
GettingStartedGuide

Intel®QuickAssist Technology

HardwareVersion 2.0

March 2024

Document Number: 632506-002

Performance varies by use, configuration and other factors. Learn more on the Intel's Performance
Index site.

Performance results are based on testing as of dates shown in configurations and may not reflect all
publicly available updates. See backup for configuration details. No product or component can be
absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

The products described may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Codenames are usedby Intel to identify products, technologies, or services that are in development and
not publicly available. These are not "commercial" names and not intended to function as trademarks.

See Intel's Legal Notices and Disclaimers.

© Intel Corporation. Intel, the Intel logo, Atom, Xeon, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/
https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/
https://www.intel.com/LegalNoticesAndDisclaimers

Contents

1 Introduction 1
1.1 About This Document . 1
1.2 Conventions and Terminology . 1
1.3 Features Implemented . 2
1.4 List of Files in Release . 2
1.5 Package Release Structure . 2

2 SystemConfiguration 4
2.1 Configuring BIOS . 4
2.2 Disabling QAT Endpoints . 4
2.3 Configuring Operating System . 5

2.3.1 Updating dnf Configuration Files . 5
2.3.2 Updating apt Configuration Files . 6
2.3.3 Installing Package Dependencies . 6

2.3.3.1 RPM-based package dependencies . 6
2.3.3.2 DEB-based package dependencies . 7

2.3.4 System Security Considerations . 8

3 Software Installation 9
3.1 Installation Overview . 9
3.2 Unpacking the Software . 10
3.3 Configure Acceleration Software . 10

3.3.1 Dependencies . 12
3.3.2 Configuration Options . 12

3.4 Install Acceleration Software . 14
3.5 Uninstall Acceleration Software . 15
3.6 Starting/Stopping the Acceleration Software . 16
3.7 Configuration Files . 16
3.8 Running Applications as Non-Root User . 17

4 SampleApplications 19
4.1 Performance Sample Code . 19

4.1.1 Compiling the Performance Sample Code . 19
4.1.2 Default Configuration Files . 20
4.1.3 Loading the Sample Code Application . 20
4.1.4 Sample Code Parameters . 21

4.1.4.1 signOfLife Test Parameter . 22

4.1.4.2 User Space . 22
4.1.5 Test Results . 22

4.2 Functional Sample Applications . 23
4.2.1 Compiling the Acceleration Functional Sample Code 23
4.2.2 Executing the Acceleration Functional Sample Code in User Space 23

5 RevisionHistory 24

1 Introduction

1.1 About This Document

This getting started guide documents the instructions to obtain, build, install, and exercise the Intel®

QuickAssist Technology (Intel® QAT) software for the Hardware Version 2.0 package.

In this document, for convenience:

• Softwarepackage is usedas ageneric term for the Intel® QATSoftwarePackage forHardwareVer-
sion 2.0.

• Acceleration driver is used as a generic term for the software that allows the Intel® QAT Software
Library APIs to access the Intel® QAT Endpoint(s).

Note: Refer to the Release Notes for a list of supported platforms.

1.2 Conventions andTerminology

The following conventions are used in this manual:

• Code text - code examples, command line entries, Application Porgramming Interface (API)
names, parameters, filenames, directory paths, and executables.

• Bold text - graphical user interface entries, buttons, and actions in instructions.

• Italic text - key terms and publication titles.

The following terms and acronyms are used in this manual.

Table 1: Terminology
Term Description
API Application Programming Interface
asym Asymmetric Cryptography
BDF Bus Device Function

continues on next page

1

GettingStartedGuide

Table 1 – continued from previous page
Term Description
BOM Bill of Materials
CBC Cipher Block Chaining
cy Cryptography
dc Data Compression
GRUB Grand Unified Bootloader
OS Operating System
PCI Peripheral Component Interconnect
PF PCIe Physical Function
Intel® QAT Intel® QuickAssist Technology
SKU Stock Keeping Unit
sIOV Scalable IOV
SR-IOV Single Root-I/O Virtualization
VF Virtual Function

1.3 Features Implemented

Implemented features are listed in the Release Notes.

1.4 List of Files in Release

A Bill of Materials (BOM) is included as a text file in the software package(s). This file is called filelist.

1.5 PackageReleaseStructure

After unpacking the tar file, the directory should contain the following:

Table 2: Package Release Structure
Files/Directory Comments
IntelQAT20<version>.tar.gz Top-level Intel® QAT package
./filelist List of files in this package
./config_guess Build and installer files
./config.h.in

./config.sh

./config.sub

./configure

./install-sh

./Makefile.in

continues on next page

2 Introduction

GettingStartedGuide

Table 2 – continued from previous page
Files/Directory Comments
./missing

./LICENSE.GPL License file

./versionfile Version file

./quickassist Top-Level acceleration softare directory

./README README file with instructions on how to compile the driver

Introduction 3

2 SystemConfiguration

This section describes the process of configuring the system prior to the Intel® QuickAssist Technology
(Intel® QAT) driver installation.

2.1 ConfiguringBIOS

Note: If installing the Intel QAT 2.0 driver for use in a virtual environment, refer to the Virtualization De-
ployment Guide for additional details.

If BIOS updates are required, the following command can be used to reboot the system and enter the
BIOS setup:

systemctl reboot --firmware-setup

2.2 DisablingQATEndpoints

Dependingon thehardwareSKU, there canbeup to4QATendpoints per socket. It is possible todisable
individual QAT endpoints by following the instructions below:

1. EnterBIOS setup.

2. Navigate to the following path where <n> corresponds to the socket containing the QAT end-
point(s) to be disabled: EDKII Menu > Socket Configuration > IIO Configuration > IOAT

Configuration > Sck<n> > IOAT Configuration

3. Update the CPM value to Disable for each QAT endpoint to be disabled for each socket.

4. Save changes.

5. Reboot the system.

4

GettingStartedGuide

2.3 ConfiguringOperatingSystem

There are a few configuration items that may need to be completed, such as updating dnf or apt config-
uration files as well as the system security configuration. This section describes these items.

2.3.1 Updating dnf Configuration Files

Important: This section is optional for RPM-based Linux distributions such as RHEL*, CentOS*, and
Fedora*.

dnf is an application that can be used to perform operating system updates. To use dnf in a corporate
network, the following change may be required:

1. Add a line similar to the following in the /etc/dnf/dnf.conf file. The line can be added to the end
of the file.

proxy=http://<proxy_server:portnum>

Note: <proxy_server:portnum> is replaced with your server information. Contact your
network administrator for details on the proxy server.

2. If your corporate proxy server requires a username and password, specify these by adding the fol-
lowing two settings in the dnf.conf file.

SystemConfiguration 5

GettingStartedGuide

proxy_username=YOUR-PROXY-USERNAME-HERE

proxy_password=YOUR-SUPER-SECRET-PASSWORD-HERE

2.3.2 Updating apt Configuration Files

Important: This section is optional for DEB-based Linux distributions such as Ubuntu*.

apt is the default package manager for Debian* based distributions such as Ubuntu*. To use apt in a
corporate network, the following updates may be required:

1. Create (or edit if the file already exists) a file named as apt.conf in the /etc/apt directory.

sudo nano /etc/apt/apt.conf

2. Add the following lines to the apt.conf file:

Acquire::http::Proxy "http://[YOUR-PROXY-USERNAME-HERE]:[YOUR-SUPER-SECRET-

↪→PASSWORD-HERE]@ [proxy-web-or-IP-address]:[port-number]";

Acquire::https::Proxy "http://[YOUR-PROXY-USERNAME-HERE]:[YOUR-SUPER-SECRET-

↪→PASSWORD-HERE]@ [proxy-web-or-IP-address]:[port-number]";

Note: YOUR-PROXY-USERNAME-HERE and YOUR-SUPER-SECRET-PASSWORD-HERE are op-
tional parameters.

3. Save the file and exit.

4. Reboot the system. The configuration will be applied after a reboot.

2.3.3 Installing PackageDependencies

The Intel QAT package depends on a number of libraries that must be installed first on the system.

2.3.3.1 RPM-based package dependencies

Important: This section is required for RPM-based Linux distributions such as RHEL*, CentOS*, Fe-
dora*, and Rocky* Linux.

1. Enable additional Repository (may be required for yasm package).

The yasm package may be provided in Repository that is enabled by default.

• For RHEL/CentOS, the Repository will be either powertools or crb.

6 SystemConfiguration

GettingStartedGuide

• For Rocky Linux, the Repository is devel.

2. Enable PowerTools and/or CRB Repository (may be required for yasm package).

sudo dnf -y install dnf-plugins-core

sudo dnf upgrade

sudo dnf config-manager --set-enabled powertools

sudo dnf config-manager --set-enabled crb

Note: The location of yasm may be included in either the powertoools repo or the CRB
repo

3. Install the RPM-based package dependencies:

sudo dnf groupinstall "Development Tools"

sudo dnf install -y systemd-devel

sudo dnf install -y pciutils

sudo dnf install -y libudev-devel

sudo dnf install -y readline-devel

sudo dnf install -y libxml2-devel

sudo dnf install -y boost-devel

sudo dnf install -y elfutils-libelf-devel

sudo dnf install -y python3

sudo dnf install -y libnl3-devel

sudo dnf install -y kernel-devel-$(uname -r)

sudo dnf install -y gcc

sudo dnf install -y gcc-c++

sudo dnf install -y yasm

sudo dnf install -y zlib

sudo dnf install -y openssl-devel

sudo dnf install -y zlib-devel

sudo dnf install -y make

2.3.3.2 DEB-based package dependencies

Important: This section is required for DEB-based Linux distributions such as Ubuntu*.

1. Install the DEB-based package dependencies:

sudo apt-get update

sudo apt-get install -y libsystemd-dev

sudo apt-get install -y pciutils-dev

sudo apt-get install -y libudev-dev

sudo apt-get install -y libreadline6-dev

sudo apt-get install -y pkg-config

sudo apt-get install -y libxml2-dev

sudo apt-get install -y pciutils-dev

(continues on next page)

SystemConfiguration 7

GettingStartedGuide

(continued from previous page)

sudo apt-get install -y libboost-all-dev

sudo apt-get install -y libelf-dev

sudo apt-get install -y libnl-3-dev

sudo apt-get install -y kernel-devel-$(uname -r)

sudo apt-get install -y build-essential

sudo apt-get install -y yasm

sudo apt-get install -y zlib1g-dev

sudo apt-get install -y libssl-dev

2.3.4 SystemSecurity Considerations

Note:

• Specific OS/filesystem topics are outside of the scope of this document. For more information,
refer to the Programmer’s Guide.

• This section contains a high-level list of system security topics. This is not an exhaustive list.

Securing your operating system is critical. Consider the following items:

• Employ effective security policies and tools; for instance, SELinux* is configured correctly and is
active.

• Run and configure the firewall(s).

• Prevent privilege escalation at boot (including recovery mode); for instance, set a grub password.
Additional details are described below.

• Remove unnecessary software packages.

• Patch software in a timely manner.

• Monitor the system and the network.

• Configure and disable remote access, as appropriate.

• Disable network boot.

• Require secure passwords.

• Encrypt files, up to full-disk encryption.

• Ensure physical security of the system and the network.

• Use mlock to prevent swapping sensitive variables from RAM to disk.

• Zero out sensitive variables in RAM.

8 SystemConfiguration

3 Software Installation

This section provides details on building and installing the software.

Note: This document describes the steps required to install the out-of-tree acceleration software pack-
age. For details on installing the upstreamed acceleration software, refer to the installation and readme
instructions at the Intel QuickAssist Technology Library (QATlib) repository.

3.1 InstallationOverview

The installation procedure handles a number of tasks that would otherwise have to be done manually,
including the following:

• Create the kernel module files and copy them the appropriate directory (e.g. /usr/lib/modules/
KERN_VERSION/kernel/drivers/crypto)

• Create the shared object (.so) files by building the source code.

• Copy the shared object (.so) files to the right directory (e.g., /lib or /lib64).

• Build adf_ctl and copy it to the right directories ($ICP_ROOT/build and /usr/sbin).

• Copy the config files to /etc.

• Copy the firmware files to /lib/firmware.

• Copy the modules to the appropriate kernel source directory for loading by qat_service.

• Start theqat_service,which inserts theappropriatemodulesas requiredandrunsadf_ctl tobring
up the devices.

• Set up the qat_service to runon futureboots (copy to /etc/init.d, run chkconfig to add the ser-
vice).

9

https://github.com/intel/qatlib/blob/main/INSTALL
https://github.com/intel/qatlib/blob/main/README.md
https://github.com/intel/qatlib

GettingStartedGuide

3.2 Unpacking theSoftware

The software package comes in the form of a tarball.

Note:

• The instructions in this document assume that you have super user privileges.

• In this document, the working directory is assumed to be /QAT. This directory is the ICP_ROOT.

1. Createaworkingdirectory for thesoftware. Thisdirectorycanbeuserdefined,but for thepurposes
of this document, a recommendation is provided.

export ICP_ROOT=/QAT

mkdir -p $ICP_ROOT

cd $ICP_ROOT

2. Obtain the official released Intel QAT package: Intel® QuickAssist Technology Driver for Linux* -
HW Version 2.0

3. Transfer the tarball to thesystem in the$ICP_ROOTdirectory. Unpack the tarball using the following
command:

tar -zxof QAT20.L.*.tar.gz

4. Restricting access to the files is recommended.

chmod -R o-rwx *

3.3 ConfigureAcceleration Software

Note:

• If installing the acceleration software for use in a virtual environment refer to the Virtualization De-
ployment Guide for additional details.

• The ./configure script handles many options that may be of interest. For instance, there is a wide
range of possible configurations, including build or install virtualization support (host or guest) or
no virtualization support. Some build options may need to be passed as a parameter to the ./

configure script before proceeding with the installation. A complete list of configuration options
is available in Configuration Options.

1. Prepare thepackage installationbychecking theprerequisitesandconfiguring thebuildoptionsby
running a script using the following command:

10 Software Installation

https://www.intel.com/content/www/us/en/download/765501
https://www.intel.com/content/www/us/en/download/765501

GettingStartedGuide

./configure

A welcome message is displayed, followed by the configured build options. Successful configura-
tion will look similar to the following:

checking for a BSD-compatible install... /usr/bin/install -c

checking whether build environment is sane... yes

checking for a thread-safe mkdir -p... /usr/bin/mkdir -p

checking for gawk... gawk

...

checking for kernel sources... yes

checking that generated files are newer than configure... done

configure: creating ./config.status

config.status: creating Makefile

config.status: creating config.h

config.status: executing depfiles commands

==

Type make followed by make install to build QAT with the following options

==

USE_HARD_CODED_PRIMES [0]

ICP_ARCH_USER [x86_64]

ICP_BUILDSYSTEM_PATH [/root/QAT/quickassist/build_system]

ICP_BUILD_OUTPUT [/root/QAT/build]

ICP_ENV_DIR [/root/QAT/quickassist/build_system/build_files/env_files]

ICP_TOOLS_TARGET [accelcomp]

MAX_MR [50]

KERNEL_SOURCE_ROOT [/lib/modules/4.18.0-193.el8.x86_64/build]

ICP_DEBUG [false]

QAT_UIO [false]

ICP_PARAM_CHECK [false]

ICP_DC_DYN_NOT_SUPPORTED [false]

DISABLE_STATS [false]

DRBG_POLL_AND_WAIT [false]

ICP_LOG_SYSLOG [false]

ICP_NONBLOCKING_PARTIALS_PERFORM [false]

ICP_TRACE [false]

ICP_DC_ONLY [false]

ICP_DC_RETURN_COUNTERS_ON_ERROR [false]

ICP_DISABLE_INLINE [false]

INLINE [false]

==

Software Installation 11

GettingStartedGuide

3.3.1 Dependencies

Various dependencies are required, see the ouput from .configure.

yasm, for example, may need to be manually downloaded and installed via https://yasm.tortall.net/
Download.html .

On Linux:

• wget <latest URL> (latestURL is http://www.tortall.net/projects/yasm/releases/yasm-1.
3.0.tar.gz)

• tar -zxvf yasm-1.3.0.tar.gz

• cd yasm-1.3.0/

• ./configure

• make && make install

Then return to the QAT directory to perform the .configure and make install commands.

3.3.2 ConfigurationOptions

A complete list of compile flags and build parameters can also be obtained by executing the following
command in the shell:

./configure --help

Note: Compiler flags to produce safer binaries are enabled by default.

Table 3: Compile Flag Options
Compile Flag Description
--disable-option-checking Ignore unrecognized –enable/–with option.
--disable-FEATURE Do not include FEATURE (same as

--enable-FEATURE=no).
--enable-FEATURE[=ARG] Include FEATURE [ARG=yes].
--enable-silent-rules Less verbose build output (undo: make V=1).
--disable-silent-rules Verbose build output (undo: make V=0).
--enable-maintainer-mode Enable make rules and dependencies not useful

(andsometimesconfusing) to thecasual installer.
--enable-dependency-tracking Do not reject slow dependency extractors.
--disable-dependency-tracking Speeds up one-time build.
--enable-icp-debug Enables debugging.
--enable-qat-uio Enables Userspace I/O.

continues on next page

12 Software Installation

https://yasm.tortall.net/Download.html
https://yasm.tortall.net/Download.html

GettingStartedGuide

Table 3 – continued from previous page
Compile Flag Description
--disable-param-check Disables parameters checking in the top-level

APIs (use for performance optimization).
--disable-dc-dyn Disables dynamic compression support.
--disable-stats Disables statistic collection (use for performance

optimization).
--enable-drbg-poll-and-wait Modifies the behavior of DRBG HT functions to

use single threaded operation.
--enable-icp-log-syslog Enables debugging messages to be outputted to

the system log instead of standard output.
--enable-icp-nonblocking-partials-perform Partial operations results are not being blocked.
--enable-icp-sriov Enables Single-root I/O Virtualization in the QAT

driver (available options: host, guest).
--enable-icp-trace Enables tracing for the Cryptography API.
--enable-icp-asym-only Enables driver to support Asymmetric Crypto

services only.
--enable-icp-sym-only Enables driver to support Symmetric Crypto ser-

vices only.
--enable-icp-dc-only Enables driver supports only compression ser-

vice (can optimize size of build objects).
--enable-icp-dc-sym-only Enables driver to support Data Compression and

Symmetric Crypto services only.
--enable-icp-dc-return-counters-on-error Enables updates of consumed/produced results

in case of error during compression or decom-
pression operations.

--disable-icp-inline When defined, function inlining for func-
tions that cannot be inlined by the com-
piler is removed to enable compilation of
the driver for kernels build without CON-

FIG_ARCH_SUPPORTS_OPTIMIZED_INLINING.
--enable-inline Enables INLINE feature.
--enable-icp-hb-fail-sim Enable Heartbeat Failure Simulation.
--enable-qat-coexistence Enables legacy and upstream driver coexistence.
--enable-qat-lkcf Enables QAT registration with Linux Kernel

CryptoFramework. Kernel instances are disabled
by default. See Logical Instances Section of the
Programmer’s Guide for additional details.

--enable-qat-kpt-debug-key Enable QAT debug issue certificate.
--disable-dc-strict-mode Disables Compress and Verify (CnV) functional-

ity. See below for details.
--enable-dc-error-simulation Enables Data Compression Error Simulation.
--enable-icp-thread-specific-usdm USDM allocates and handles memory specific to

threads (formulti-thread apps, allocatedmemory
informationwill bemaintainedseparately foreach
thread).

continues on next page

Software Installation 13

GettingStartedGuide

Table 3 – continued from previous page
Compile Flag Description
--enable-128k-slab Enables 128k slab allocator in USDM. It could

improve performance and reduce memory con-
sumption for the large number of threads when
thread specific memory allocator is enabled.

Important: The Compress and Verify feature checks and ensures data integrity in the compression op-
eration of the Intel® QAT Data Compression API. This feature introduces an independent capability to
verify the compression transformation.

Intel recommends that customers use the Compress and Verify capabilities for Intel® QATcompression
operations.

As Compress and Verify provides an integrity check of the data, Intel cannot guarantee integrity of data
that bypasses the Compress and Verify capability.

Intel does not support disabling Compress and Verify.

3.4 Install Acceleration Software

Note: It is recommended to uninstall previous installations of the acceleration software (if previously
installed).

1. Open a terminal window and switch to superuser. Provide root password when prompted.

su

cd $ICP_ROOT

2. Enter the followingcommands tobuild and install theaccelerationsoftwareandsamplecodeusing
the default options:

./configure

sudo make -j install

sudo make samples-install

Note: After building/installing the acceleration software, secure the build output files by
either deleting them or setting permissions according to your needs.

Note: If kernel module signing is required for the Intel QAT out-of-tree drivers, (e.g. if
UEFISecureBoot is enabled), onecan incorporate this stepby setting the mod_sign_cmd
environment variable prior to invoking the make install command.

14 Software Installation

GettingStartedGuide

The mod_sign_cmd environment variable should be set to the path of the required kernel
headers sign-file program and include its first three command line arguments, as shown
in the following example:

export mod_sign_cmd='<kernel header path>/scripts/sign-file sha256 /root/priv.

↪→key /root/pub.der'

3. Add your user to the qat group by running the below command, and re-login to make the change
effective.

sudo usermod -a -G qat `whoami`

sudo su -l $USER

4. Verify the acceleration software kernel objects are loaded and ready to use with this command:

lsmod | grep qat

Depending on the specific hardware present, this command will return an output similar
to the following:

qat_4xxx 45056 0

intel_qat 331776 2 qat_4xxx,usdm_drv

uio 20480 1 intel_qat

mdev 20480 2 intel_qat,vfio_mdev

vfio 36864 3 intel_qat,vfio_mdev,vfio_iommu_type1

irqbypass 16384 2 intel_qat,kvm

Note: Not all modules will be required depending on the specific hardware present.

3.5 Uninstall Acceleration Software

1. Open a terminal windows and switch to superuser. Provide root password when prompted.

su

cd $ICP_ROOT

2. Enter the following commands to uninstall the acceleration software:

make uninstall

make clean

Software Installation 15

GettingStartedGuide

3.6 Starting/Stopping theAcceleration Software

When theacceleration software is installed, a script file titledqat_service is installed in the/etc/init.d
directory. The script file can be used to start and stop the acceleration software.

To start the software, issue the following command:

service qat_service start

To stop the software, issue the following command:

service qat_service stop

To stop the software and remove the kernel driver, issue the following command:

service qat_service shutdown

When the acceleration software is installed, it is set to load automatically when the operating system
loads.

3.7 Configuration Files

When theacceleration software loads, it is configuredbasedon thesettings in theplatform-specificcon-
figuration files.

The configuration files are in the /etc directory. Specifically:

• The name for the first configuration file for Intel® QuickAssist Technology Hardware Version 2.0
devices is 4xxx_dev0.conf

• The name of the first configuration file for Intel® Communications Chipset 8925 to 8955 Series
devices is dh895xcc_dev0.conf.

• The first configuration file for the Intel® C62x Chipset or Intel® Xeon® Processor D Family SoC is
c6xx_dev0.conf.

• The first configuration file for Intel® Atom® C3000 Processor SoC is c3xxx_dev0.conf.

• The first configuration file for other Intel® Xeon® Processor D SoC platforms is d15xx_dev0.conf.

Note: If more than one device of a given type is present, its name includes dev1, dev2, etc.

The files are processed when the system boots. If changes are made to the configuration file, the accel-
eration software must be stopped and restarted for the changes to take effect.

service qat_service restart

16 Software Installation

GettingStartedGuide

The software package includes multiple types of platform-specific configuration files. Depending on
your installation options and SKU, a valid configuration file is copied to the /etc directory. If your sys-
tem has more than one type of hardware device or SKU, verify that the correct configuration files were
copied.

Important: The software package has been validated with the default configuration files. Changes to
the configuration files could have adverse effects.

Refer to the Programmer’s Guide for additional information on the configuration files.

3.8 RunningApplications asNon-RootUser

The installation of Intel® QAT software package configures the driver to allow applications to run as non-
root user. The users must be added to the qat group.

When the make install command is performed at the directory where the Intel® QAT package is in-
stalled, the following udev file is created which is responsible for setting up non-root access.

KERNEL=="qat_adf_ctl" MODE="0660" GROUP="qat" RUN+="/bin/chgrp qat/usr/local/bin/adf_ctl"

KERNEL=="qat_dev_processes" MODE="0660" GROUP="qat"

KERNEL=="usdm_drv" MODE="0660" GROUP="qat"

ACTION=="add", DEVPATH=="/module/usdm_drv" SUBSYSTEM=="module"

RUN+="/bin/mkdir / dev/hugepages/qat"

ACTION=="add", DEVPATH=="/module/usdm_drv" SUBSYSTEM=="module"

RUN+="/bin/chgrp qat /dev/hugepages/qat"

ACTION=="add", DEVPATH=="/module/usdm_drv" SUBSYSTEM=="module"

RUN+="/bin/chmod 0770 /dev/hugepages/qat"

ACTION=="remove", DEVPATH=="/module/usdm_drv" SUBSYSTEM=="module"

RUN+="/bin/rmdir

/dev/hugepages/qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x0435"

MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x0443"

MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x37c8"

MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x37c9"

MODE="0660" GROUP="qat"

(continues on next page)

Software Installation 17

GettingStartedGuide

(continued from previous page)

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x6f54"

MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x6f55"

MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x19e2"

MODE="0660" GROUP="qat"

KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x19e3"

MODE="0660" GROUP="qat"

The updates to the udev rules are performed during the installation of the Intel® QAT driver.

The following steps need to be manually applied:

1. Change theamountofmax lockedmemory for theusername included in theqatgroup (thedefault
memory limit is 64). This can be done by specifying the limit in: /etc/security/limits.conf.

@qat - memlock 4096

18 Software Installation

4 SampleApplications

The software package contains a performance sample as well as functional sample applications. This
section describes the steps required to build and execute these applications.

4.1 PerformanceSampleCode

The sample application is provided for the user space.

4.1.1 Compiling the PerformanceSampleCode

Note:

• These instructions assume the software package was untarred in the $ICP_ROOT directory.

• For details on running user space applications as non-root user refer to the section Running Appli-
cations as Non-Root User.

1. Open a terminal window and switch to superuser. Provide root password when prompted.

su

2. Switch to the $ICP_ROOT directory and compile the installation samples.

cd $ICP_ROOT

make samples-install

This compiles the acceleration sample code for user space. It also compiles thememorymapping driver
used with the user space application.

19

GettingStartedGuide

4.1.2 Default Configuration Files

Bydefault, theQATconfigurationfilesenable asymmetric cryptoanddatacompression services. If sym-
metric crypto is desired, the service must be enabled in the QAT configuration file. The QAT configura-
tion files are included in /etc folder and are named 4xxx_dev<x>.confwhere x is the device number.

In this file, replace the line:

ServicesEnabled = asym;dc

With:

ServicesEnabled = sym;dc

4.1.3 Loading theSampleCodeApplication

Note: In user space, before launching the cpa_sample_code application, the environmental variable
LD_LIBRARY_PATH may need to be set to the path where libqat_s.so is located. This may be /usr/

local/lib or $ICP_ROOT/build.

The acceleration kernelmodulemust be installed and the softwaremust be startedbefore attempting to
execute the sample code. This can be verified by running the following commands:

lsmod | grep "qa"

service qat_service status

Typical output is similar to the following:

$ lsmod | grep "qa"

qat_4xxx 61440 0

intel_qat 401408 2 qat_4xxx,usdm_drv

uio 20480 1 intel_qat

irqbypass 16384 4 intel_qat,vfio_pci_core,idxd_mdev,kvm

$ service qat_service status

Checking status of all devices.

There is 8 QAT acceleration device(s) in the system:

qat_dev0 - type: 4xxx, inst_id: 0, node_id: 0, bsf: 0000:6b:00.0, #accel: 1 #engines: 9�

↪→state: up

qat_dev1 - type: 4xxx, inst_id: 1, node_id: 0, bsf: 0000:70:00.0, #accel: 1 #engines: 9�

↪→state: up

qat_dev2 - type: 4xxx, inst_id: 2, node_id: 0, bsf: 0000:75:00.0, #accel: 1 #engines: 9�

↪→state: up

qat_dev3 - type: 4xxx, inst_id: 3, node_id: 0, bsf: 0000:7a:00.0, #accel: 1 #engines: 9�

↪→state: up

qat_dev4 - type: 4xxx, inst_id: 4, node_id: 1, bsf: 0000:e8:00.0, #accel: 1 #engines: 9�

↪→state: up

(continues on next page)

20 SampleApplications

GettingStartedGuide

(continued from previous page)

qat_dev5 - type: 4xxx, inst_id: 5, node_id: 1, bsf: 0000:ed:00.0, #accel: 1 #engines: 9�

↪→state: up

qat_dev6 - type: 4xxx, inst_id: 6, node_id: 1, bsf: 0000:f2:00.0, #accel: 1 #engines: 9�

↪→state: up

qat_dev7 - type: 4xxx, inst_id: 7, node_id: 1, bsf: 0000:f7:00.0, #accel: 1 #engines: 9�

↪→state: up

Note: If the modules are not returned from the first command, refer to the installation instructions for
additional information on starting the acceleration software.

In user space, the sample code is executed with the command:

./build/cpa_sample_code

4.1.4 SampleCodeParameters

The application allows the run-time parameters listed below:

Table 4: Sample Code Parameters
Parameter Description
cyNumBuffers=w Number of buffers submitted for each iteration. (default=20)
cySymLoops=x Number of iterations of all symmetric code tests. (default= 5000)
cyAsymLoops=y Number of iterations of all asymmetric code tests. (default=5000)
runTests=1 Run symmetric code tests.
runTests=2 Run RSA test code.
runTests=4 Run DSA test code.
runTests=8 Run ECDSA test code.
runTests=16 Run Diffie-Hellman code tests.
runTests=32 Run compression code tests.
runTests=63 Run all tests except the chained hash and compression tests. (default)
runTests=128 Run chained hash and compression test code.
runStateful=1 Enable stateful compression tests. Applies when compression code tests are

run.
signOfLife=1 Indicates shorter test run that verifies the acceleration software is working. This

parameter executes a subset of sample tests. Details are included in signOfLife
Test Parameter. (default=0)

getLatency=1 Measures the processing time for the request being processed. Requires Num-
berCyInstances=1 and NumberDcInstances=1 to be configured in [SSL] section
of the driver configuration file.
Performancesamplecodeneeds tobecompiledwithflag toenable latencymea-
surements.
make samples-install LATENCY_CODE=1

continues on next page

SampleApplications 21

GettingStartedGuide

Table 4 – continued from previous page
Parameter Description
getOffload-

Cost=1

Measures the average number of cycles spent for single request offloading.
Requires NumberCyInstances=1 and NumberDcInstances=1 to be configured in
[SSL] section of the driver configuration file.

includeLZ4=1 Include LZ4 compression tests. Applies when compression code tests are run.

4.1.4.1 signOfLife Test Parameter

The signOfLifeparameter is used to specify that a subset of the sample tests are executedwith smaller
iteration counts. This provides a quick test to verify the acceleration software and hardware are set up
correctly.

Note: If the signOfLife parameter is not specified, the full run of tests can take a significant amount of
time to complete.

4.1.4.2 User Space

After building the sample code with the installation script, the user space application is located at
$ICP_ROOT/build.

Then run the following commands:

cd $ICP_ROOT/build/

export LD_LIBRARY_PATH=`pwd\`

./cpa_sample_code signOfLife=1

4.1.5 Test Results

When running the application, the results are printed to the terminal window in which the application is
launched.

Here is an example of the log messages created during the test:

Algorithm Chaining - AES256-CBC HMAC-SHA512 Number of threads 2

Total Submissions 20

Total Responses 20

Packet Size 512

A similar pattern is repeated for each of the tests.

Note: During asymmetric crypto tests, warning messages similar to the following may be observed:

22 SampleApplications

GettingStartedGuide

ECDSA Warning! SYMMETRIC operation is not supported on Instance. Using calcSWDigest instead.

These warning messages can be safely ignored. The test itself is working as designed.

4.2 Functional SampleApplications

The software package contains sample code that demonstrates how to use the Intel® QuickAssist Tech-
nology APIs and build the structures required for various use cases.

For more details, refer to the Intel® QuickAssist Technology API Programmer’s Guide.

4.2.1 Compiling theAcceleration Functional SampleCode

Note: These instructions assume the software package has been untarred to the $ICP_ROOT directory.

The acceleration functional sample code can be compiled manually.

1. Compile for the user space using the following commands:

cd $ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/functional

make all

The generated sample applications are located at: $ICP_ROOT/quickassist/lookaside/

access_layer/src/sample_code/functional/build

4.2.2 Executing the Acceleration Functional Sample Code in User
Space

1. To execute the acceleration functional sample code in user space, use a command similar to the
following:

cd $ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/functional/build

./hash_file_sample

Note: The hash_file_sample is one of the functional user space applications. You can launch the other
user space applications in a similar fashion.

SampleApplications 23

5 RevisionHistory

Document
Version

Description Date

002 Updates for 1.1.40 Release March 2024
001 Initial Release February 2023

24

	Introduction
	About This Document
	Conventions and Terminology
	Features Implemented
	List of Files in Release
	Package Release Structure

	System Configuration
	Configuring BIOS
	Disabling QAT Endpoints
	Configuring Operating System
	Updating dnf Configuration Files
	Updating apt Configuration Files
	Installing Package Dependencies
	RPM-based package dependencies
	DEB-based package dependencies

	System Security Considerations

	Software Installation
	Installation Overview
	Unpacking the Software
	Configure Acceleration Software
	Dependencies
	Configuration Options

	Install Acceleration Software
	Uninstall Acceleration Software
	Starting/Stopping the Acceleration Software
	Configuration Files
	Running Applications as Non-Root User

	Sample Applications
	Performance Sample Code
	Compiling the Performance Sample Code
	Default Configuration Files
	Loading the Sample Code Application
	Sample Code Parameters
	signOfLife Test Parameter
	User Space

	Test Results

	Functional Sample Applications
	Compiling the Acceleration Functional Sample Code
	Executing the Acceleration Functional Sample Code in User Space

	Revision History

