replace the qids definition with:

std::vector<std::reference_wrapper<qbit>> qids =
{std::ref(a); std::ref(b); std::ref(c)};

20.3 What to do if I’m getting the “1-qubit gate X on qubit Y is not available in
theplatform”error?

This is likely caused by compiling the source codewith a platform configuration file that is incompatible with the choice of
compilation flags and/or simulation backend. One solution is to recompile the source codewith -O1 flag. Alternatively, the
source code can be recompiled with a different platform configuration file.

57

Revision 1.0 Intel® QuantumSDK

20.4 Where can I find the IntelQuantumSDK?

Depending onwhat systemyou are using the location of the Intel®QuantumSDKcan vary. Throughout this documentwe
have refered to this location as a generalized <path to Intel Quantum SDK>/. Below is a table of commonpathswhere
the Intel® QuantumSDK can be found.

Table 2: CommonPaths to the Intel QuantumSDK

System Name <path to Intel Quantum SDK>
Intel Developers Cloud /opt/intel/quantum_sdk/
Docker Container /opt/intel/quantum-sdk/latest/

Note: For convenience, consider appending the SDK path to your shell’s $PATH environment variable. The typical bash
syntax for this is:

export PATH=$PATH:<path to Intel Quantum SDK>

58

Revision 1.0 Intel® QuantumSDK

Bibliography

[BELL1964] Bell, J.S. (1964) On the Einstein Podolsky Rosen Paradox. Physics, 1, 195-200. https://doi.org/10.1103/
PhysicsPhysiqueFizika.1.195

[EIPR1935] Einstein, A., Podolsky, B., & Rosen, N. Can quantum-mechanical description of physical reality be considered
complete? Physical Review, 47(10), 777–780 (1935). https://doi.org/10.1103/PhysRev.47.777

[Schmitz2021] Schmitz, A. T., Sawaya, N. P., Johri, S., & Matsuura, A. Y. (2021). Graph optimiza-
tion perspective for low-depth Trotter-Suzuki decomposition. arXiv:2103.08602 [quant-ph].
https://doi.org/10.48550/arXiv.2103.08602

[Paykin2023] Paykin, J., Schmitz,A.T., Ibrahim,M.,Wu,X.C., &Matsuura,A.Y. (2023).PCOAST:APauli-basedQuantum
Circuit Optimization Framework. arXiv:2305.10966 [quant-ph]. https://doi.org/10.48550/arXiv.2305.10966

[Schmitz2023] Schmitz, A. T., Ibrahim, M., Sawaya, N. P., Guerreschi, G. G., Paykin, J., Wu, X. C., &Matsuura, A. Y. (2023).
Optimizationat the InterfaceofUnitary andNon-unitaryQuantumOperations inPCOAST. arXiv:2305.09843
[quant-ph]. https://doi.org/10.48550/arXiv.2305.09843

[NICH2010] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition
(CambridgeUniversity Press, 2010). https://doi.org/10.1017/CBO9780511976667

[GEAN2014] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86, 153 (2014). https://link.
aps.org/doi/10.1103/RevModPhys.86.153

[KPZC2022] R.Kotlyar, S. Premaratne,G.Zheng, J.Corrigan, R. Pillarisetty, S.Neyens,O.Zietz, T.Watson, F. Luthi, F. Bor-
jans, L. Lampert, E.Henry,H.George, S. Bojarski, J. Roberts, A. Y.Matsuura, andJ.S.Clarke,Mitigating Impact
of DefectsOn Performancewith Classical Device Engineering of Scaled Si/SiGeQubit Arrays, in 2022 Inter-
national Electron Devices Meeting (IEDM) (2022) pp. 8.4.1–8.4.4 https://doi.org/10.1109/IEDM45625.2022.
10019382

[KWPH2022] Khalate, P., Wu, X.-C., Premaratne, S., Hogaboam, J., Holmes, A., Schmitz, A., Guerreschi, G. G., Zou, X. &
Matsuura, A. Y., arXiv:2202.11142 (2022). https://doi.org/10.48550/arXiv.2202.11142

[BaSR2021] J. C. Bardin, D. H. Slichter, and D. J. Reilly, Microwaves in QuantumComputing, IEEE Journal of Microwaves
1, 403 (2021). https://doi.org/10.1109/JMW.2020.3034071

[ZKWL2022] Zwerver, A.M.J., Krähenmann, T., Watson, T.F. et al. Qubits made by advanced semiconductor manufac-
turing. Nat Electron 5, 184–190 (2022). https://doi.org/10.1038/s41928-022-00727-9

[LODI1998] Loss D., DiVincenzo D.P. Quantum computation with quantum dots. Phys Rev A, 57 (1) (1998), pp. 120-126
https://doi.org/10.1103/PhysRevA.57.120

[DIVI2000] D. P. DiVincenzo, The Physical Implementation of Quantum Computation, Fortschritte der Physik 48, 771
(2000). https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E

[LJLN2010] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum computers, Nature
464, 45 (2010). https://doi.org/10.1038/nature08812

[WAPK2018] Watson, T., Philips, S., Kawakami, E. et al. A programmable two-qubit quantum processor in silicon. Nature
555, 633–637 (2018). https://doi.org/10.1038/nature25766

[SURI2015] B. Suri, Transmon qubits coupled to superconducting lumped element resonators, Ph.D. the-
sis, University of Maryland College Park (2015). https://www.proquest.com/dissertations-theses/
transmon-qubits-coupled-superconducting-lumped/docview/1702138107/se-2

[STEC2020] D. A. Steck, Quantum and AtomOptics (2020), revision 0.13.1. Accessed 05/01/2020. https://atomoptics.
uoregon.edu/~dsteck/teaching/

59

https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1017/CBO9780511976667
https://link.aps.org/doi/10.1103/RevModPhys.86.153
https://link.aps.org/doi/10.1103/RevModPhys.86.153
https://doi.org/10.1109/IEDM45625.2022.10019382
https://doi.org/10.1109/IEDM45625.2022.10019382
https://doi.org/10.1109/JMW.2020.3034071
https://doi.org/10.1038/s41928-022-00727-9
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1002/1521-3978(200009)48:9
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature25766
https://www.proquest.com/dissertations-theses/transmon-qubits-coupled-superconducting-lumped/docview/1702138107/se-2
https://www.proquest.com/dissertations-theses/transmon-qubits-coupled-superconducting-lumped/docview/1702138107/se-2
https://atomoptics.uoregon.edu/~dsteck/teaching/
https://atomoptics.uoregon.edu/~dsteck/teaching/

Revision 1.0 Intel® QuantumSDK

[ZHSD2020] D. Zeuch, F. Hassler, J. J. Slim, andD. P. DiVincenzo, Exact rotatingwave approximation, Annals of Physics
423, 168327 (2020). https://doi.org/10.1016/j.aop.2020.168327

[PARE2004] M. Paris and J. Řeháček, eds., Quantum State Estimation (Springer Berlin Heidelberg, 2004). https://doi.
org/10.1007/b98673

[GHBS2020] Guerreschi, G. G., Hogaboam, J., Baruffa, F., & Sawaya, N. P. D., Intel Quantum Simulator: A cloud-ready
high-performance simulator of quantum circuits. Quantum Science and Technology, 5, 034007 (2020).
https://doi.org/10.1088/2058-9565/ab8505

[NEST2010] Van den Nest, M., Classical simulation of quantum computation, the Gottesman-Knill theorem, and slightly
beyond. Quantum Info. Comput. 10, 3 (2010). https://doi.org/10.5555/2011350.2011356

[GOTT1998] Gottesman,D., TheHeisenbergRepresentationofQuantumComputers,Group22: Proceedingsof theXXII
International ColloquiumonGroupTheoretical Methods in Physics, eds. S. P. Corney, R. Delbourgo, and P. D.
Jarvis, (1999). https://doi.org/10.48550/arXiv.quant-ph/9807006

[SCGO2004] Scott Aaronson, S., Daniel Gottesman, D., Improved simulation of stabilizer circuits, Phys. Rev. A 70,
052328 (2004). https://link.aps.org/doi/10.1103/PhysRevA.70.052328

[HDER2006] Hein, M., Dür,W., Eisert, J., Raussendorf, R., Van denNest, M., Briegel, H. -J., Entanglement inGraphStates
and its Applications, (2006). https://doi.org/10.48550/arXiv.quant-ph/0602096

[GEZH2013] Geller, M. R., Zhou, Z., Efficient errormodels for fault-tolerant architectures and thePauli twirling approxima-
tion, Phys. Rev. A 88, 012314 (2013). https://link.aps.org/doi/10.1103/PhysRevA.88.012314

[SJDL2003] Strauch, F.W., Johnson, P.R., Dragt, A. J., Lobb,C. J.,Anderson, J. R.,Wellstood, F.C.,QuantumLogicGates
for Coupled Superconducting Phase Qubits, Phys. Rev. Lett. 91, 167005 (2003). https://link.aps.org/doi/10.
1103/PhysRevLett.91.167005

[BeBr1984] C.H. Bennett andG. Brassard, Quantumcryptography: Public key distribution and coin tossing, Proceedings
of IEEE International Conference onComputers, Systems andSignal Processing, vol. 175, pg. 8, (1984). https:
//doi.org/10.1016/j.tcs.2014.05.025

60

https://doi.org/10.1016/j.aop.2020.168327
https://doi.org/10.1007/b98673
https://doi.org/10.1007/b98673
https://doi.org/10.1088/2058-9565/ab8505
https://doi.org/10.5555/2011350.2011356
https://doi.org/10.48550/arXiv.quant-ph/9807006
https://link.aps.org/doi/10.1103/PhysRevA.70.052328
https://doi.org/10.48550/arXiv.quant-ph/0602096
https://link.aps.org/doi/10.1103/PhysRevA.88.012314
https://link.aps.org/doi/10.1103/PhysRevLett.91.167005
https://link.aps.org/doi/10.1103/PhysRevLett.91.167005
https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/10.1016/j.tcs.2014.05.025

	How to Cite
	Overview
	Introduction to Quantum Computing
	Supported Quantum Logic Gates
	Quantum Dot Qubit Gates

	Language Extensions
	Built-in Types & Intrinsic Functions
	Namespaces
	Includes & Classes

	Programming with the Intel® Quantum SDK
	In-lining & quantum_kernel functions
	Measurements using Simulated Quantum Backends
	Local qbit Variables

	Compiling
	Output of the Intel® Quantum SDK Compiler
	Compiler Optimization
	Qubit Placement and Scheduling
	Circuit Printing & LaTeX
	Support for OpenQASM 2.0
	Other Compiler Flags

	Configuring the FullStateSimulator
	Overview of FullStateSimulator
	Execution Options
	Overview of IqsConfig

	Intel® Quantum Simulator Backend
	Customizable noise modeling
	Using Custom IQS Noise Models in a Program
	Important Points on Performing Noisy Simulations with IQS

	Quantum Dot Simulator Backend
	Simulation of Qubits
	Rotating vs. Laboratory Frame
	Usage in conjunction with getAmplitudes()
	Using Quantum Dot Simulator in a Program
	Important Points on Quantum Dot Simulator
	Compilation with Quantum Dot Simulator as the Computing Backend

	Clifford Simulator Backend
	Clifford Operations
	Using Clifford Simulator in a Program
	Important Points on Clifford Simulator
	Compilation with Clifford Simulator as the Computing Backend

	Tensor Network Backend
	Brief Overview of TensorNetworkConfig

	Custom Backend
	CustomInterface
	CustomSimulator
	Methods

	Python Interface
	Introduction
	Python via OpenQASM 2.0
	Compiling quantum_kernel to Shared Library (.so)
	Using a Custom Backend with the Python Interface
	Known Limitations of the Python Interface

	Running With MPI
	MPI Support
	Execution
	Sourcing compiler variables
	Known Limitations with MPI

	Running and Writing Custom Passes for the Intel® Quantum Compiler
	Introduction
	Running Passes
	The Open-Source Compiler Passes Repository

	Code Samples
	Algorithms and Simulations
	Programming

	Summary of Known Limitations / Issues
	Support and Bug reporting
	FAQ
	Why is the amplitude of this state not the same as my by-hand calculation?
	What to do if I’m getting the “API called with qubits that are duplicated!” error?
	What to do if I’m getting the “1-qubit gate X on qubit Y is not available in the platform” error?
	Where can I find the Intel Quantum SDK?

	Bibliography

