
Programmer'sGuide

Intel®QuickAssist Technology

HardwareVersion 2.0

March 2024

Document Number: 743912-004

Performance varies by use, configuration and other factors. Learn more on the Intel's Performance
Index site.

Performance results are based on testing as of dates shown in configurations and may not reflect all
publicly available updates. See backup for configuration details. No product or component can be
absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

The products described may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Codenames are usedby Intel to identify products, technologies, or services that are in development and
not publicly available. These are not "commercial" names and not intended to function as trademarks.

See Intel's Legal Notices and Disclaimers.

© Intel Corporation. Intel, the Intel logo, Atom, Xeon, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/
https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/
https://www.intel.com/LegalNoticesAndDisclaimers

Contents

1 About thisDocument 1
1.1 Conventions and Terminology . 1

2 Architecture 3

3 Infrastructure 5
3.1 Queues and Queue Pairs . 5

3.1.1 Queues Pairs . 5
3.1.2 Queue Bundles . 6

3.2 Service Instances . 7
3.2.1 Configurable Items (via config file) . 7

3.3 Memory Management . 7
3.3.1 Shared Virtual Memory . 7

3.3.1.1 SVM Kernel Requirements . 8
3.3.2 DMA-able Memory . 8
3.3.3 Memory Type Determination . 9
3.3.4 Buffer Formats . 9

3.3.4.1 Flat Buffers . 9
3.3.4.2 Scatter-Gather List (SGL) Buffers . 9

3.3.5 Huge Pages . 10
3.4 Modes of Operation . 12

3.4.1 Calling Semantics . 12
3.4.1.1 Asynchronous (Polled) . 12
3.4.1.2 Asynchronous (Interrupts) . 12
3.4.1.3 Synchronous . 12
3.4.1.4 Pros And Cons . 12

3.5 Load Balancing . 16
3.5.1 Per Endpoint . 16
3.5.2 Across Endpoints . 18

3.5.2.1 Load Sharing Criteria . 18
3.5.3 Dimensions . 19

3.6 Debugability . 19
3.6.1 Overview of Intel® QAT debugfs entries . 19

3.6.1.1 Entries in /sys/kernel/debug/qat_* . 20
3.6.1.2 Memory driver queries (qae_mem_slabs) . 20

3.7 Heartbeat . 21

3.7.1 Heartbeat Operation . 21
3.7.1.1 Initialization . 21
3.7.1.2 Heartbeat Monitoring . 22
3.7.1.3 Resetting a Failed Device . 22

3.7.2 Incorporating Heartbeat into Intel® QAT Applications 23
3.7.3 Restart Sequence . 23
3.7.4 Status of Packets in Flight (Crypto Applications Only) 24
3.7.5 Determining Device ID . 25
3.7.6 Testing Heartbeat . 25

3.7.6.1 Simulated Heartbeat Failure Configuration . 25
3.7.6.2 Simulating Heartbeat Failure . 25

3.7.7 Handling Device Failures in a Virtualized Environment 27
3.7.8 Incorporating Dummy Responses into an Intel® QAT Application 28

3.8 Telemetry . 28
3.8.1 Telemetry Usage . 28
3.8.2 Telemetry Control . 30

3.8.2.1 Telemetry Commands . 30
3.8.2.2 Device Level Telemetry Values . 31
3.8.2.3 Ring Pair Level Telemetry Values . 31

3.8.3 Monitoring Telemetry - Text Based . 32
3.9 Rate Limiting . 37

3.9.1 Service Level Agreement (SLA) . 37
3.9.2 SLA Units . 38
3.9.3 SLA Manager Application . 38

3.9.3.1 SLA Commands . 38
3.10 Power Management . 39

3.10.1 Configuration . 39
3.10.2 Usage . 39
3.10.3 Considerations . 40

3.11 Reliability, Availability, and Stability (RAS) . 40
3.11.1 RAS Usage . 40
3.11.2 AER Errors . 41

4 AccelerationDriver 42
4.1 Controlling the Driver . 42

4.1.1 qat_service . 42
4.1.1.1 qat_service Usage . 42

4.1.2 adf_ctl . 43
4.1.2.1 adf_ctl Usage . 43
4.1.2.2 Examples . 44

4.2 Application Payload Memory Allocation . 44
4.2.1 Services . 45
4.2.2 Thread Specific USDM . 45

4.3 Return Codes . 46
4.4 Linux* Device Driver Operations Return Codes . 47

5 ConfigurationFiles 49
5.1 Configuration File Overview . 49

5.2 General Section . 50
5.2.1 ServicesEnabled . 51

5.2.1.1 Performance Considerations . 52
5.2.2 ServicesProfile . 52

5.2.2.1 General Default Configuration Parameters . 53
5.2.3 Concurrent Requests . 53
5.2.4 Power Management Parameters . 54
5.2.5 Shared Virtual Memory (SVM) Parameters . 54

5.2.5.1 SVMEnabled . 54
5.2.5.2 ATEnabled . 55

5.3 Logical Instances Section . 55
5.3.1 [KERNEL] Section . 56
5.3.2 User Process [xxxxx] Sections . 56
5.3.3 Cryptographic Logical Instance Parameters . 57
5.3.4 Data Compression Logical Instance Parameters . 58
5.3.5 Setting the Core Affinity Parameter for a Logical Instance 59

5.4 Maximum Number of Process Calculations . 59
5.4.1 Increasing the Maximum Number of Processes/Instances 59

5.4.1.1 Invalid Configurations . 60
5.4.1.2 Configuring Instances for Virtual Functions . 61

5.5 Configuring Multiple Intel® QuickAssist Technology Endpoints in a System 62
5.6 Configuring Multiple Processes on a System with Multiple Intel® QAT Endpoints 64
5.7 Sample Configuration Files . 67

6 Services 68
6.1 Data Compression . 68

6.1.1 Compresion Features . 68
6.1.2 Compression Limitations . 68
6.1.3 Compression Session Setup . 69
6.1.4 Decompression Session Setup . 69

6.1.4.1 Deflate Decompression . 70
6.1.4.2 LZ4 Decompresion . 70
6.1.4.3 LZ4 Decompression Limitations . 71
6.1.4.4 Multi-frame decompression support . 71

6.1.5 Performance Considerations . 71
6.1.6 Flush Flags . 71
6.1.7 Checksums . 72
6.1.8 LZ4s Compressed Data Block format . 72

6.1.8.1 LZ4 Compression Support . 73
6.1.9 Compress-and-Verify . 74

6.1.9.1 Compress and Verify Error log in Sysfs . 74
6.1.9.2 Compress and Verify and Recover (CnVnR) 75

6.1.10 Dynamic Compression . 76
6.1.11 Maximum Expansion with Auto Select Best Feature (ASB) 77
6.1.12 Maximum Compression Expansion . 77
6.1.13 No Session API . 78
6.1.14 Compression Levels . 79
6.1.15 Compression Status Codes . 79

6.1.16 Intel® QuickAssist Technology Compression API Errors 80
6.1.16.1 Compression API Errors . 80

6.1.17 Overflows Errors . 85
6.1.17.1 Traditional API Overflow Exception . 86
6.1.17.2 Data Plane API Overflow Error . 87
6.1.17.3 Handling Overflow Errors . 87
6.1.17.4 Compression Overflows in a Virtual Environment 87
6.1.17.5 Avoiding Compression Overflow Exceptions 87

6.1.18 Integrity Checksums . 88
6.1.18.1 Verify HW Integrity CRC’s . 89

6.1.19 Data Compression Applications . 89
6.1.19.1 Compression for Storage . 89
6.1.19.2 Data Deduplication and WAN Acceleration . 90

6.2 Cryptographic Services . 90
6.2.1 Introduction . 90

6.2.1.1 Supported Cipher Algorithms . 91
6.2.1.2 Supported Hash/Authenticate Algorithms . 92
6.2.1.3 Supported Public Key Algorithms . 93

6.2.2 Cryptography Applications . 93
6.2.2.1 IPsec and SSL VPNs . 93
6.2.2.2 Encrypted Storage . 94
6.2.2.3 Web Proxy Appliances . 95

7 SupportedAPIs 96
7.1 Intel QuickAssist Technology APIs . 96

7.1.1 Cryptographic and Data Compression API Descriptions 96
7.1.1.1 Data Plane APIs Overview . 97
7.1.1.2 IA Cycle Count Reduction When Using Data Plane APIs 97
7.1.1.3 Usage Constraints on the Data Plane APIs . 98

7.1.2 Intel® QAT API Limitations . 99
7.2 Additional APIs . 101

7.2.1 Dynamic Instance Allocation Functions . 102
7.2.1.1 icp_sal_userCyGetAvailableNumDynInstances 103
7.2.1.2 icp_sal_userDcGetAvailableNumDynInstances 103
7.2.1.3 icp_sal_userCyInstancesAlloc . 104
7.2.1.4 icp_sal_userDcInstancesAlloc . 104
7.2.1.5 icp_sal_userCyFreeInstances . 105
7.2.1.6 icp_sal_userDcFreeInstances . 105
7.2.1.7 icp_sal_userCyGetAvailableNumDynInstancesByDevPkg 106
7.2.1.8 icp_sal_userDcGetAvailableNumDynInstancesByDevPkg 106
7.2.1.9 icp_sal_userCyInstancesAllocByDevPkg . 107
7.2.1.10 icp_sal_userDcInstancesAllocByDevPkg . 107
7.2.1.11 icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel 108
7.2.1.12 icp_sal_userCyInstancesAllocByPkgAccel . 108

7.2.2 IOMMU Remapping Functions . 109
7.2.2.1 icp_sal_iommu_get_remap_size . 109
7.2.2.2 icp_sal_iommu_map . 110
7.2.2.3 icp_sal_iommu_unmap . 110

7.2.2.4 IOMMU Remapping Function Usage . 111
7.2.3 Polling Functions . 112

7.2.3.1 icp_sal_pollBank . 112
7.2.3.2 icp_sal_pollAllBanks . 112
7.2.3.3 icp_sal_CyPollInstance . 113
7.2.3.4 icp_sal_DcPollInstance . 114
7.2.3.5 icp_sal_CyPollDpInstance . 114
7.2.3.6 icp_sal_DcPollDpInstance . 115

7.2.4 User Space Access Configuration Functions . 116
7.2.4.1 icp_sal_userStart . 116
7.2.4.2 icp_sal_userStop . 117

7.2.5 Version Information Function . 117
7.2.5.1 icp_sal_getDevVersionInfo . 118

7.2.6 Reset Device Function . 118
7.2.6.1 icp_sal_reset_device . 119

7.2.7 Thread-Less APIs . 119
7.2.7.1 icp_sal_poll_device_events . 119
7.2.7.2 icp_sal_find_new_devices . 120

7.2.8 Compress and Verify (CnV) Related APIs . 120
7.2.8.1 icp_sal_get_dc_error . 120
7.2.8.2 icp_sal_dc_simulate_error . 121

7.2.9 Heartbeat APIs . 121
7.2.9.1 icp_sal_check_device . 121
7.2.9.2 icp_sal_check_all_devices . 122
7.2.9.3 icp_sal_heartbeat_simulate_failure . 122

7.2.10 Device Polling APIs . 123
7.2.10.1 icp_sal_poll_device_events . 123
7.2.10.2 cpaCyInstanceSetNotificationCb . 123
7.2.10.3 cpaDcInstanceSetNotificationCb . 124

7.2.11 Congestion Management APIs . 125
7.2.11.1 icp_sal_SymGetInflightRequests . 125
7.2.11.2 icp_sal_AsymGetInflightRequests . 126
7.2.11.3 icp_sal_dp_SymGetInflightRequests . 126

7.2.12 Service Specific Polling APIs . 127
7.2.12.1 icp_sal_CyPollSymRing . 127
7.2.12.2 icp_sal_CyPollAsymRing . 128

7.2.13 Check Device Availability APIs . 128
7.2.13.1 icp_sal_userIsQatAvailable . 128

8 Virtualization 130
8.1 Virtualization Deployment Model for Intel® QAT 2.0 . 130
8.2 Physical Device Direct Assignment . 130
8.3 Single Root IOV (SR-IOV) . 131
8.4 Scalable IOV (S-IOV) . 131
8.5 Reducing Number of VFs per Endpoint . 131

9 SecureArchitectureConsiderations 134
9.1 Terminology . 134

9.1.1 Threat Categories . 134
9.1.2 Attack Mechanism . 135
9.1.3 Attacker Privilege . 135
9.1.4 Deployment Models . 136

9.2 Threat/Attack Vectors . 136
9.2.1 General Mitigation . 136
9.2.2 General Threats . 137

9.2.2.1 DMA . 137
9.2.2.2 Intentional Modification of IA Driver . 138
9.2.2.3 Modification of the QAT Configuration File . 138
9.2.2.4 Malicious Application Code . 138
9.2.2.5 Denial of Service . 139

9.2.3 Threats Specific to Cryptographic Service . 139
9.2.3.1 Reading Cryptographic Keys . 139

10 RevisionHistory 140

List of Tables

1 Terminology . 2

2 Pros and cons of modes of operation . 16
3 Dimensions Gen 1 & Gen 2 . 19
4 Dimensions Gen 3 & Gen 4 . 19
5 Intel® QuickAssist Technology /sys/kernel/debug Entries . 20
6 Read/Write to /sys/kernel/debug/qae_mem_dbg/qae_mem_slabs 21
7 AutoResetOnError Values . 22
8 Heartbeat System Virtual Files . 26
9 Telemetry Commands . 30
10 Ring Pairs . 30
11 Device Level Telemetry Values . 31
12 Ring Pair Level Telemetry Values . 31
13 Rate Limiting SLA Commands . 38
14 Power Management Configuration . 39
15 RAS Error Types . 40
16 RAS AER Errors . 41

17 Acceleration Driver Services . 45
18 Return Codes . 46
19 Linux* Device Driver Operations Return Codes . 47

20 General Section Parameters . 50
21 General Default Configuration Parameters . 53
22 [KERNEL] Section Parameters . 56
23 [User Process] Section Parameters . 57
24 Cryptographic Logical Instance Parameters . 58
25 Data Compression Logical Instance Parameters . 58
26 Configuration Variations . 60
27 Configuring Physical Functions and Virtual Functions . 61

28 Compression CpaDcSessionSetupData Properties . 69
29 Decompression CpaDcSessionSetupData Properties . 69
30 Flush Flags . 71
31 Checksums . 72
32 Differences between LZ4 and LZ4s block format . 73
33 Compress and Verify and Recover (CnVnR) Behaviors . 75

vii

34 ASB Settings . 77
35 Compression Levels . 79
36 Compression API Errors . 80
37 Overflows Errors . 86
38 Integrity Checksums . 88
39 Supported Cipher Algorithms . 91
40 Supported Hash/Authenticate Algorithms . 92
41 Supported Public Key Algorithms . 93

42 Key Generation Cryptographic API Limitations . 99

43 Threat Categories . 134
44 Attack Mechanism . 135
45 Attacker Privilege . 135
46 Deployment Models . 136

1 About this Document

This programmer’s guide provides information on the architecture of the software and usage guidelines.

Information on the use of Intel® QuickAssist Technology (Intel® QAT) APIs, which provide the interface
to the acceleration services (cryptographic and data compression), is documented in the related Intel®

QAT software library documentation referenced in the Release Notes.

In this document, for convenience:

• Softwarepackage is usedasageneric term for the Intel®QATSoftwarePackage forHardwareVer-
sion 2.0.

• Acceleration driver is used as a generic term for the software that allows the Intel® QAT Software
Library APIs to access the Intel® QAT Endpoint(s).

Note: Refer to the Release Notes for a list of supported platforms.

Note: Current version of this document covers the out-of-tree acceleration driver. Future version of this
document will be updated to cover in-tree driver as well.

For additional details on in-tree driver refer to https://github.com/intel/qatlib.

1.1 Conventions andTerminology

The following conventions are used in this manual:

• Code text - code examples, command line entries, Application Porgramming Interface (API)
names, parameters, filenames, directory paths, and executables.

• Bold text - graphical user interface entries, buttons, and actions in instructions.

• Italic text - key terms and publication titles.

The following terms and acronyms are used in this manual.

1

https://github.com/intel/qatlib

Programmer'sGuide

Table 1: Terminology
Term Description
API Application Programming Interface
asym Asymmetric Cryptography
BDF Bus Device Function
BOM Bill of Materials
CBC Cipher Block Chaining
cy Cryptography
dc Data Compression
GRUB Grand Unified Bootloader
OS Operating System
PCI Peripheral Component Interconnect
PF PCIe Physical Function
Intel® QAT Intel® QuickAssist Technology
SKU Stock Keeping Unit
sIOV Scalable IOV
SR-IOV Single Root-I/O Virtualization
VF Virtual Function

2 About thisDocument

2 Architecture

Because the hardware is accessed via the Intel®QATAPIs, it is not necessary to knowall of the hardware
andsoftwarearchitecturedetails, butsomeknowledgeof theunderlyinghardwareandsoftware ishelpful
for performance optimization and debug purposes.

A simplified view of the hardware/software stack is shown in the following figure.

The flow can be broken down as:

1. Application submits payloads via the Intel® QuickAssist API as part of the request. The
userspace libraryconverts these requests intodescriptorsandplaces these in theTrans-
mit (Tx) hardware-assisted queues (aka ring).

2. Firmware parses the descriptor and configures the accelerators accordingly. Upon a job
completionfirmware returns theprocessedpayload (either encryptedor compressedor
both) and generates a response message. This response message is inserted in the re-
sponse ring.

3. A polling thread owned by the application queries the response ring via the Intel® Quick-
AssistLibrary. If theapplicationchosesnon-blockingcalls theuserspace librarywill issue
a callback to the application to inform that the operation is complete.

3

Programmer'sGuide

Note: The UIO (to be replaced with VFIO) layer is a framework present in both Linux Kernel
and user space library libudev. This framework enables exchanging data between Kernel and
user space. It offers better latency performance than IOCTL.

4 Architecture

3 Infrastructure

The following sections describe the building blocks of the Intel® QAT Endpoints’ architecture.

3.1 Queues andQueuePairs

Communication between CPU and Intel® QuickAssist Technology hardware is via hardware-assisted
queues (aka rings):

• Queues are circular buffers.

• Memory is in System DRAM.

• Device is configured with base address, entry size and number of entries via device CSRs.

• Head and Tail pointers are in device CSRs (MMIO space).

3.1.1 Queues Pairs

• To send a request, software writes request descriptor to next available entry in the request queue,
and updates the tail pointer.

• Device firmware reads request descriptor from request queue, updating the head pointer. It then
processes the request, writes response descriptor onto response queue, and updates the tail
pointer.

• Responsequeuescanbeconfigured togeneratean interruptwhendevicefirmwareupdates the tail
pointer, or can be polled.

5

Programmer'sGuide

3.1.2 QueueBundles

Queues are grouped into bundles of 8 queues (4 Queue Pairs (QPs)).

• When SR-IOV is enabled, each bundle shows up as a separate Virtual Function.

• When s-IOV is enabled each QP is exposed as a separate Assignable Device Interface (ADI).

Within each bundle, by default, a separate QP is used for each of the three possible services:

1. Public Key Crypto

2. Symmetric Crypto

3. Data Compression

Max of 2 service types per QAT device at a time. Each QP can be allocated to a specific service, in a bare
metal environment.

6 Infrastructure

Programmer'sGuide

3.2 Service Instances

At the Intel® QuickAssist Technology API, we abstract queue pairs using the concept of service in-
stances.

• To use a service, an application must first get a handle to a service instance.

• Corresponds to one or more queue pairs:

– Data compression instance contains 1 queue pair.

– Cryptographic instance:

* QATGen2: contains 2queuepairs, one for each sub-service of crypto (symmetric crypto,
public key crypto).

* QAT Gen4: crypto instances can be specified as either sym (symmetric) or asym (asym-
metric) cryptography and contain 1 queue pair.

3.2.1 Configurable Items (via config file)

• Queue depth (for each queue).

• Numberof service instancesperprocess for agivendevice (limitedbyavailable rings), for example:

– One per address space (e.g. user space processes).

– One per software or hardware thread (logical core), to avoid contention.

• Number of queue pairs per service, per bundle/VF, will be configurable in future.

3.3 MemoryManagement

This sectiondescribesmemorymanagement requirements for submittingbuffers to theQAThardware.

3.3.1 SharedVirtualMemory

SharedVirtualMemory (SVM) is a new feature inQAT2.0hardware. InQAT 1.x hardware,memoryneeds
to be submitted to the hardware as pinned and physically contiguous memory. In QAT 2.0, SVM allows
direct submission of an applications buffer, thus removing the memcpy cycle cost, cache thrashing, and
memory bandwidth. The SVM feature enables passing virtual addresses to the QAT hardware for pro-
cessing acceleration requests.

With SVM:

• Virtually contiguous (can also deal with Scatter Gather Lists of virtually addressed buffers).

• Virtually addressed.

Infrastructure 7

Programmer'sGuide

• Can toleratepage faultsbutPinning (i.e. locked, guaranteed resident inphysicalmemory) is recom-
mended for performance.

3.3.1.1 SVMKernel Requirements

In order to use SVM, ensure that kernel version v6.1 or higher is used. Alternatively verify the following
kernel patches are applied.

• 81c95fbaebfa5990c3c786c8c3e87426a33106fe

• e65a6897be5e4939d477c4969a05e12d90b08409

Verification can be done with the following steps:

git tag --contains 81c95fbaebfa5990c3c786c8c3e87426a33106fe

git tag --contains e65a6897be5e4939d477c4969a05e12d90b08409

This requirement provides mitigation for the issue QAT20-23616 described in the Release Notes.

The following kernel boot parameters need to be defined in order to utilize SVM.

intel_iommu=on,sm_on

Refer to Shared Virtual Memory Parameters for details on QAT configuration files updates required to
support SVM.

3.3.2 DMA-ableMemory

If SVM is not enabled, Memory passed to Intel® QuickAssist Technology hardware must be DMA’able.

• Physically contiguous (can also deal with Scatter Gather Lists).

• Physically addressed.

– If VT-d is enabled (e.g. in virtualized system), then Intel IOMMU will translate to host physical
addresses as needed.

• Pinned (i.e. locked, guaranteed resident in physical memory).

Intel provides a User Space DMA-able Memory (USDM) component (kernel driver and corresponding
user space library) which allocates/frees DMA-able memory, mapped to user space, performs virtual to
physical address translation on memory allocated by this library

This component is used by the sample code supplied with the user space library.

8 Infrastructure

Programmer'sGuide

3.3.3 MemoryTypeDetermination

QAT 2.0 hardware offers the application to use virtual memory directly to sending the acceleration re-
questsandsaving thememorycopyoverhead. However, differentSVMconfigurationswill result indiffer-
ent memory types. The QAT package offers memory management library called User Space DMAable
Memory(USDM) to help user space applications using the pinned memory.

SVMEnabled ATEnabled MemoryType
FALSE(0) FALSE(0) Pinned Memory (USDM)
TRUE(1) FALSE(0) Pinned Memory (USDM)
FALSE(0) TRUE(1) Invalid configuration
TRUE(1) TRUE(1) Pinned Memory (USDM) or Dynamic Memory

(malloc/ zalloc/mmap…)

3.3.4 Buffer Formats

Data buffers are passed across the API interface in one of the following formats:

• Flat Buffers represent a single region of physically contiguous memory.

• Scatter-Gather Lists (SGL) are essentially an array of flat buffers, for cases where the memory is
not all physically contiguous.

3.3.4.1 Flat Buffers

Flat buffers are representedby the typeCpaFlatBuffer, defined in thefilecpa.h. It consistsof twofields:

• Data pointer pData: points to the start address of the data or payload. The data pointer is a virtual
address; however, the actual data pointed to is required to be in contiguous and DMAable physical
memory. This buffer type is typically used when simple, unchained buffers are needed.

• Length of this buffer: dataLenInBytes specified in bytes.

For data plane APIs (cpa_sym_dp.h and cpa_dc_dp.h), a flat buffer is represented by the type CpaPhys-

FlatBuffer, also defined in cpa.h. This is similar to the CpaFlatBuffer structure; the difference is that,
in this case, the data pointer, bufferPhysAddr, is a physical address rather than a virtual address.

3.3.4.2 Scatter-Gather List (SGL)Buffers

Ascatter-gather list isdefinedbythetypeCpaBufferList, alsodefined in thefilecpa.h. Thisbufferstruc-
ture is typically used where more than one flat buffer can be provided to a particular API. The buffer list
contains four fields, as follows:

• The number of buffers in the list.

• pBuffers: pointer to an unbounded array of flat buffers.

Infrastructure 9

Programmer'sGuide

• UserData: an opaque field; is not read or modified internally by the API. This field could be used to
provide a pointer back into an application data structure, providing the context of the call.

• pMetaData: pointer to metadata required by the API:

– Themetadata is required for internal useby theAPI.Thememory for thisbufferneeds tobeal-
locatedby theclient as contiguousdata. The sizeof thismetadatabuffer is obtainedbycalling
cpaCyBufferListGetMetaSize for crypto, cpaBufferLists, and cpaDcBufferListGetMeta-

Size for data compression.

– The memory required to hold the CpaBufferList structure and the array of flat buffers is not
required to be physically contiguous. However, the flat buffer data pointers and the metadata
pointer are required to reference physically contiguous DMAable memory.

– There is a performance impact when using scatter-gather lists instead of flat buffers. Refer to
the Performance Optimization Guide for additional information.

– Scatter-Gather list (SGL) buffers should not have more than 256 entries.

For data plane APIs (cpa_sym_dp.h and cpa_dc_dp.h) a region of memory that is not physically contigu-
ous is described using the CpaPhysBufferList structure. This is similar to the CpaBufferList structure;
the difference, in this case, the individual flat buffers are represented using physical rather than virtual
addresses.

3.3.5 HugePages

The includedUser spaceDMAableMemory driver usdm_drv.ko supports 2MBpages. This allowsdirect
access tomainmemorybydevicesother than theCPUand theactual supportedmaximummemory size
in one individual allocationwhenhugepages is enabled is 2MB -5KB.Where the5KB is used formemory
management for thememorydriver. Theuseof2MBpagesprovidesbenefits,butalso requiresadditional
configuration. Use of this capability assumes that a sufficient number of huge pages are allocated in the
operating system for the particular use case and configuration.

Here are some example use cases:

• Default settings applied:

10 Infrastructure

Programmer'sGuide

modprobe usdm_drv.ko

• SetmaximumamountofNon-uniformMemoryAccess (NUMA)typememory that theUserSpace
DMAableMemory (USDM)driver canallocate to32MBfor all processes. Hugepagesaredisabled:

modprobe usdm_drv.ko max_mem_numa=32768

• Set maximum number of huge pages that the USDM can allocate to 50 in total and 5 per process:

modprobe usdm_drv.ko max_huge_pages=50 max_huge_pages_per_process=5

Note: This configuration works for up to the first 10 processes.

Here are examples of invalid use cases to avoid:

• This is erroneous configuration, maximum number of huge pages that USDM can allocate is 3 to-
tals: 3 for a first process, 0 for the next processes:

insmod ./usdm_drv.ko max_huge_pages=3 max_huge_pages_per_process=5

• This command results in huge pages being disabled because max_huge_pages is 0 by default:

insmod ./usdm_drv.ko max_huge_pages_per_process=5

• This command results in huge pages being disabled because max_huge_pages_per_process is 0
by default:

Infrastructure 11

Programmer'sGuide

insmod ./usdm_drv.ko max_huge_pages=5

Note: The use of huge pages may not be supported for all use cases. For instance, depending on the
driver version, some limitations may exist for an Input/Output Memory Management Unit (IOMMU).

3.4 Modes ofOperation

3.4.1 Calling Semantics

3.4.1.1 Asynchronous (Polled)

Hardware “request/response” interface is inherently asynchronous (non-blocking).

• Calling function returns once request submitted.

• Callback invoked when response available (polled).

3.4.1.2 Asynchronous (Interrupts)

Hardware “request/response” interface is inherently asynchronous (non-blocking).

• Calling function returns once request submitted.

• Callback invoked when response available (interrupt-driven).

3.4.1.3 Synchronous

Software interface is traditionally synchronous (blocking).

• Calling function blocks until response available.

• Can be implemented “on top of” asynchronous hardware semantics.

3.4.1.4 ProsAndCons

12 Infrastructure

Programmer'sGuide

Infrastructure 13

Programmer'sGuide

14 Infrastructure

Programmer'sGuide

Infrastructure 15

Programmer'sGuide

Table 2: Pros and cons of modes of operation
Asynchronous Synchronous

CPU Utilization Software thread can do other things
while hardware processes job, without
need for expensive context switch.

Software thread blocked or idle
awaiting response. Can use
multi-threading, but context switching
can be expensive.

Acceleration
Utilization

A single software thread can have
multiple requests outstanding,
keeping multiple accelerator engines.

Hardware has at most one request
outstanding per CPU/software thread,
remaining threads are idle.

Ease of Use Can be difficult if application is
designed to use synchronous APIs.

Easier to integrate if application is
designed to use synchronous APIs.

Note: Asynchronous API tends to be optimal for performance, but harder to integrate.

3.5 LoadBalancing

3.5.1 Per Endpoint

There are four arbiters, which by default are used for the different services (with one spare/unused).

Each partition:

• Arbitrates across two request queues per bundle/VF, to pick a request.

• Load balances all of these requests across all available “engines”.

Within a partition, arbitration uses round robin.

• Ensures fairness (in terms of number of requests) across queue pairs and guests

16 Infrastructure

Programmer'sGuide

Infrastructure 17

Programmer'sGuide

3.5.2 Across Endpoints

In a platformorCPUwithmultiple Intel®QATdevices, software is responsible for load sharing acrossde-
vices/endpoints. Sapphire Rapids has up to four Intel® QAT devices/endpoints in a single CPU package
(depending on SKU) PCIe card may have multiple (QAT 1.x) devices across one or more chipsets.

Software-based Load Sharing can be implemented at various layers:

• Forapplicationsusing the Intel®QuickAssistTechnologyAPI, theapplicationmust implement load
balancing.

• For applications using a framework (e.g. OpenSSL), the framework implements load balancing.

3.5.2.1 LoadSharingCriteria

• Simple round-robin scheme recommended.

• May want to consider “locality” in a multi-socket (NUMA) platform.

18 Infrastructure

Programmer'sGuide

3.5.3 Dimensions

Table 3: Dimensions Gen 1 & Gen 2
Gen 1 Gen 2
Intel® Communication
Chipset 8925 to 8955
Series

Intel® C62x Chipset Intel Atom® Processor
C3000

Number PCIe End-
points

1 3 1

Number of Bundles
/VFs per Endpoint

32 16 16

NumberofQueuePairs
per Bundle

8

Table 4: Dimensions Gen 3 & Gen 4
Gen3 Gen4
Intel® Atom P5000 Processor/ Ice
Lake D

Intel® 4th Gen Intel® Xeon® Scal-
able Processor (per socket)

Number PCIe End-
points

1 4

Number of VFs per
Endpoint

128 16

Number ofQueuePairs
per Bundle

8 4

Number of s-IOV ADIs
per Endpoint

N/A 64

3.6 Debugability

3.6.1 Overviewof Intel®QATdebugfs entries

Some useful debugging information for the driver and configuration is available via the Linux de-
bugfs file system, with the entries /sys/kernel/debug/qat_* and /sys/kernel/debug/qae_mem_dbg/

qae_mem_slabs .

Infrastructure 19

Programmer'sGuide

3.6.1.1 Entries in /sys/kernel/debug/qat_*

This includes:

Table 5: Intel® QuickAssist Technology /sys/kernel/debug
Entries

Entry Description Supported Plat-
forms

cnv_errors Indicates number of compressAndVerify errors.
Refer to Compress and Verify Error log in Sysfs.

All

dev_cfg Displays internal device configuration informa-
tion.

All

frequency Displays frequency of Acceleration Engines. All
fw_counters Displays Acceleration Engine firmware re-

quests/responses.
All

heartbeat, heart-

beat_failed, heart-

beat_sent

Refer to System Virtual Files. All

pm_status Displays power management status. Refer to
Power Management for additional information.

QAT 2.0

transport Contains firmware request/response data. Avail-
able only for kernel space instances.

All

version Includes package version information. All
vqat Contains sIOV Virtual QAT device details. Refer

to Scalable IOV for additional information.
QAT 2.0

3.6.1.2 Memory driver queries (qae_mem_slabs)

Debug features are also available by reading and writing the file /sys/kernel/debug/qae_mem_dbg/

qae_mem_slabs . When reading the virtual/physical address, size and slab id together with the pid

of the allocating process are shown. Writing a string to the file will start executing debug commands.

For example:

cat /sys/kernel/debug/qae_mem_dbg/qae_mem_slabs

Pid 78854, Slab Id 10550771712

Virtual address 000000000b39412d, Physical Address 274e00000, Size 2097152

Pid 78854, Slab Id 10309599232

Virtual address 000000003670dd45, Physical Address 266800000, Size 2097152

...

There are three commands supported, and the below table shows their output:

20 Infrastructure

Programmer'sGuide

Table6: Read/Writeto/sys/kernel/debug/qae_mem_dbg/qae_mem_slabs
Writing these strings… …will output thiswhen the file is read
d <pid> <virtual or physical address> The 256 byte in hex and ascii from the start ad-

dress
“c <pid> <slab id>” (pid should be the process id
that can be obtained by a previous read)

The allocation bit map for the given slab identifier

“t” Total size of NUMA memory allocated in kernel
space

Forexample,bycombiningawrite tothefileandasubsequent read, youcanseethetotalallocatedNUMA
memory, e.g.:

echo "t" > /sys/kernel/debug/qae_mem_dbg/qae_mem_slabs ; cat /sys/kernel/debug/qae_mem_dbg/

↪→qae_mem_slabs

Total allocated NUMA memory: 142606336 bytes

As above, the “d” and “c” commands will output their respective information.

3.7 Heartbeat

Under some circumstances, firmware in the Intel® QAT devices could become unresponsive, requiring a
device reset to recover. The Intel® QAT Heartbeat feature provides a mechanism for the customer ap-
plication to detect and reset unresponsive devices. It also notifies the application processes of the start
and end of the reset operation and suspends all Intel® QAT instances between the events.

3.7.1 HeartbeatOperation

A Heartbeat-enabled Intel® QAT device firmware periodically writes counters to a specified physical
memory location. Apairofcountersper thread is incrementedat thestartandendof themainprocessing
loop within the firmware. Checking for Heartbeat consists of checking the validity of the pair of counter
values for each thread. Stagnant counters indicate a firmware hang.

3.7.1.1 Initialization

At startup, the Intel® QAT device driver allocates memory for the counter pairs to be written by the
firmware and then sends a message to the firmware to start the Heartbeat functionality.

Infrastructure 21

Programmer'sGuide

3.7.1.2 HeartbeatMonitoring

Heartbeat check/monitoring refers to invocation of one of the two API calls that checks if the device is
responsive. Heartbeat failure refers the API returning failure.

The Intel® QAT driver does notmonitor forHeartbeat. It should be initiated by a Heartbeatmanagement
thread calling one of the following APIs periodically:

• icp_sal_check_device(Cpa32U accelId)

• icp_sal_check_all_devices(void)

A failure return code implies the device has failed or hung.

The Heartbeat management thread should satisfy the following conditions:

• For any given device, only one such process/thread should monitor.

• One process can monitor one or more devices.

• It can be a user application that uses Intel® QAT services, or a separate management/control plane
process.

• In virtualized environment, monitoring process(es)/thread(s) must run in the context of the host or
hypervisor.

3.7.1.3 Resetting a FailedDevice

A device can be configured for automatic reset by the Intel® QAT framework or manually reset by the
application by using the AutoResetOnErrorfield in the device configuration file /etc/<device>.conf, as
shown below.

Table 7: AutoResetOnError Values
AutoResetOnError Value Action onHeartbeat Failure
0 (default) Do not reset the device
1 Reset the device automatically

If an Intel® QATdevice isnotconfiguredforautomatic reset, themanagement threadshould reset itusing
the icp_sal_reset_device(Cpa32U accelId)API.

The icp_sal_reset_device() function starts an asynchronous reset sequence and returns immedi-
ately. The reset function should not be called again until the device has completed the reset to avoid a
reset storm. The icp_sal_check_device(<device id>) function couldbecalled in a loop to check if the
device reset is still in progress.

If the application devices are all configured for automatic reset then the icp_sal_check_all_devices()
functioncouldbeused; otherwise, the functionshouldnotbeusedbecause itdoesnot return the identity
of the failed device, which is a required parameter for the icp_sal_reset_device() function.

22 Infrastructure

Programmer'sGuide

FunctionSignatures

The details of the above functions, parameters, and return values can be found in Supported APIs > Ad-
ditional APIs.

3.7.2 IncorporatingHeartbeat into Intel®QATApplications

A typical Intel® QAT user application consists of two tasks:

• Thefirst task is typically an application thread that initializes Intel® QAT instancesandsessions, and
then submits service requests for Intel® QAT crypto or compression.

• If an application employs polling to receive Intel® QAT service responses, then this task is also an
application thread. Alternatively, responses are received as an interrupt handler.

Two more tasks are required to support Heartbeat:

• Thefirst isamanagement task tomonitor thedevices for failureorhangandthen resets them,when
required. As discussed earlier, this could be an application thread of an independent management
process.

• The second task is an application thread that polls for device reset events:

– Device is restarting: CPA_INSTANCE_EVENT_RESTARTING

– Device restart is complete: CPA_INSTANCE_EVENT_RESTARTED

If theapplicationemployspollingtoreceive Intel® QATserviceresponses, thenthis taskcouldbe included
in the same polling loop.

The polling for device events is done using the API: icp_sal_poll_device_events().

The two callback functions for crypto and compression are registered using the following APIs:

• cpaCyInstanceSetNotificationCb

• cpaDcInstanceSetNotificationCb

The details of the above functions, parameters, and return values can be found in Supported APIs > Ad-
ditional APIs.

3.7.3 Restart Sequence

During the restart sequence, the user space library releases the memory used for rings and other data
structures as part of the shutdown and reallocates them when the restart is completed. This is trans-
parent to the user application, so it can continue to use the same logical instance after reset to submit
Intel® QAT service requests. Any memory allocated by the user application for the Intel® QAT service is
untouched during device reset.

A typical Heartbeat error use-case is as follows:

1. The driver and the firmware is loaded, initialized and started.

Infrastructure 23

Programmer'sGuide

2. The user-space application registers to receive instance notifications by calling cpaCyInstance-

SetNotificationCb and cpaDcInstanceSetNotificationCb.

3. Themanagement threadmonitors for the device’s heartbeat. When adevice is unresponsive, a de-
vice reset is initiatedby this threador by the Intel® QATframeworkdependingon thedevice config-
uration.

4. The kernel-space process sends the restarting event to the user-space process.

5. Theuser-spacedriver passes thedevice restartingevent to all the registeredapplication instances.
It also frees memory and rings associated with the registered instances.

6. The kernel-space driver triggers the device reset.

7. During reset, the Intel® QAT service request made by the user application returns one of:

• CPA_STATUS_FAIL

• CPA_STATUS_RETRY

• CPA_STATUS_RESTARTING

8. When the device reset is complete, the kernel-space driver sends a device restarted event to the
user space driver.

9. Theuserspacedriverallocates thememoryandringsandthenforwards thedeviceRestartedevent
to each of the registered instances.

3.7.4 Status of Packets in Flight (CryptoApplicationsOnly)

When a device has fatal errors, the application ordinarily cannot determine whether or not inflight re-
quests have been processed successfully.

The current Intel® QAT release includes a dummy response feature that creates mock responses to all
requestssubmittedduringa fatal errorcondition, so theapplicationcandetect themand, therefore, know
which requests need to be resubmitted to the available devices or to the software.

Note: The sequence of dummy responses will match the sending request sequence for all requests
submitted during a fatal error.

Since the dummy response feature only supports Public Key Encryption (PKE), dummy responses may
be generated only when the icp_sal_CyPollInstance() function is called, since it is the function for
crypto services.

The icp_sal_poll_device_events() function should alsobe calledby the application, so that the appli-
cationget anotificationwhen thedeviceencounters a failure anddummy responsesaregeneratedwhen
calling icp_sal_CyPollInstance() for the inflight requests.

24 Infrastructure

Programmer'sGuide

3.7.5 DeterminingDevice ID

The<device id> that is passedas aparameter to severalHeartbeatAPI is thenumeric suffixof thedevice
name displayed by the following command. (device name: qat_dev0):

service qat_service status

The output will look like:

There is 1 QAT acceleration device(s) in the system: qat_dev0 - type: c3xxx, inst_id: 0, node_

↪→id: 0, bsf: 01:00.0, #accel: 3 #engines: 6 state: up

The Intel® QAT library has no API to discover the device number easily. However, an application can use
the IOCTLs IOCTL_GET_NUM_DEVICES and IOCTL_STATUS_ACCEL_DEV to find the device_id of a particular
device if they know the Bus Device Function (BDF). Refer to perform_query_dev() in ./adf_ctl.cpp.

3.7.6 TestingHeartbeat

Two debug capabilities are available to assist the developers incorporating Heartbeat into their applica-
tions:

• Simulation of Heartbeat failure.

• System virtual files under /sys/kernel/debug/.

3.7.6.1 SimulatedHeartbeat FailureConfiguration

The Heartbeat feature is always enabled in the package. However, a debug capability that simulates de-
vice failure can be enabled during the configure step as follows:

./configure --enable-icp-hb-fail-sim

3.7.6.2 SimulatingHeartbeat Failure

Simulating Heartbeat failure can be accomplished using two methods:

• Using the API icp_sal_heartbeat_simulate_failure(<device id>).

• Executing the command:

cat /sys/kernel/debug/<device>/heartbeat_sim_fail

Infrastructure 25

Programmer'sGuide

SystemVirtual Files

Note: The heartbeat /sys/kernel/debug files are associated with the QAT Physical Function (PF).

The Heartbeat feature implements the following system virtual files under the /sys/kernel/debug/

qat_<device>_<your_device_BDF>/directory.

Table 8: Heartbeat System Virtual Files
File Content
heartbeat 0: Device is responsive. -1: Device is NOT responsive.
heartbeat_failed Number of times the device became unresponsive.
heartbeat_sent Number of times the control process checked if the device is responsive.

A developer could simulate the Heartbeat management process by running the following script in the
background:

#!/bin/bash

while : do

cat /sys/kernel/debug/<device>/heartbeat > /dev/null sleep 1

done

Heartbeat Polling Frequencies

The application developer should decide on the following two Heartbeat polling frequencies:

• Device Heartbeat monitoring.

• Checking for device reset events.

DeviceHeartbeatMonitoring

Consider the following points when determining the frequency of Heartbeat monitoring:

• Increasing Heartbeat monitoring frequency will minimize the customer’s system downtime.

• However, since device unresponsiveness should be an infrequent event, high frequency Heartbeat
monitoring wastes CPU cycles.

• Also, if there are large Intel® QATservice requests that take some time tocomplete, high frequency
Heartbeat monitoring could result in false reports of unresponsiveness.

• With QAT Gen4 devices, heartbeat update timer in firmware is a constant value of 200ms (uncon-
figurable). With QAT Gen2 devices this value is configurable with configuration item Heartbeat-
Timer (the default value is 500ms and the minimal allowed value is 200ms)

• For both QAT Gen2 and Gen4 monitoring interval should be larger or equal than the Heartbeat up-
date interval. (e.g. if user configure HeartbeatTimer=300, polling interval should be >=300ms)

26 Infrastructure

Programmer'sGuide

Checking forDeviceReset Events

If the application uses polling for reading Intel® QAT service responses, there is no value in checking for
resetsmore frequently. Sincedeviceunresponsiveness is an infrequentoccurrence, frequencyof check-
ing for reset events could be a fraction of the frequency of polling for Intel® QAT service responses.

3.7.7 HandlingDevice Failures in aVirtualized Environment

The Heartbeat feature in the acceleration software can be used in a virtualized environment. Refer to
the Using Intel® Virtualization Technology (Intel® VT) with Intel® QuickAssist Technology Application
Note for more details on enabling SR-IOV and the creation of Virtual Functions (VFs) from a single
Intel® QuickAssist Technology acceleration device to support acceleration for multiple Virtual Machines
(VMs).

The following sequencedescribes a possible use case for using theHeartbeat feature in a virtualized en-
vironment.

1. The Intel® QAT Physical Function driver (PF driver) isloaded, initialized and started.

2. The Intel® QAT Virtual Function driver (VF driver) is loaded, initialized and started in the Guest OS
in the VM.

3. The PF driver detects that the firmware is unresponsive (using either of the following methods:
UserProcEntryRead(notEnabledbyDefault)onpage47orUserApplicationHeartbeatAPIs (not
Enabled by Default) on page 48).

4. The PF driver sends the “Restarting” event message to the VF via the internal PFto-VF communi-
cation messaging mechanism.

5. The VF driver sends the “Restarting” event to the application’s registered callback. The callback
is registered using either of the Intel® QAT API functions cpaDcInstanceSetNotificationCb() or
cpaCyInstanceSetNotificationCb() in the Guest OS. (The application’s callback function may
perform any application-level cleanup.)

6. The PF driver starts the reset sequence (save state, initiate reset, and restore state).

7. The user restarts the Guest OS and loads the VF driver and application in the Guest OS.

Note:

• If the Heartbeat feature in the acceleration software is not enabled, the PF driver will not notify the
VF driver that the firmware is unresponsive.

• The error detection mechanisms are not available on the VF driver in the VM, but device errors
caused by any of the software running on the VM will be detected by the PF driver using the above
mechanisms.

Infrastructure 27

Programmer'sGuide

3.7.8 Incorporating Dummy Responses into an Intel® QATApplica-
tion

Thedummyresponse featurehasbeen incorporated in a scenariowith the Intel® QATengineandNginx*.
Figure below illustrates how it works. This can be used as a reference to so-called “software fallback.”

The Intel® QAT engine is a shim layer between OpenSSL* libcrypto* and Intel® QAT Library. The Intel®

QAT Library will generate failover responses.

The Heartbeat Monitoring Daemon, a single process, is a daemon which is used to check the device sta-
tusperiodically and trigger thedriver the reset thedevicewhenheartbeat failurehappens. Itsonlyactivity
is calling icp_sal_check_device() or icp_sal_check_all_devices()periodically.

The Intel® QATEnginepolls forandhandles “deviceerror”and“deviceok”events (viaudev). It keeps track
of the number of devices which are active.

• If some,butnotall, Intel® QATdevicesencountererrors, switch to remainingavailabledevicesby re-
submitting the inflight requests, which are responded to with dummy responses and new requests
to the available devices.

• If thenumber of active Intel® QATdevicesgoes to zero, switch to software and resubmit the inflight
requests which are responded to with dummy responses and new requests to the software.

• If the number of active Intel® QAT devices goes positive again, switch back to hardware.

3.8 Telemetry

The telemetry feature is a tool to view theperformance andutilization of an accelerationdevice. Teleme-
try data can be viewed on a per device and a per ring pair (also known as queue pair) basis.

3.8.1 TelemetryUsage

The telemetry feature is configured and queried using sysfs files in the Linux filesystem.

The telemetry sysfs folder is located at /sys/devices/pciAAAA:BB/AAAA:BB:CC.D/telemetrywhere:

• AAAA:BB:CC.D is the Domain:BDF of the target Intel® QAT Endpoint.

Example:

ls /sys/devices/pciAAAA:BB/0000:6b:00.0/telemetry

The telemetry feature is controlled with standard linux file commands into the control file as outlined be-
low. The telemetry data is accessed through the device_data or rp_<X>_data file depending on what
data is required.

The telemetry data for device level and ring pair level is updated each second.

28 Infrastructure

Programmer'sGuide

Infrastructure 29

Programmer'sGuide

3.8.2 TelemetryControl

Device level telemetry is enabledbyechoing1 into thecontrol file anddisabledbyechoing0. Reading the
control file will tell whether the feature is currently enabled or disabled.

Ring Pair level telemetry is enabled when device level telemetry is enabled. However the ring pairs need
to be selected. Only 4 ring pairs can be shown at any given time. By echoing the number of the ring pair
(0-63) into a rp_<X>_data file it can be selected. Where X is A,B,C or D.

3.8.2.1 TelemetryCommands

Table 9: Telemetry Commands
Operation Command
Enable Telemetry echo 1 > control

Disable Telemetry echo 0 > control

Query Telemetry data cat device_data

Select Ring Pairs echo Num > rp_<X>_data, Num is the ring pair to be selected

Query Ring Pair data cat rp_<X>_data

SelectingRingPairs

This section provides guidance on the mapping of ring pairs to the VFs for the PF. There are 4 Ring Pairs
per VF. The Ring Pairs for a PF looks like the following:

Table 10: Ring Pairs
VF RingPairs
1 0 1 2 3
2 4 5 6 7
3 8 9 10 11
4 12 13 14 15
5 16 17 18 19
6 20 21 22 23
7 24 25 26 27
8 28 29 30 31
9 32 33 34 35
10 36 37 38 39
11 40 41 42 43
12 44 45 46 47
13 48 49 50 51
14 52 53 54 55
15 56 57 58 59
16 60 61 62 63

30 Infrastructure

Programmer'sGuide

The ServicesEnableddefined for the PF control the mapping of the Ring Pairs:

• If only one workload is enabled (dc/sym/asym), the first two columns are used for this service.

• Ifdcandsymorasym isenabled, thefirst twocolumnsareforsymorasymandthesecondtwocolumns
are for dc

• If sym and asym is enabled, the first and third columns are for asym and second and fourth columns
are for sym.

3.8.2.2 Device Level TelemetryValues

Table 11: Device Level Telemetry Values
Value Meaning
sample_cnt Message count, counter.
pci_trans_cnt PCIe Partial Transactions, counter.
max_rd_lat Max Read Latency, nanoseconds.
rd_lat_acc_avg Average Read Latency, nanoseconds.
max_lat Max Get To Put latency, nanoseconds.
lat_acc_avg Average Get To Put latency, nanoseconds.
bw_in PCIe write bandwidth, Mbps.
bw_out PCIe read bandwidth, Mbps.
at_page_req_lat_acc_avg Average Page Request Latency, nanoseconds.
at_trans_lat_acc_avg Average Translation Latency, nanoseconds.
at_max_tlb_used Maximum uTLB Consumed, counter.
util_cpr<x> Compression Slice Utilization On Slice X, percentage execution cycles.
util_dcpr<x> Decompression Slice Utilization On Slice X, percentage execution cycles.
util_xlt<x> Translator Slice Utilization On Slice X, percentage execution cycles.
util_cph<x> Cipher Slice Utilization On Slice X, percentage execution cycles.
util_ath<x> Authentication Slice Utilization On Slice X, percentage execution cycles.
util_ucs<x> UCS Slice Utilization On Slice X, percentage execution cycles.
util_pke<x> PKE Slice Utilization On Slice X, percentage execution cycles.

3.8.2.3 RingPair Level TelemetryValues

Table 12: Ring Pair Level Telemetry Values
Value Meaning
sample_cnt Message count, counter.
rp_num Number of the ring pair returning data.
pci_trans_cnt PCIe Partial Transactions, counter.
lat_acc_avg Average Get To Put latency, nanoseconds.
bw_in PCIe write bandwidth, Mbps.
bw_out PCIe read bandwidth, Mbps.

continues on next page

Infrastructure 31

Programmer'sGuide

Table 12 – continued from previous page
Value Meaning
at_glob_devtlb_hit Descriptor DevTLB hit rate per ring, counter.
at_glob_devtlb_miss Descriptor DevTLB miss rate per ring, counter.
tl_at_payld_devtlb_hit Payload DevTLB hit rate per ring, counter.
tl_at_payld_devtlb_miss Payload DevTLB miss rate per ring, counter.

3.8.3 MonitoringTelemetry - Text Based

The following example Python script highlights how telemetry data can be monitored at the command
line. The script first enables telemetry service for each QAT endpoint that supports telemetry and is in
the up state. It then queries the telemetry data on a periodic basis collecting the data and formatting the
display.

Important: When running script as non-root User, ensure adf_ctl is added to qat group.

sudo chgrp qat /usr/local/bin/adf_ctl

Script can be downloaded from here

#!/usr/bin/env python

import time

import curses

import subprocess

import re

devices=[]

(continues on next page)

32 Infrastructure

Programmer'sGuide

(continued from previous page)

paths=[]

set_paths=[]

def EnableTelemetry():

devices.clear()

command = "adf_ctl status"

sp = subprocess.Popen(command,shell=True,stdout=subprocess.PIPE,stderr=subprocess.

↪→PIPE,universal_newlines=True)

Store the return code in rc variable

rc=sp.wait()

Separate the output and error

This is similar to Tuple where we store two values to two different variables

out,err=sp.communicate()

Split string into list of strings

output_adf = out.split()

paths.clear()

command = 'find /sys/devices/ -name "telemetry"'

sp = subprocess.Popen(command,shell=True,stdout=subprocess.PIPE,stderr=subprocess.

↪→PIPE,universal_newlines=True)

Store the return code in rc variable

rc=sp.wait()

Separate the output and error.

This is similar to Tuple where we store two values to two different variables

out,err=sp.communicate()

Split string into list of strings

original_array= out.split()

output_telem = sorted(original_array, key=lambda x: (x.split(':')[1], 16))

i = 0

state = "down"

name = None

bus = None

telemetry_supported = False

Build device list from adf_status output

while i < len(output_adf):

if "qat_dev" in output_adf[i]:

name = output_adf[i]

elif "type:" == output_adf[i]:

if "4xxx," == output_adf[i+1]:

telemetry_supported = True

elif "bsf:" == output_adf[i]:

bus = output_adf[i+1][5:7]

(continues on next page)

Infrastructure 33

Programmer'sGuide

(continued from previous page)

elif "state:" == output_adf[i]:

if "up" == output_adf[i+1]:

if telemetry_supported == True:

devices.append((name, bus))

Reset variables to ensure we only attempt to enable telemetery on�

↪→devices that support telemetry and are in up state

state = "down"

name = None

telemetry_supported = False

i += 1

Build path list from Telemetry search

i = 0

for i in range(len(output_telem)):

paths.append(output_telem[i])

Verify Telemetry paths are part of enabled QAT endpoints

set_paths.clear()

i = 0

for path in paths:

while i < len(devices):

if devices[i][1] in path:

set_paths.append(path)

i += 1

i = 0

if len(set_paths) == 0:

print("No telemetry supported QAT endpoints found... exiting.")

quit()

Enable Telemetry for QAT endpoints

for path in set_paths:

control_file_name= path + "/control"

command = "echo 1 > " + control_file_name

try:

str(subprocess.check_output(command, shell=True))

except:

break

def pbar(window):

refresh_counter = 0

while True:

try:

refresh_counter += 1

window.addstr(0, 10, "Intel(R) QuickAssist Device Utilization")

window.addstr(2, 10, "Device\t%Comp\t%Decomp\t%PKE\t%Cipher\t%Auth\t

↪→%UCS\tLatency(ns)")
(continues on next page)

34 Infrastructure

Programmer'sGuide

(continued from previous page)

window.addstr(3, 10,

↪→"===")

count = 0

for device in devices:

command = "cat " + set_paths[count] + "/device_data"

sp = subprocess.Popen(command,shell=True,stdout=subprocess.

↪→PIPE,stderr=subprocess.PIPE,universal_newlines=True)

Store the return code in rc variable

rc=sp.wait()

Separate the output and error

This is similar to Tuple where we store two values to two�

↪→different variables

out,err=sp.communicate()

Split string into list of strings

output = out.split()

i = 0

while i < len(output):

if "lat_acc_avg" == output[i]:

latency = output[i+1]

elif "util_cpr0" == output[i]:

compression = output[i+1]

elif "util_dcpr0" == output[i]:

decompression0 = output[i+1]

elif "util_dcpr1" == output[i]:

decompression1 = output[i+1]

elif "util_dcpr2" == output[i]:

decompression2 = output[i+1]

elif "util_pke0" == output[i]:

pke0 = output[i+1]

elif "util_pke1" == output[i]:

pke1 = output[i+1]

elif "util_pke2" == output[i]:

pke2 = output[i+1]

elif "util_pke3" == output[i]:

pke3 = output[i+1]

elif "util_pke4" == output[i]:

pke4 = output[i+1]

elif "util_pke5" == output[i]:

pke5 = output[i+1]

elif "util_cph0" == output[i]:

cph0 = output[i+1]

elif "util_cph1" == output[i]:

cph1 = output[i+1]

elif "util_cph2" == output[i]:

(continues on next page)

Infrastructure 35

Programmer'sGuide

(continued from previous page)

cph2 = output[i+1]

elif "util_cph3" == output[i]:

cph3 = output[i+1]

elif "util_ath0" == output[i]:

ath0 = output[i+1]

elif "util_ath1" == output[i]:

ath1 = output[i+1]

elif "util_ath2" == output[i]:

ath2 = output[i+1]

elif "util_ath3" == output[i]:

ath3 = output[i+1]

elif "util_ucs0" == output[i]:

ucs0 = output[i+1]

elif "util_ucs1" == output[i]:

ucs1 = output[i+1]

i += 1

decompress_utilization = int(decompression0) +�

↪→int(decompression1) + int(decompression2)

if decompress_utilization > 0:

decompress_utilization = decompress_utilization / 3

decompress_utilization = round(decompress_utilization)

pke_utilization = int(pke0) + int(pke1) + int(pke2) +�

↪→int(pke3) + int(pke4)+ int(pke5)

if pke_utilization > 0:

pke_utilization = pke_utilization / 6

pke_utilization = round(pke_utilization)

cph_utilization = int(cph0) + int(cph1) + int(cph2) +�

↪→int(cph3)

if cph_utilization > 0:

cph_utilization = cph_utilization / 4

cph_utilization = round(cph_utilization)

ath_utilization = int(ath0) + int(ath1) + int(ath2) +�

↪→int(ath3)

if ath_utilization > 0:

ath_utilization = ath_utilization / 4

ath_utilization = round(ath_utilization)

usc_utilization = int(ucs0) + int(ucs1)

if usc_utilization > 0:

usc_utilization = usc_utilization / 2

usc_utilization = round(usc_utilization)

if int(latency) == 0:

window.addstr(4+count, 10, device[0] + '\t0\t0\t0\t0\

↪→t0\t00 ')

window.addstr(4+count, 10, device[0] + '\t' + compression + '\

↪→t' + str(decompress_utilization) + '\t' + str(pke_utilization) + '\t' + str(cph_

↪→utilization) + '\t' + str(ath_utilization) + '\t' + str(usc_utilization) + '\t'+ latency)

count += 1

(continues on next page)

36 Infrastructure

Programmer'sGuide

(continued from previous page)

window.addstr(4+count, 10,

↪→"===")

window.refresh()

time.sleep(2)

if refresh_counter % 5 == 0:

window.clear()

EnableTelemetry()

except KeyboardInterrupt:

break

except:

break

if __name__ == "__main__":

EnableTelemetry()

curses.wrapper(pbar)

3.9 Rate Limiting

Rate Limiting is implemented by monitoring the utilization of the device on a per-VF, per-service basis
and comparing that to the SLA allocated to that VF and service. Resources are shared across guests
and the resource utilization of each guest is measured relative to the capacity of the physical function.

The feature is supported only for SYM and ASYM services.

To enable the Rate Limiting feature:

1. Install the driver package on the host with Single-Root Input/Output Virtualization (SR-IOV) en-
abled.

2. Set ServicesEnabled to asym or sym.

3. Perform qat_service shutdown and qat_service start.

3.9.1 Service Level Agreement (SLA)

Service Level Agreement enforcement allocates a specified amount of capacity for a specified service
to a specified VF: max SLA enforced = (number of VFs) X (number of services) where:

• Number of VFs varies based on device type

• Number of services = 2 (asymmetric or symmetric)

Infrastructure 37

Programmer'sGuide

3.9.2 SLAUnits

SLA units are measured as follows:

• Symmetric Crypto – 1Mbps of throughput.

• Asymmetric Crypto – 1 operation (ops) of reference operation.

3.9.3 SLAManagerApplication

The sla_mgr tool is used to create, update, delete, list and get SLA capabilities. The SLA Manager
executable is available in $ICP_ROOT/build/sla_mgr after the package is built and installed using ./

configure; make install commands.

3.9.3.1 SLACommands

Table 13: Rate Limiting SLA Commands
Operation Command
Create SLA ./sla_mgr create <vf_addr> <rate_in_sla_units> <service>

Update SLA ./sla_mgr update <pf_addr> <sla_id> <rate_in_sla_units>

Delete SLA ./sla_mgr delete <pf_addr> <sla_id>

Delete all SLAs ./sla_mgr delete_all <pf_addr>

Query SLA capabilities ./sla_mgr caps <pf_addr>

Query list of SLAs ./sla_mgr list <pf_addr>

Options:

• pf_addr - Physical address in domain:bus:device.function(xxxx:xx:xx.x) format.

• vf_addr - Virtual address in domain:bus:device.function(xxxx:xx:xx.x) format.

• Service - Asym(=0) or Sym(=1).

• rate_in_sla_units - [0-MAX]. MAX is found by querying the capabilities.

• sla_id - Value returned by create command.

One rate_in_sla_units is equal to:

• 1 operation per second - for asymmetric service.

• 1 Megabits per second - for symmetric service/compression service.

38 Infrastructure

Programmer'sGuide

3.10 PowerManagement

The goal of power management is to manage and save power consumed by the device in the following
states:

• idle => whenever no request is sent, power state is minimum.

• initialized or reset.

• active => whenever there are requests to be handled, power state is max.

3.10.1 Configuration

Power management configuration is included in the device configuration file (i.e. /etc/4xxx_devX.conf
where X is the 0-based index of the device.)

Power management configurations parameters include:

Table 14: Power Management Configuration
Parameter Description
PmIdleInterruptDelay Configurepowermanagement interruptdelay fromthesystemtoQAT

driver in millisecond(s).
The default value is 512 milliseconds.

PmIdleSupport Configure the device to enable/disable power management idle sup-
porting.
Power management idle support is enabled by default.

3.10.2 Usage

The information of power management status are exposed in debug sysfs file /sys/kernel/debug/

qat_4xxx_AAAA:BB:CC.D/pm_statuswhere:

• AAAA:BB:CC.D is the Domain:BDF of the target Intel® QAT Endpoint.

Example:

cat /sys/kernel/debug/qat_4xxx_0000:6b:00.0/pm_status

The QAT device is statically configured, so any change in device configuration file will only be effective
after the device is rebooted.

Infrastructure 39

Programmer'sGuide

3.10.3 Considerations

While power management is an important feature in reducing power consumed, it can affect the inter-
nal components’ clocks of QAT devices, and that can affect example telemetry work. It also can impact
latency numbers.

Important: It is recommendedtodisable thepowermanagement feature if eitherof the following is true:

• Using feature dependent on clock speed, such as telemetry, or

• Supporting latency-sensative workload.

3.11 Reliability, Availability, andStability (RAS)

The RAS feature goal is to support the acceleration devices Reliability, Availability and Stability by han-
dling the error interrupts initiated by the device.

Additionally the types of errors are counted and the counters made available via sysfs.

3.11.1 RASUsage

Following PCIe specifications, errors are categorized as follows:

Table 15: RAS Error Types
Error Type Description
Correctable Device can recover on its own, no software involvement.

The ras_correctable counter is incremented in sysfs.
Uncorrectable Software intervention is needed to resolve the error. This may require the appli-

cation to reset the session or resend the request to the device.
The ras_uncorrectable counter is incremented in sysfs.

Fatal Device unable to recover on its own even with software help. Restarting the de-
vice is required.
The ras_fatal counter is incremented in sysfs.

The RAS sysfs files are located at /sys/devices/pciAAAA:BB/AAAA:BB:CC.D/ras_Xwhere:

• AAAA:BB:CC.D is the Domain:BDF of the target Intel® QAT Endpoint.

• ras_X is the error type (ras_correctable/ras_uncorrectable/ras_fatal).

Example:

cat /sys/bus/pci/devices/0000\:6b\:00.0/ras_fatal

40 Infrastructure

Programmer'sGuide

Note: RAS is enabled by default when the device is initialised.

3.11.2 AERErrors

The Linux kernel implements an AER driver for each PCIe device to handle errors reported through the
AER mechanism.

AER error counters for each device are exposed through sysfs files categorized as follows:

Table 16: RAS AER Errors
Error Type Description
AER Correctable Device can recover on its own, no software involvement.

The aer_dev_correctable counter is incremented in sysfs.
AER Uncor-
rectable

Software intervention isneededto resolve theerror. In thecaseofanerrorcaused
by a transaction failure or for instance a packet memory buffer that can’t be re-
stored by ECC, then the device will need to reset in order to retry the transaction
and attempt recovery.
The aer_dev_uncorrectable counter is incremented in sysfs.

AER Fatal In the case of a fatal error, the AER driver will additionally reset the PCIe link in an
attempt to recover.
The aer_dev_fatal counter is incremented in sysfs.

AER errors counters are exposed at /sys/bus/pci/devices/AAAA:BB:CC.D/aer_dev_Xwhere:

• AAAA:BB:CC.D is the Domain:BDF of the target Intel® QAT Endpoint.

• aer_dev_X is the error type (aer_dev_correctable/aer_dev_uncorrectable/aer_dev_fatal).

Example:

cat /sys/bus/pci/devices/0000\:6b\:00.0/aer_dev_correctable

Important: AER reporting must be enabled in the BIOS to have errors reported through AER.

Infrastructure 41

4 AccelerationDriver

Intel® QAT can accelerate the following services:

• Symmetric cryptography

• Public key cryptography

• Data compression/decompression

The Intel® QAT Endpoints are exposed as PCI devices. Applications running in user space typically ac-
cess these services via the Intel® QAT APIs. Applications that run in the Linux* kernel can also access
some services via the Linux* Kernel Cryptographic Framework (LKCF) API.

4.1 Controlling theDriver

Two methods are provided to manage the acceleration driver. They include:

• qat_service: script to manage the Intel® QAT Endpoints.

• adf-ctl: Utility for loading configuration files and sending events to the driver.

4.1.1 qat_service

The qat_service script is installed with the software package in the /etc/init.d/ directory. The script
allows a user to start, stop, or query the status (up or down) of a single Intel® QAT Endpoint or all Intel®

QAT Endpoints in the system.

4.1.1.1 qat_serviceUsage

To view all Intel® QAT Endpoints in the system, use:

service qat_service status

If forexample, thereare two Intel® QATEndpoints in thesystem, theoutputwill besimilar to the following:

42

Programmer'sGuide

qat_dev0 - type: c6xx, inst_id: 0, bsf: 06:00:0, #accel: 5 #engines: 10 state: up

qat_dev1 - type: c6xx, inst_id: 1, bsf: 83:00:0, #accel: 5 #engines: 10 state: up

Other options are also available:

service qat_service start||stop||status||restart||shutdown

For a system with multiple Intel® QAT Endpoints, you can start, stop or restart each individual device by
passing the Intel® QAT Endpoint to be restarted or stopped as a parameter qat_dev<N>, for example:

service qat_service stop qat_dev0

service qat_service stop qat_dev1

The shutdown qualifier enables the user to bring down all Intel® QAT Endpoints and unload driver mod-
ules from the kernel. This contrasts with the stop qualifier, which brings down one or more Intel® QAT
Endpoints, but does not unload kernel modules, so other Intel® QAT Endpoints can still run.

4.1.2 adf_ctl

The adf_ctl user space utility is separate to the driver and provides a mechanism for:

• Loading configuration file data to the kernel driver. The kernel space driver uses the data and also
provides the data to the user space driver.

• Sending events to the driver to bring devices up and down.

The adf_ctlprovidedwith the Intel® QAT2.0driver can also be used to interfacewith Intel® QAT 1.6 and
1.7 devices.

4.1.2.1 adf_ctl Usage

To bring up, down, restart or reset device(s):

adf_ctl [-c|--config] [qat_dev] [up|down|restart|reset]

To print device(s) status:

adf_ctl [qat_dev] status

To use the specified configuration file:

-c (--config) [config/file/path]

Note: If no device (physical or virtual) is selected, this file is used against all existing devices.

AccelerationDriver 43

Programmer'sGuide

4.1.2.2 Examples

To bring device 0 down:

adf_ctl qat_dev0 down

To load device configuration from default path (e.g. /etc/4xxx_dev1.conf), then bring device 1 up:

adf_ctl qat_dev1 up

To load device configuration from specified path /etc/4xxx_dev1.conf and bring device 1 up:

adf_ctl -c /etc/user_4xxx_dev1.conf qat_dev1 up

To restart all devices with default configuration files:

adf_ctl restart

To restart all devices with specified configuration file /etc/user_c4xxx_dev1.conf:

adf_ctl -c /etc/user_4xxx_dev1.conf restart

To restart device 0 with specified configuration file ~/user_4xxx_dev1.conf:

adf_ctl -c ~/user_c4xxx_dev1.conf qat_dev0 restart

To restart device 0:

adf_ctl qat_dev0 reset

4.2 Application PayloadMemoryAllocation

When performing offload operations through the Intel® QAT API, it is required that the payload data be
placed in abuffer that is resident, physically contiguous, andDMAaccessible fromtheaccelerationhard-
ware. It is the application’s responsibility to provide buffers with these constraints.

Buffers are passed to the API with virtual addresses. The API translates these addresses to the address
information required by the hardware.

44 AccelerationDriver

Programmer'sGuide

4.2.1 Services

Table 17: Acceleration Driver Services
Service API Reference
Cryptographic service cpaCySetAddressTranslation() See the Intel®QuickAssistTechnology

Cryptographic API Reference Manual
(refer to Table 2) for details.

Data Compression ser-
vice

cpaDcSetAddressTranslation() See the Intel® QuickAssist Technol-
ogy Data Compression API Reference
Manual (refer to Table 2) for details.

When the software requires the physical address, it calls the registered function.

Note: This address translation function is called at least once per request. Consequently, for optimal
performance, the implementation of this function should be optimized.

If using the Intel® QAT Data Plane API, buffers are passed to the Intel® QAT API as physical addresses.
The library passes this directly to the hardware, without the need for translation.

4.2.2 ThreadSpecificUSDM

By default, memory allocation uses the USDM slab allocator, which gives 2MB contiguous memory. The
allocation has locks in the library to prevent a race condition in getting the memory from the slab.

This lockhas an impactonsomemulti-threadedapplications andusecases, likeHAProxy, causingadrop
in performance.

To mitigate this issue, thread specific USDM is implemented which allocates and handles memory spe-
cific to threads. (For multi-thread apps, allocated memory information will be maintained separately for
each thread).

This feature can be enabled by configuring with the configure flag:

--enable-icp-thread-specific-usdm

In some use cases with thread specific USDM, using a 128K slab allocator instead of the default 2MB
allocator could improve performance and reduce memory consumption for a large number of threads.
This can be enabled by configuring with the configure flag

--enable-128k-slab

Note: There is a limitation with thread specific USDM: memory allocated in one thread should be freed
only by the thread which allocates it.

Incorrect cleanup can lead to a segmentation fault (segfault).

AccelerationDriver 45

Programmer'sGuide

Also, memory allocated in a thread is freed automatically when the thread exits/terminates, even if the
user does not explicitly free the memory.

See the ./configure flags̀ section of the Getting Started Guide for more information on these flags.

Important: We have observed poor multithreaded performance with QAT_Engine using OpenSSL* at
higher thread counts.

Unfortunately, these issues appear to stem from the way OpenSSL* implements its en-

gine_table_select and locks. For relevant issues on the OpenSSL* github pages, see the two
issues below:

• OpenSSL* 1.1.1.x: Performance bottleneck with locks in engine_table_select() function #18509,
https://github.com/openssl/openssl/issues/18509

• OpenSSL* 3.0: 3.0 performance degraded due to locking #20286, https://github.com/openssl/
openssl/issues/20286

4.3 ReturnCodes

This table shows the return codes used by various components of the acceleration driver, defined in
$ICP_ROOT/quickassist/include/cpa.h.

Table 18: Return Codes
ReturnType ReturnCode Description
CPA_STATUS_SUCCESS 0 Requested operation was successful.
CPA_STATUS_FAIL -1 General or unspecified error occurred. Refer to

theconsole loguser spaceapplicationor to/var/
log/messages in kernel space for more details of
the failure.

CPA_STATUS_RETRY -2 Recoverable error occurred. Refer to relevant
sections of the API for specifics on what the sug-
gested course of action.

CPA_STATUS_RESOURCE -3 Required resource is unavailable. The resource
that has been requested is unavailable. Refer to
relevant sections of the API for specifics on what
the suggested course of action.

CPA_STATUS_INVALID_PARAM -4 Invalid parameter has been passed in.
CPA_STATUS_FATAL -5 Fatal error has occurred. A serious error has oc-

curred. Recommendedcourseof action is to shut
down and restart the component.

continues on next page

46 AccelerationDriver

https://github.com/openssl/openssl/issues/18509
https://github.com/openssl/openssl/issues/20286
https://github.com/openssl/openssl/issues/20286

Programmer'sGuide

Table 18 – continued from previous page
ReturnType ReturnCode Description
CPA_STATUS_UNSUPPORTED -6 The function is not supported, at least not with

thespecificparameterssupplied. Thismaybebe-
cause a particular capability is not supported by
the current implementation.

CPA_STATUS_RESTARTING -7 The API implementation is restarting. This may
be reported if, for example, a hardware implemen-
tation is undergoing a reset.

4.4 Linux*DeviceDriverOperations ReturnCodes

This table shows the return codes used by the driver to handle Linux* device driver operations.

Table 19: Linux* Device Driver Operations Return Codes
ReturnType ReturnCode Description
SUCCESS 0 Operation was successful.
FAIL 1 General error occurred. Refer to the console log user space

application or to /var/log/messages in kernel space for
more details of the failure.

-EPERM -1 Operation is not permitted. Used during ioctl operations.
-ENOENT -2 No such file or directory.
-EINTR -4 Interrupted system call.
-EIO -5 Input/Output error occurred. Used when copying configu-

ration data to and from user space.
-EBADF -9 Bad File Number. Used when an invalid file descriptor is de-

tected.
-EAGAIN -11 Try Again. Used when a recoverable operation occurred.
-ENOMEM -12 Out of Memory. Memory resource that has been requested

is not available.
-EACCES -13 Permission Denied. Used when the operation failed to con-

nect to a process or open a device.
-EFAULT -14 Bad Address. Used when an operation detects invalid pa-

rameter data.
-EBUSY -16 Device or resource is busy.
-EEXIST -17 File exists.
-ENODEV -19 No Such Device. Used when an operation detects invalid

device id.
-EINVAL -22 Invalid argument.
-ENOTTY -25 Invalid Command Type. Used when an ioctl operation de-

tects an invalid command type.
-ENOSPC -28 No space left on device.
-ERANGE -34 Math result not representable.

continues on next page

AccelerationDriver 47

Programmer'sGuide

Table 19 – continued from previous page
ReturnType ReturnCode Description
-ENOSYS -38 Function not implemented.
-EL3HLT -46 Level 3 Halted.
-ETIME -62 Timer expired.
-EBADMSG -74 Not a data message.
-EOVERFLOW -75 Value too large for defined data type.
-EOPNOTSUPP -95 Operation not supported on transport endpoint.
-EINPROGRESS -115 Operation now in progress.

48 AccelerationDriver

5 Configuration Files

This section describes the configuration file(s) that allows customization of runtimeoperation. The con-
figurationfile(s)mustbe tunedtomeet theperformanceneedsof the targetapplication. There isasingle
configuration file for each Intel® QAT Endpoint in the system.

If Single-Root Input/Output Virtualization (SR-IOV) is enabled, a separate configuration file is used for
each virtual function.

Note: The software package includes default configuration file(s), which may not provide optimal per-
formance on all platforms. Consider performance implications as well as the configuration details pro-
vided in this section if your system requires modifications to the default configuration file.

5.1 Configuration FileOverview

There is a single configuration file for each Intel® QAT Endpoint and there may be multiple Intel® QAT
Endpoints.

Note: Depending on the model number, a device may also contain no Intel® QAT Endpoints.

The configuration file is split into a number of different sections: a General section and one or more Log-
ical Instance sections.

The General section includes parameters that allow the user to specify:

• Which services are enabled.

• Concurrent requests default configuration.

• Interrupt coalescing configuration (optional).

• Statistics gathering configuration.

Additional details are included in General Section.

Logical Instances sections (there may be one or more) include parameters that allow the user to set:

• The number of cryptography or data compression instances being managed.

49

Programmer'sGuide

• Foreach instance, thenameof the instance,whetherornotpolling isenabled, and thecore towhich
an instance is affinitized.

Additional details are included in Logical Instances Section.

Sample configuration files are included in the package in the quickassist/utilities/adf_ctl/

conf_filesdirectory.

5.2 General Section

The general section of the configuration file contains general parameters and statistics parameters.

Note: Default denotes the value in the configuration file when shipped or the value used if not specified
in the configuration file.

This table describes the other parameters that can be included in the General section.

Table 20: General Section Parameters
Parameter Description Default Range
ServicesEnabled Defines the service(s) available (cryp-

tographic [cy], symmetric [sym],
asymmetric [asym], data compression
[dc]).
Refer to ServicesEnabled for addi-
tional details.

<varies> sym, asym,
cy, dc
Note: Mul-
tiple values
permitted,
use; as the
delimiter.

ServicesProfile Specifies theservices thatareavailable
when the driver loads.

Default See Service-
sProfile for
additional
details.

CyNumConcurrentSymRequests Specifies the number of cryptographic
concurrent symmetric requests for
cryptographic instances in general.
Refer toConcurrentRequests for addi-
tional details.

512 64, 128, 256,
512, 1024,
2048, 4096,
8192, 16384,
32768, or
65536

CyNumConcurrentAsymRequests Specifies the number of cryptographic
concurrent asymmetric requests for
cryptographic instances in general.
Refer toConcurrentRequests for addi-
tional details.

64 64, 128, 256,
512, 1024,
2048, 4096,
8192, 16384,
32768, or
65536

continues on next page

50 ConfigurationFiles

Programmer'sGuide

Table 20 – continued from previous page
Parameter Description Default Range
DcNumConcurrentRequests Specifies thenumberofdatacompres-

sionconcurrent requests for data com-
pression instances in general.
Refer toConcurrentRequests for addi-
tional details.

512 64, 128, 256,
512, 1024,
2048, 4096,
8192, 16384,
32768, or
65536

DcIntermediateBufferSizeInKB Specifies the size in KB of each inter-
mediate buffer in on-chip memory for
dynamic compression.

64 32 or 64

HeartbeatTimer Default heartbeat timer. 1000 > 200
AutoResetOnError Automatically resets thedevice in case

of fatal error or heartbeat failure.
0 0 or 1

PmIdleInterruptDelay Default value for power management
idle interrupt delay.
Refer to Power Management Parame-
ters for additional details.

512

PmIdleSupport This flag is to enable power manage-
ment idle support.
Refer to Power Management Parame-
ters for additional details.

1 0 or 1

SVMEnabled This flag is to enable SVM support.
Refer to Shared Virtual Memory Pa-
rameters for additional details.

0 0 or 1

ATEnabled This flag is to enable Address Transla-
tion Service(ATS).
Refer to Shared Virtual Memory Pa-
rameters for additional details.

0 0 or 1

5.2.1 ServicesEnabled

Additional details on the ServicesEnabledparameter:

• This parameter is valid for all QAT devices.

• Default value varies depending on the underlying QAT Endpoint.

• cy is not valid value for QAT2.0 devices. asym and sym are used.

• Only two of the three services (asym, sym, and dc) may be enabled on an individual QAT2.0 End-
points.

ConfigurationFiles 51

Programmer'sGuide

5.2.1.1 PerformanceConsiderations

Important: The following is applicable to QAT2.0 devices only.

In order to maximize QAT throughput performance for a given service type, one should specify ONLY
that service type parameter for ServicesEnabled.

By design, two Acceleration Engine clusters are available, each containing four Acceleration Engines.
Each of these two clusters are limited to using a single service. Therefore, the possible split options are
4|4 or 8 for a given service type.

Configuration examples:

• While using VFs on a system configured for ServicesEnabled = sym;dc , 4 acceleration engines
will be dedicated to SYM and 4 acceleration engines will be dedicated to DC, so only 2 resource
providers per child VF can be used for SYM. Here, we should expect some performance degrada-
tion for SYM (even if DC is not used).

• While usingVFsonasystemconfigured forServicesEnabled = sym , all 8 accelerationengineswill
be dedicated to SYM, so all 4 resource providers of a child VF can be used for SYM only. Here, we
will see the best SYM performance.

Note: Packet size will also modulate the impact of the above configuration settings.

5.2.2 ServicesProfile

Important: This parameter is valid for QAT1.7x devices.

The ServicesProfileparameter defines the services that are availablewhen thedriver loads. For exam-
ple, if ServicesProfile = COMPRESSION is in the General section, the compression and decompression
are available, along with service chaining, but not cryptography.

Note: When a ServicesProfilesparameter value is used that supports rate limiting is defined, internal
resources are reallocated to administrating Rate Limiting/Device Utilization. This reduces performance
by roughly 5%.

52 ConfigurationFiles

Programmer'sGuide

5.2.2.1 General Default Configuration Parameters

Table 21: General Default Configuration Parameters
Service DEFAULT CRYPTO COMPRESSION CUSTOM1
Asymmetric Crypto YES YES YES
Symmetric Crypto YES YES YES
Hash YES YES YES YES
Cipher YES YES YES
MGF KeyGen YES YES
SSL/TLS KeyGen YES YES YES
HKDF YES YES
Compression YES YES YES
Decompression (stateless) YES YES YES
Decompression (stateful) YES YES
Service Chaining YES
Device Utilization YES YES YES
Rate Limiting YES YES YES

Note: Set the service profile to determine available features.

5.2.3 Concurrent Requests

Additional details on the concurrent request parameters:

• This parameter is valid for all QAT devices.

• The concurrent request parameters include both Transmit (Tx) and Receive (Rx) requests.

• For each service enabled, NumConcurrentRequestsmust be set to value from the range.

• Thenumberof concurrent requests registeredby the Intel® QuickAssist driver is set toNumConcur-
rentRequests - 2.

This implementation guarantees that the request ringwill never be full and avoids the need for aMemory
Mapped IO (MMIO) read. This implementation maximizes throughput performance.

ConfigurationFiles 53

Programmer'sGuide

5.2.4 PowerManagement Parameters

Important: This parameter is valid for QAT2.0 devices.

Power management configuration is included in the device configuration file (i.e. /etc/4xxx_devX.conf
where X is the 0-based index of the device.)

Power management configurations parameters include:

• PmIdleInterruptDelay - Configure power management interrupt delay from the system to QAT
driver in millisecond(s). The default value is 512 milliseconds.

• PmIdleSupport - Configure the device to enable/disable power management idle supporting.
Power management idle support is enabled by default.

Refer to the Power Management section for additional details.

5.2.5 SharedVirtualMemory (SVM)Parameters

Important: This parameter is valid for QAT2.0 devices.

SVM configuration parameters are included in the device configuration file (i.e. /etc/4xxx_devX.conf
where X is the 0-based index of the device.)

5.2.5.1 SVMEnabled

When this flag is set in the driver configuration, it indicates that the guest virtual address (GVA) to host
physical address (HPA) translationwill use IOMMUhardwarebased translation table insteadof using the
software based address translation. With SVMEnabled set, it is not required to submit buffers that are
physically contiguous.

Details

• This parameter is disabledbydefault. Refer toSVMKernelRequirements section for additional de-
tails.

• The parameter is valid for both PF and VF configuration files.

• It ispossible for theVFtoenable thisparametereven if theparameter isdisabled in thecorrespond-
ing PF configuration file.

54 ConfigurationFiles

Programmer'sGuide

5.2.5.2 ATEnabled

When this flag is set in the driver configuration, the Address Translation Service (ATS) is enabled.
IOMMU and QAT have the ability to handle page faults using Page Request Service (PRS) when using
dynamic virtual memory allocated by systemcall such as malloc.

Details

• This parameter is disabledbydefault. Refer toSVMKernelRequirements section for additional de-
tails.

• SVMEnabled must be enabled in order to enable ATEnabled.

• The parameter is valid for both PF and VF configuration files.

• It is not possible for the VF to enable the service if the parameter is disabled in the corresponding
PF configuration file.

5.3 Logical Instances Section

This section allows the configuration of logical instances in each address domain (kernel space and indi-
vidual user space processes).

The address domains are in the following format:

• For the kernel address domain: [KERNEL] targeted to Linux* Kernel Crypto Framework (LKCF).

• For user process address domains: [xxxxx], where xxxxx may be any ASCII value that uniquely
identifies the user mode process.

In user space, to allow the driver to configure the logical instances associated with a user process cor-
rectly, the process must call the function icp_sal_userStart passing the xxxxx string during process
initialization. When theuser spaceprocess is finished, itmust call the function icp_sal_userStop to free
resources. Refer to User Space Access Configuration Functions for more information.

AsingleVFconfigured for theSR-IOVusecasecannot havebothuser space instances and kernel space
instances. Separate VFs must be created for user space and kernel space.

TheNumProcessesparameter (in theUserProcess section) indicates themaxnumberofuser spacepro-
cesses within that section name with access to instances on this device. Refer to icp_sal_userStart for
more information.

The items that can be configured for a logical instance are:

• The name of the logical instance.

• The polling mode.

• The core to which the instance is affinitized (optional).

ConfigurationFiles 55

Programmer'sGuide

5.3.1 [KERNEL] Section

In the [KERNEL] section of the configuration file, information about the number and type of kernel in-
stances can be defined. This table describes the parameters that determine the number of kernel in-
stances for each service.

Note: The maximum number of cryptographic and data compression instances supported per Intel®

QAT Endpoint is 32. For exceptions refer to Increasing the Maximum Number of Processes/Instances.

Table 22: [KERNEL] Section Parameters
Parameter Description Default Range
NumberCyInstances Specifies the number of cryptographic instances.

Note: Depends on the number of allocations to other
services.

0 0 to 32

NumberDcInstances Specifies the number of data compression instances.
Note: Depends on the number of allocations to other
services.

0 0 to 32

5.3.2 User Process [xxxxx] Sections

There is one [xxxxx] section of the configuration file for each Intel® QAT Endpoint to be configured. In
each [xxxxx] section of the configuration file, user space access to the Intel® QAT Endpoint can be con-
figured. Parameters for eachuser process instancecanalsobedefined. Commonnames for this section
are [SSL] or [SHIM]

Note: Check theSKU information for your specificdevice todeterminehowmany Intel® QATEndpoints
the device contains.

This table shows theparameters in theconfigurationfile thatcanbeset foruserprocess [xxxxx] sections.

56 ConfigurationFiles

Programmer'sGuide

Table 23: [User Process] Section Parameters
Parameter Description Default Range
NumProcesses The number of user space pro-

cesses with section name [xxxxx]
that have access to this device.
The maximum number of
processes that can call
icp_sal_userStart and be
active at any one time. See
icp_sal_userStart for additional
information.
Caution: Resources are pre-
allocated. If this parameter value
is set too high, the driver fails to
load.

1 For constraints, see Max-
imum Number of Process
Calculations.
For exceptions, see Increas-
ing theMaximumNumber of
Processes/Instances.

LimitDevAccess Indicates if the user space pro-
cesses in this section are limited
to only access instances on this
Intel® QAT Endpoint.

0 0 (disabled, processes in
this section can access mul-
tiple Intel® QAT Endpoints),
or
1 (enabled, processes in this
section can only access this
Intel® QAT Endpoint).
For additional information,
see Configuring Multiple
Processes on a System
with Multiple Intel® QAT
Endpoints.

NumberCyInstances Specifies the number of crypto-
graphic instances.
Note: Depends on the number of
allocations to other services.

6 0 to 32. For exceptions,
see Increasing the Max-
imum Number of Pro-
cesses/Instances.

NumberDcInstances Specifies the number of data
compression instances.
Note: Depends on the number of
allocations to other services.

2 0 to 32. For exceptions,
see Increasing the Max-
imum Number of Pro-
cesses/Instances.

5.3.3 Cryptographic Logical InstanceParameters

The following table shows the parameters that can be set for cryptographic logical instances.

Note: Default denotes the value in the configuration file when shipped.

ConfigurationFiles 57

Programmer'sGuide

Table 24: Cryptographic Logical Instance Parameters
Parameter Description Default Range
CyXName Specifies the name of crypto-

graphic instance number X.
IPSec0 for KER-

NEL section.
SSL0 for user
section

String (max. 64 char-
acters)

CyXIsPolled Specifies if cryptographic in-
stance number x works in poll
mode, interrupt mode or epoll
mode.

0 for kernel space
instances
1 for user space in-
stance

0 (interrupt mode) for
instances in the KERNEL

section.
1 (poll mode) for in-
stances in user space
sections.
2 (epoll mode event
based polling mode)
for instances in user
space section.

CyXCoreAffinity Specifies the core towhich the in-
stance should be affinitized.

Varies depending
on the value of X.

0 to max. number of
cores in the system.

5.3.4 DataCompression Logical InstanceParameters

This table shows the parameters in the configuration file that can be set for data compression logical in-
stances.

Table 25: Data Compression Logical Instance Parameters
Parameter Description Default Range
DcXName Specifies the name of data com-

pression instance number X.
IPComp0 String (max. 64 char-

acters)
DcXIsPolled Specifies if data compression in-

stance number x works in poll
mode, interrupt mode or epoll
mode.

0 for kernel space
instances
1 for user space in-
stances

0 (interrupt mode) for
instances in the KERNEL

section.
1 (poll mode) for
instances in the KER-

NEL_QAT and user
space sections.
2 (epoll mode event
based polling mode)
for instances in user
space section.

DcXCoreAffinity Specifies the core to which
the data compression instance
should be affinitized.

Varies depending
on the value of X.

0 to max. number of
cores in the system.

Note:

58 ConfigurationFiles

Programmer'sGuide

• The maximum number of data compression instances supported is 64.

• Default denotes the value in the configuration file when shipped.

5.3.5 Setting theCoreAffinity Parameter for a Logical Instance

When instances are configured with IsPolled = 1 (Polling mode), the parameter CoreAffinity does
not have any impact.

Althoughnot used, it is a valid parameter and applications canquery the value using cpaCyInstanceGet-

Info2 (see coreAffinity bitmask in CpaInstanceInfo2). For example, the sample code affinitizes the
thread that uses an instance to the core indicated in CoreAffinity the config file for that instance.

For instances configured in Interrupt Mode (IsPolled = 2 in user space (epoll) and IsPolled = 0 in
kernel space), the value of CoreAffinity is used to affinitize the interrupt handler to that core.

5.4 MaximumNumber of ProcessCalculations

TheNumProcessesparameter is thenumberofuser spaceprocessesperservicewithin the [xxxx] section
domain with access to this Intel® QAT Endpoint.

The value to which this parameter can be set is determined by a number of factors including the number
ofcryptography instancesand/ordatacompression instances in theprocesssectionalongwithService-
sEnabled and potentially ServicesProfile. The total number of processes, per service, created by the
driver is given by the expression (e.g., for cryptography):

(NumProcesses) x (NumberCyInstances)

The maximum number of processes that can be supported is dependant upon the underlying hardware.

5.4.1 Increasing theMaximumNumber of Processes/Instances

Note:

• One bank is used per Intel® QAT virtual function (VF).

• This section only applies when the instances that make use of polled mode.

The maximum number of instances can be increased with the careful selection of the ServiceEnabled

parameter.

Compression, symmetric cryptography, and asymmetric cryptography each require two rings out of the
16 possible rings for a ring bank. By selecting only, the services needed, the number of instances can be
increased.

ConfigurationFiles 59

Programmer'sGuide

Hereare thevariations including themaximumnumberofprocesses thatcanbesupported forgivencon-
figuration:

Note: The ServicesProfile parameter value may also need to be changed. See Services Profile for
additional information.

Table 26: Configuration Variations
ServicesEnabled QAT 1.7x QAT2.0 Notes
sym 128 64 Compression and asymmetric crypto service not available.
asym 128 64 Compression and symmetric crypto service not available.
cy 128 Invalid Compression and symmetric crypto service not available.
dc 128 64 Asymmetric and symmetric crypto service not available.
dc;sym 64 32 Asymmetric crypto services will not be available.
dc;asym 64 32 Symmetric crypto services will not be available.
sym;asym Invalid 32 Compression services will not be available.

5.4.1.1 Invalid Configurations

If maximum number of processes is exceeded, the acceleration software will fail to load. The error mes-
sage will be similiar to:

service qat_service restart qat_dev0

Stopping device qat_dev0

Starting device qat_dev0

Processing /etc/4xxx_dev0.conf

Ioctl failed

QAT Error: Failed to load config data to device

And dmesg output will look similar to:

[116378.383041] Don't have enough rings for instance SSL0 in process SHIM_DEV0_INT_32

[116378.391976] 4xxx 0000:6b:00.0: Failed to create rings for cy

[116378.398881] 4xxx 0000:6b:00.0: Failed to process user section SHIM

[116378.406484] 4xxx 0000:6b:00.0: Failed to config device

60 ConfigurationFiles

Programmer'sGuide

5.4.1.2 Configuring Instances for Virtual Functions

To configure the number of instances for a virtual function:

1. Install the driver package on the host with SR-IOV enabled.

2. Update the physical function configuration file to set ServicesEnabled (refer to Increasing the
Maximum Number of Processes/Instances).

3. Perform qat_service shutdown and qat_service start.

4. Update the virtual function configuration file to set ServicesEnabled (refer to Increasing the Max-
imum Number of Processes/Instances).

5. Restart the qat_service.

The value of ServicesEnabled in the VF configuration file should be the same as the value of Service-
sEnabled in the PF configuration file, or a subset of that value as shown in this table. For instance, if a PF
is configured as cy, allowableVF configurations related to that PF can only be cy, asym, or sym. VF device
restart will fail if a VF configuration is not allowed for that related PF.

If aVFservice isconfiguredtoasubsetofPFservice, thenumberofVF instances is limited to thenumber
allowed for thatPFserviceasdescribed in Increasing theMaximumNumberofProcesses/Instances. For
example, if thePFconfigurationfilehasServicesEnabled=dc;asym, only four (noteight)dc instancesare
enabled if the VF is configured for dc only.

Note: Valid Physical Function for each supported platform is described in the Configuration Variations
table.

Table 27: Configuring Physical Functions and Virtual
Functions

ConfiguredPFService AvailableVFServices
dc;asym dc;asym

asym

dc

dc;sym dc;sym

sym

dc

asym;sym asym;sym

sym

asym

asym asym

sym sym

dc dc

ConfigurationFiles 61

Programmer'sGuide

5.5 Configuring Multiple Intel® QuickAssist Technology
Endpoints in a System

Aplatformmay includemore thanone Intel® QATEndpoint. Eachdevicemusthave itsownconfiguration
file. When the acceleration software is installed, default configurationfiles are installed to the /etc folder.
The format and structure of the configuration file is exactly the same for all devices.

Warning: If a configuration file does not exist for an Intel® QAT Endpoint, that endpoint will not start,
and an error is displayed indicating that a configuration file was not found.

To determine the number of Intel® QAT Endpoints in a system, use the lspci utility:

lspci -nn | egrep -e '8086:37c8|8086:19e2|8086:0435|8086:6f54|8086:4940|8086:4942'

The output from a high-end 4th Gen Intel® Xeon® Scalable Processor is similar to the following:

6b:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4940] (rev 40)

70:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4940] (rev 40)

75:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4940] (rev 40)

7a:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4940] (rev 40)

e8:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4940] (rev 40)

ed:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4940] (rev 40)

f2:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4940] (rev 40)

f7:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4940] (rev 40)

The output from a system with a high-end Intel® C62x Chipset SKU is similar to the following:

88:00.0 Co-processor [0b40]: Intel Corporation Device [8086:37c8] (rev 03)

8a:00.0 Co-processor [0b40]: Intel Corporation Device [8086:37c8] (rev 03)

8c:00.0 Co-processor [0b40]: Intel Corporation Device [8086:37c8] (rev 03)

Then, after the driver is loaded, the user can use the qat_service script to determine the name of each
Intel® QAT Endpoint and its status. For example:

service qat_service status

The output from a high-end 4th Gen Intel® Xeon® Scalable Processor is similar to the following:

Checking status of all devices.

There is 8 QAT acceleration device(s) in the system:

qat_dev0 - type: 4xxx, inst_id: 0, node_id: 0, bsf: 0000:6b:00.0, #accel: 1

↪→#engines: 9 state: up

qat_dev1 - type: 4xxx, inst_id: 1, node_id: 0, bsf: 0000:70:00.0, #accel: 1

↪→#engines: 9 state: up

(continues on next page)

62 ConfigurationFiles

Programmer'sGuide

(continued from previous page)

qat_dev2 - type: 4xxx, inst_id: 2, node_id: 0, bsf: 0000:75:00.0, #accel: 1

↪→#engines: 9 state: up

qat_dev3 - type: 4xxx, inst_id: 3, node_id: 0, bsf: 0000:7a:00.0, #accel: 1

↪→#engines: 9 state: up

qat_dev4 - type: 4xxx, inst_id: 4, node_id: 1, bsf: 0000:e8:00.0, #accel: 1

↪→#engines: 9 state: up

qat_dev5 - type: 4xxx, inst_id: 5, node_id: 1, bsf: 0000:ed:00.0, #accel: 1

↪→#engines: 9 state: up

qat_dev6 - type: 4xxx, inst_id: 6, node_id: 1, bsf: 0000:f2:00.0, #accel: 1

↪→#engines: 9 state: up

qat_dev7 - type: 4xxx, inst_id: 7, node_id: 1, bsf: 0000:f7:00.0, #accel: 1

↪→#engines: 9 state: up

The output from a system with a high-end Intel® C62x Chipset SKU is similar to the following:

qat_dev0 - type: c6xx, inst_id: 0, bsf: 06:00:0, #accel: 5 #engines: 10 state: up

qat_dev1 - type: c6xx, inst_id: 1, bsf: 85:00:0, #accel: 5 #engines: 10 state: up

qat_dev2 - type: c6xx, inst_id: 2, bsf: 87:00:0, #accel: 5 #engines: 10 state: up

Theqat_servicecanstart, stop, restartandshutdowneachdeviceseparatelyorall Intel® QATEndpoints
together. Refer to Managing Intel QuickAssist Technology Endpoints Using qat_service for more infor-
mation.

Some important configuration file information when using multiple Intel® QAT Endpoints:

• When specifying kernel and user space instances in the configuration file, the Cy<Number>Name and
Dc<Number>Nameparameters must be unique in the context of the section name only.

– For example, it is valid to have a parameter called Cy0Name in both a kernel instance section (if
supported) and a user instance section in the same configuration file without issue. Also, the
parameter names do not need to be unique at a system-wide level. For example, it is valid to
have a parameter called Cy0Name in both the configuration file for dev0 and the configuration
file for dev1without issue.

• For Intel® QAT Endpoints with configuration files that have the same section name (for example,
[SSL]andthesamedata in thatsection), it isnecessary touse thecpaCyInstanceGetInfo2() func-
tion to distinguish between Intel® QAT Endpoints. The cpaCyInstanceGetInfo2() allows the user
of the API to query which Intel® QAT Endpoint a cryptography instance handle belongs to. In ad-
dition, for any application domain defined in the configuration files (e.g. [SSL]), a call to cpaCyGet-

NumInstances() returns the number of cryptography instances defined for that domain across all
configuration files. A subsequent call to cpaCyGetInstances() obtains these instance handles.

ConfigurationFiles 63

Programmer'sGuide

5.6 Configuring Multiple Processes on a System with
Multiple Intel®QATEndpoints

As an example, consider a system with two Intel® QAT Endpoints where it is necessary to configure two
user space sections. One section is identified as SSL and the other is identified as Internet Protocol Se-
curity (IPSec).

• For theSSLsection, configureeightprocesses,whereeachprocesshasaccess tooneacceleration
instance.

• For the IPSec section, configure one process, with access to eight acceleration instances, four per
Intel® QAT Endpoint.

In this scenario, the user space section of the configuration file would look like the following for the first
Intel® QAT Endpoint.

[SSL] #User space section name

NumProcesses=4 # There are 4 user space process with section name SSL with access�

↪→to this device

LimitDevAccess=1 # These 4 SSL user space processes only use this device

NumCyInstances=1 # Each process has access to 1 Cy instance on this device

NumDcInstances=0 # Each process has access to 0 Dc instances on this device

Crypto - User instance #0

Cy0Name = "SSL0"

Cy0IsPolled = 1

Cy0CoreAffinity = 0 # Core affinity not used for polled instance

[IPsec] #User space section name

NumProcesses=1 # There is 1 user space process with section name IPSec with access�

↪→to this device

LimitDevAccess=0 # This IPSec user space process may have access to other devices

NumCyInstances=4 # The IPSec process has access to 4 Cy instances on this device

NumDcInstances=0 # The IPSec process has access to 0 Dc instances on this device

Crypto - User instance #0

Cy0Name = "IPSec0"

Cy0IsPolled = 1

Cy0CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #1

Cy1Name = "IPSec1"

Cy1IsPolled = 1

Cy1CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #2

Cy2Name = "IPSec2"

Cy2IsPolled = 1

Cy2CoreAffinity = 0 # Core affinity not used for polled instance

(continues on next page)

64 ConfigurationFiles

Programmer'sGuide

(continued from previous page)

Crypto - User instance #3

Cy3Name = "IPSec3"

Cy3IsPolled = 1

Cy3CoreAffinity = 0 # Core affinity not used for polled instance

The second Intel® QAT Endpoint configuration looks like:

[SSL] #User space section name

NumProcesses=4 # There are 4 user space process with section name SSL with access�

↪→to this device

LimitDevAccess=1 # These 4 SSL user space processes only use this device

NumCyInstances=1 # Each process has access to 1 Cy instance on this device

NumDcInstances=0 # Each process has access to 0 Dc instances on this device

Crypto - User instance #0

Cy0Name = "SSL0"

Cy0IsPolled = 1

Cy0CoreAffinity = 0 # Core affinity not used for polled instance

[IPsec] #User space section name

NumProcesses=1 # There is 1 user space process with section name IPSec with access�

↪→to this device

LimitDevAccess=0 # This IPSec user space process may have access to other devices

NumCyInstances=4 # The IPSec process has access to 4 Cy instances on this device

NumDcInstances=0 # The IPSec process has access to 0 Dc instances on this device

Crypto - User instance #0

Cy0Name = "IPSec0"

Cy0IsPolled = 1

Cy0CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #1

Cy1Name = "IPSec1"

Cy1IsPolled = 1

Cy1CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #2

Cy2Name = "IPSec2"

Cy2IsPolled = 1

Cy2CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #3

Cy3Name = "IPSec3"

Cy3IsPolled = 1

Cy3CoreAffinity = 0 # Core affinity not used for polled instance

Eight processes (with section name SSL) can call the icp_sal_userStart("SSL") function to
get access to one crypto instance each. One process (with section name IPSec) can call the
icp_sal_userStart("IPSec") function to get access to eight crypto instances.

Internally in the driver, this works as follows:

ConfigurationFiles 65

Programmer'sGuide

1. When thedriver is configured (that is, theservice qat_service is called), thedriver reads thecon-
figuration file for the device and populates an internal configuration table.

2. Reading the configuration file for dev0:

a. For the section named [SSL], the driver determines that four processes are required and
that these processes limit access to this device only. In this case, the driver creates
four internal sections that it labels SSL_DEV0_INT_0, SSL_DEV0_INT_1, SSL_DEV0_INT_2 and
SSL_DEV0_INT_3. Each section is given access to one crypto instance as described.

b. Forsectionname[IPSec], thedriverdetermines thatoneprocess is requiredandthat thispro-
cessdoesnot limitaccess to thisdeviceonly (that is, itmayaccess instancesonotherdevices).
In this case, the driver creates one internal section that it labels IPSec_INT_0 andgives this ac-
cess to four crypto instances on this device.

3. Reading the configuration file for dev1:

a. For the section named [SSL], the driver determines that four processes are required
and that these processes are limited to access this device only. In this case, the
driver creates four internal sections that it labels SSL_DEV1_INT_0, SSL_DEV1_INT_1,
SSL_DEV1_INT_2 and SSL_DEV1_INT_3. Each section is given access to one crypto in-
stance as described.

b. For the section named [IPSec], the driver determines that one process is required
and that this processmay have access to instances onother devices. In this case, the
driver creates one internal section that it labels IPSec_INT_0 and gives this access to
four crypto instances on this device.

Note: This section name now appears in both devices’ internal configuration and, there-
fore, the process that gets assigned this section name will have access to instances on
both devices.

4. In total, there are nine separate sections (SSL_DEV0_INT_0, SL_DEV0_INT_1, SSL_DEV0_INT_2,
SSL_DEV0_INT_3, SSL_DEV1_INT_0, SSL_DEV1_INT_1, SSL_DEV1_INT_2, SSL_DEV1_INT_3 and
IPSec_INT_0) with access to crypto instances.

Whenaprocesscalls theicp_sal_userStart ("SSL") function, thedriver locates thenext available sec-
tionof the form SSL_DEV<m>_INT<....> (ofwhich there are eight in total in this example) and assigns this
section to the process. This gives the process access to corresponding crypto instances.

When a process calls the icp_sal_userStart ("IPSec") function, the driver locates the next available
section of the form IPSec_INT_<....> (of which there is only one in total for this example) and assigns
this section to the process. This gives the process access to the corresponding crypto instances.

Note: The icp_sal_userStartMultiProcess() function has been deprecated. The API still exists, but
it simply calls icp_sal_userStart().

66 ConfigurationFiles

Programmer'sGuide

5.7 SampleConfiguration Files

Sample configuration files are available in quickassist/utilities/adf_ctl/conf_files. Depending
on the product and configuration, one or more of these will be copied to /etc during the package instal-
lation.

ConfigurationFiles 67

6 Services

Intel® QAT can accelerate the following services:

• Data compression/decompression.

• Symmetric cryptography.

• Public key cryptography.

Details on the services are included in the following sections.

6.1 DataCompression

6.1.1 Compresion Features

• Deflate Compression Algorithm.

• LZ77 and Huffman Encoding.

• LZ4/LZ4s Compression Algorithm.

• Compress and Verify.

• Checksums.

• Programmable CRC64.

6.1.2 Compression Limitations

• Stateful compression is not supported.

• Stateful decompression is not supported on QAT2.0 hardware devices.

• Batch and Pack (BnP) compression is not supported.

68

Programmer'sGuide

6.1.3 CompressionSessionSetup

The following table lists the properties that should be configured in the CpaDcSessionSetupData struc-
ture depending on the compression algorithm requested.

Table 28: Compression CpaDcSessionSetupData
Properties

Property Details
CpaDcCompLvl compLevel Properties common to all algorithms
CpaDcCompType compType

CpaDcAutoSelectBest autoSelectBestHuffmanTree

CpaDcSessionDir sessDirection

CpaDcSessionState sessState

CpaDcCompWindowSize windowSize

CpaDcChecksum checksum

CpaDcHuffType huffType Deflate specific
CpaDcCompLZ4BlockMaxSize lz4BlockMaxSize LZ4 specific
CpaBoolean lz4BlockChecksum

CpaBoolean lz4BlockIndependence

CpaBoolean accumulateXXHash (currently unsupported)
CpaDcCompMinMatch minMatch LZ4s specific

Note: Should the application use no-session API cpaDcNsCompressData(), the properties listed above
are available in the CpaDcNsSetupDatadata structure.

6.1.4 DecompressionSessionSetup

The following table lists the properties that should be configured in the CpaDcSessionSetupData struc-
ture depending on the format of the payload to decompression.

Table 29: Decompression CpaDcSessionSetupData
Properties

Property Deflate LZ4
CpaDcCompType compType Yes Yes
CpaDcSessionDir sessDirection Yes Yes
CpaDcSessionState sessState Yes Yes
CpaDcCompWindowSize windowSize Yes Yes
CpaDcChecksum checksum Yes Yes

Services 69

Programmer'sGuide

6.1.4.1 DeflateDecompression

With deflate based format such as Gzip the application is required to skip the GZip header and present
to Intel® QAT the first byte of the deflate block.

When the DeflateBlock #3 is processed, the property endOfLastBlock in the CpaDcRqResults structure
will be set to CPA_TRUE. This notifies the application that no more data can be decompressed. At this
point, the session must be either removed and re-initialized, or reset. With an application handling multi-
gzip data, the both the Gzip footer and Gzip header must be skipped.

6.1.4.2 LZ4Decompresion

When decompressing LZ4 frames, the application is required to parse the frame header to extract B.
Checksum flag. This flag is used to set the configuration parameter lz4BlockChecksum in CpaDcSession-
SetupData. When decompressing LZ4 frames, the application should not include the frame header nor
the frame footer in the source buffer to be processed by Intel® QAT hardware.

Note: Indecompressiondirection, thepropertyendOfLastBlock removestheneedfor theapplication to
know where the last block ends. The QAT hardware will stop after processing the last block. This applies
to both GZIP and LZ4 formats.

70 Services

Programmer'sGuide

6.1.4.3 LZ4Decompression Limitations

When decompressing LZ4 data compressed without Intel® QAT hardware, it is important to ensure that
the compressor limits the history buffer to 32KB. Data compressed using a history buffer larger than
32KB will result with a CPA_DC_INVALID_DIST (-10) error code.

6.1.4.4 Multi-framedecompression support

Intel® QAT hardware can decompress a payload that includes multiple frames. This applies to both Gzip
and LZ4 formats. The figure below shows how the application must behave to decompress LZ4 multi
frame payloads.

6.1.5 PerformanceConsiderations

To enable the application benefiting from the QAT2.0 HW maximal performance, it is recommended to
populate all the DIMMs around the CPU sockets in use.

6.1.6 Flush Flags

The table below shows the flush flags that should be used depending on the application’s use case. The
application programming model should follow this table.

Table 30: Flush Flags
Algorithm UseCase Intermediate Request Last Request
Deflate Stateless compression CPA_DC_FLUSH_FULL CPA_DC_FLUSH_FINAL

to set BFinal
Stateless decompression CPA_DC_FLUSH_FINAL

Stateful decompression
(QAT1.X devices only)

CPA_DC_FLUSH_SYNC CPA_DC_FLUSH_FINAL

LZ4 Stateless compression
with accumulateXxHash =
CPA_FALSE

CPA_DC_FLUSH_FINAL CPA_DC_FLUSH_FINAL

continues on next page

Services 71

Programmer'sGuide

Table 30 – continued from previous page
Algorithm UseCase Intermediate Request Last Request

Stateless compression
with accumulateXxHash =
CPA_TRUE

CPA_DC_FLUSH_FULL CPA_DC_FLUSH_FINAL

Stateless decompression CPA_DC_FLUSH_FINAL CPA_DC_FLUSH_FINAL

LZ4s Stateless compression CPA_DC_FLUSH_FINAL CPA_DC_FLUSH_FINAL

Note: QAT1.X hardware devices still support stateful decompression operations. QAT2.0 hardware de-
vice only supports stateless operations.

6.1.7 Checksums

With the addition of LZ4 algorithm support on QAT2.0, the compression hardware accelerators are now
capable to generate XXash32 checksums. QAT2.0 device is now supporting the following checksums:

Table 31: Checksums
ChecksumType Usage
CRC32 Required for GZip support
Adler32 Required for Zlib support
XXhash32 Required for LZ4 support

Note: In the event the XXHash32 checksum should be reset, it must be done calling the API cpaDcRe-
setXXHashState().

6.1.8 LZ4sCompressedData Block format

LZ4s is a variant of LZ4 block format. LZ4s should be considered as an intermediate compressed block
format. The LZ4s format is selected when the application sets the compType to CPA_DC_LZ4S in CpaD-

cSessionSetupData. The LZ4s block returned by the Intel® QAT hardware can be used by an external
software post-processing to generate other compressed data formats.

The following table lists the differences between LZ4 and LZ4s block format. LZ4s block format uses
the same high-level formatting as LZ4 block format with the following encoding changes:

72 Services

Programmer'sGuide

Table32: DifferencesbetweenLZ4andLZ4sblock format
Feature LZ4 LZ4s
Sequence
Header

4-bit copy length 4-bit literal
length

Same as LZ4

Copy Length Length4-19bytes(encoding
values 0-15),
19 bytes adds an extra byte
with value 0x00.

Copy length value of 0 means no copy with this
sequence. For Min Match of 3 bytes, Copy length
value 1-15 means length 3-17 with 17 bytes adding
an extra byte with value 0x00.
For Min Match of 4 bytes, Copy length value 1-15
means length 4-18 with 18 bytes adding an extra
byte with value 0x00.

Note:

• LZ4 requires a copy/token in every sequence, except the last sequence.

• The last sequence in block does not contain a copy in both LZ4 and LZ4s.

LZ4s encoding creates a single block of compressed data per request. This is different from LZ4 which
creates multiple blocks defined by the LZ4 max block size setting. An LZ4s block is only made of LZ4s
sequences.

A sequence in LZ4s can contain:

• Only a token.

• Only literals.

• A token and literals.

Any of the sequence types can exist anywhere in the LZ4s block. The last LZ4s sequence in the LZ4s
block shall satisfy the end-of-block restrictions outlined in the LZ4 specification.

6.1.8.1 LZ4CompressionSupport

With the QAT 2.0 API, the application can create LZ4 frames. This is achieved using APIs cpaDcGener-
ateHeader() and cpaDcGenerateFooter(). These APIs are also able to generate GZip and Zlib formats.
More information is available in the API reference manual.

The cpaDcGenerateHeader() creates a 7 byte LZ4 frame header which includes:

• Magic number 0x184D2204.

• The LZ4 max block size defined in the CpaDcSessionSetupData.

• Flag byte as:

– Version = 1

– Block independence = 0

– Block checksum = 0

Services 73

Programmer'sGuide

– Content size present = 0

– Content checksum present = 1

– Dictionary ID present = 0

• Content size = 0

• Dictionary ID = 0

• Headerchecksum=1byte representing thesecondbyteof theXXH32of the framedescriptorfield.

ThecpaDcGenerateFooter()APImustbeusedafterprocessingall therequests. ThisAPImustbecalled
last to append the frame footer. The cpaDcGenerateFooter()API creates an8byte frame footer adding
both the end marker (4 bytes set to 0x00) and the XXHash32 checksum computed by Intel® QAT hard-
ware.

6.1.9 Compress-and-Verify

TheCompress andVerify (CnV) feature checks andensuresdata integrity in the compressionoperation
of the Data Compression API. This feature introduces an independent capability to verify the compres-
sion transformation.

Refer to Intel® QuickAssist Technology Data Compression API Reference Manual.

Note:

• CnV is always enabled via the compression APIs (cpaDcCompressData(), cpaDcCompressData2(),
cpaDcNsCompressData(), cpaDcDpEnqueueOp()).

• CnV supports compression operations only.

• ThecompressAndVerifyflag in theCpaDcDpOpDatastructureshouldbeset toCPA_TRUEwhenusing
the cpaDcDpEnqueueOp() or cpaDcDpEnqueueOpBatch()API.

6.1.9.1 Compress andVerify Error log in Sysfs

The implementation of the Compress and Verify solution keeps a record of the CnV errors that have oc-
curred since the driver was loaded. The error count is provided on a per Acceleration Engine basis.

The path to the CnV error log is: /sys/kernel/debug/qat_<qat_device>_<Bus>\:<device>.

<function>/cnv_errors

EachAccelerationEnginekeepsacountof theCnVerrors. TheCnVerrorcounter is resetwhenthedriver
is loaded. The tool also reports the last error type that caused a CnV error.

74 Services

Programmer'sGuide

6.1.9.2 Compress andVerify andRecover (CnVnR)

The Compress and Verify and Recover (CnVnR) feature allows a compression error to be recovered in a
seamless manner. It is supported in both the Traditional and in the Data Plane APIs.

The CnVnR feature is an enhancement of the Compress and Verify (CnV) solution. When a compress
and verify error is detected, the Intel® QAT software will do a correction without returning a CnV error to
the application.

When a recovery occurs, CpaDcRqResults.status will return CPA_DC_OK or CPA_DC_OVERFLOW and the
destination buffer will hold valid deflate data.

The application can find out if CnVnR is supported by querying the instance capabilities via the cpaDc-

QueryCapabilitiesAPI. On completion, the compressAndVerifyAndRecover property of the CpaDcIn-

stanceCapabilitie: ..\image:: ./s structure will be set to CPA_TRUE if the feature is supported.

Table 33: Compress and Verify and Recover (CnVnR)
Behaviors

API CnVnRBehavior
cpaDcCompressData Enabled by default, no option to disable.
cpaDcCompressData2 CnVnR is enabled when compressAndVerifyAndRecover property is

set to CPA_TRUE in CpaDcDpOpData structure.
cpaDcNsCompressData CnVnR is enabled by default.
cpaDcDecompressData Not applicable
cpaDcDecompressData2 Not applicable
cpaDcNsDecompressData Not applicable
cpaDcDpEnqueueOp CnVnR is enabled when compressAndVerifyAndRecover property is

set to CPA_TRUE in CpaDcDpOpData structure.
cpaDcDpEnqueueOpBatch CnVnR is enabled when compressAndVerifyAndRecover property is

set to CPA_TRUE in CpaDcDpOpData structure.

When a CnV recovery takes place, the Intel® QAT software creates a stored block out of the input pay-
load that could not be compressed. Themaximal size of a storedblock allowedby the deflate standard is
65,535 bytes.

Whenastoredblock iscreated, theDEFLATEheaderspecifies that thedata isuncompressedso that the
decompressordoesnotattempt todecodethecleartextdata that follows theheader. Thesizeofastored
block can be defined as: Stored block size = Source buffer size + 5 Bytes (used for the deflate header).

Services 75

Programmer'sGuide

The recovery behaves differently on QAT2.0 than on QAT1.X devices. With QAT1.X devices, the recov-
ery creates only one stored block, If the stored block size exceeds 65,535 bytes, the Intel® QAT solution
creates one stored block of 65,535 bytes and CpaDcRqResults.status returns CPA_DC_OVERFLOW. On
QAT2.0 device, when the recovery takes place, multiple stored blocks are created. This improvement
was added to avoid the application having to handle the overflow.

CnVRecoverywith LZ4compression

When LZ4 compression is used, QAT software will generate an uncompressed LZ4 block in the event
of a recovery. The LZ4 uncompressed block will have bit <31> set in the block header followed by the
cleartext in the data section of the block.

CnVRecoverywith LZ4s compression

LZ4s algorithm is an Intel® specific format. LZ4s payloads do not have a block header like LZ4. When a
CnV recovery occurs, the source data will be copied to the destination and dataUncompressed property
will be set to CPA_TRUE in CpaDcRqResults structure.

CountingRecoveredCompressionErrors

The Intel® QATAPIhasbeenupdatedtoallowtheapplication to track recoveredcompressionerrors. The
CpaDcStats data structure has a new property called numCompCnvErrorsRecovered that is incremented
every time a compression recovery happens.

The compression recovery process is agnostic to the application.

CpaDcRqResults.status returns CPA_DC_OKwhen a compression recovery takes place. The only way to
know if a compression recovery took place on the current request is to call the cpaDcGetStats()API and
to monitor CpaDcStats.numCompCnvErrorsRecovered.

6.1.10 DynamicCompression

Dynamic compression involves feeding the data produced by the compression hardware block to the
translator hardware block.

When the application selects the Huffman type to CPA_DC_HT_FULL_DYNAMIC in the session and auto-
select best feature is set to CPA_DC_ASB_DISABLED, the compression service may not always produce a
deflate stream with dynamic Huffman trees.

When using QAT2.0 device, it is no longer required to allocate intermediate buffers. The API cpaDcGet-
NumIntermediateBuffers() returns 0. As a good programming practise, the application should still call
cpaDcGetNumIntermediateBuffers() and ensure that the number of intermediate buffers returned is 0.

76 Services

Programmer'sGuide

6.1.11 MaximumExpansionwithAutoSelect Best Feature (ASB)

Compressingsome inputdatamay lead toa lower-than-expectedcompression ratio. This isbecause the
inputdatamaynotbeverycompressible. Toachieveamaximumcompression ratio, theaccelerationunit
provides an auto select best (ASB) feature.

With QAT1.X devices, the Intel® QuickAssist Technology hardware will first execute static compression
followed by dynamic compression and then select the output that yields the best compression ratio.

With QAT2.0 devices, the behaviour is different. ASB features chooses between a static and a stored
block. ASB features with choose the block type that offers the best compression ratio.

Regardless of the ASB setting selected, dynamic compression will only be attempted if the session is
configured for dynamic compression.

Table 34: ASB Settings
Setting Description
CPA_DC_ASB_DISABLED ASB mode is disabled.
CPA_DC_ASB_ENABLED ASB mode is enabled.

Note:

• Setting ASB mode to CPA_DC_ASB_ENABLED, corresponds to the setting
CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS.

• These ASB modes have been deprecated:

– CPA_DC_ASB_STATIC_DYNAMIC

– CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS

– CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_NO_HDRS

• Based on the ASB settings, the produced data returned in the CpaDcRqResults structure will vary.

6.1.12 MaximumCompression Expansion

To facilitate theprogrammingmodel of theapplication, Intel® addedanewsetofAPIs that return the size
of the destination according to the algorithm used.

These APIs are:

• cpaDcDeflateCompressBound()

• cpaDcLZ4CompressBound()

• cpaDcLZ4SCompressBound()

Services 77

Programmer'sGuide

This new set of APIs will return to the application the size of the destination buffer that must be allo-
cated to avoid an overflow exception. Each function initializes the outputSize parameter. The output-

Sizeparameter takes into account themaximal expansion that the compresseddata size can reach. The
returned outputSize valuemust beusedboth to allocate the size of the pData and to initialize the dataL-
enInBytes in the CpaBufferList structure.

Note: Eachoneof thecompressBound()APIs accepts as aparameter the instancehandle. The instance
handle is used internally by the library to determine on which hardware version the instance lives on. The
size of the destination buffer to be allocated depends on the hardware generation the instance lives on.

6.1.13 NoSessionAPI

ThenosessionAPI is a simplificationof theexistingcompressionanddecompressionAPIs thatdoesnot
require the application to create/remove a session. Instead the parameters that would normally be set
when creating a session are passed into the compress/decompress APIs via a CpaDcNsSetupData struc-
ture. The no session API is especially useful to simplify existing applications as sessions no longer need
tobecreated/tracked/removed. ThenosessionAPIcanbe thoughtofasa “oneshot”APIand is intended
for use cases where all the data to be compressed or decompressed for the current job is being submit-
ted as one request. In addition to the simpler protocol, the API has a smaller memory footprint.

The no session API consists of the following API calls:

• cpaDcNsCompressData()

• cpaDcNsDecompressData()

• cpaDcNsGenerateHeader()

• cpaDcNsGenerateFooter()

ThecpaDcNsCompressData()andcpaDcNsDecompressData() functionsareverysimilar to thecpaDcCom-
pressData2() and cpaDcDecompressData2() functions. Instead of passing in a CpaDcSessionHandle, a
CpaDcNsSetupData structure and a CpaDcCallbackFn are passed in. The CpaDcCallbackFn is the user
callback to be called on request completion when running asynchronously. For synchronous operation
CpaDcCallbackFnmust be set to NULL.

Theno sessionAPIwill workwith all versionsofQAThardwarebut doesnot support stateful operation as
without a session no state can be maintained between requests.

It is still possible to seed checksums for CRC32 and Adler32 by setting the checksum field of the CpaD-

cRqResults to the seed checksum value before submission. This will allow an overall checksum to be
maintained across multiple submissions. For LZ4, checksum seeding is not supported. If checksums
need tobemaintainedbetweenLZ4 requests then the session basedAPImust be used. The no session
API supports data integrity checksums but as stateful operation is not supported the integrity check-
sums will always be for the current request only.

The no session API does support stateless overflow in the compression direction only like the session
basedAPI. In that caseconsumed, producedandchecksumfieldswithin theCpaDcRqResults structurewill
bevalidwhenastatusofCPA_DC_OVERFLOW is returned. It is theapplication’s responsibility toarrangedata

78 Services

Programmer'sGuide

buffers for thenextsubmission, ensure thechecksumisseededandmaintainanoverall countof thebytes
consumed if footer generation is required. For performance reasons it is recommended that the com-
pressBound API is used to size the destination buffer correctly to avoid overflow. It is necessary for an
application to seed the checksum whether it wishes to continue the series of requests or to start a new
one, only in the latter case, the seed is 0 for CRC32 and 1 for Adler32.

The no session API does not support setting the sessDirection field of the CpaDcNsSetupData

structure to CPA_DC_DIR_COMBINED. In addition, it does not support setting the sessState field to
CPA_DC_STATEFUL, or the flushFlag field of the CpaDcOpData structure to CPA_DC_FLUSH_NONE or
CPA_DC_FLUSH_SYNC.

The cpaDcNsGenerateHeader() and cpaDcNsGenerateFooter() functions are also very similar to the
session based equivalents but take a CpaDcNsSetupData instead of a CpaDcSessionHandle. For cpaD-
cNsGenerateFooter() an additional parameter is required called count that contains the overall length
of the uncompressed input data. For most cases this will be the consumed value from the single submis-
sion contained in the CpaDcRqResults structure but in cases where multiple submissions represent the
overall file then it is the application’s responsibility to maintain the overall count of consumed bytes.

6.1.14 Compression Levels

Table 35: Compression Levels
Level lvl_enum QAT2.0 (Deflate, iLZ77, LZ4, LZ4s) QAT 1.7/1.8 (Deflate)
1 CPA_DC_L1 2 (HW_L1) DEPTH_1

2 CPA_DC_L2 DEPTH_4

3 CPA_DC_L3 DEPTH_8

4 CPA_DC_L4 DEPTH_16

5 CPA_DC_L5

6 CPA_DC_L6 8 (HW_L6)
7 CPA_DC_L7

8 CPA_DC_L8

9 CPA_DC_L9 16 (HW_L9)
10 CPA_DC_L10 Unsupported. Will be

rejected at the API.11 CPA_DC_L11

12 CPA_DC_L12

> 12 Unsupported. Will be rejected at the API.

6.1.15 CompressionStatusCodes

The CpaDcRqResults structure should be checked for compression status codes in the CpaDcReqStatus
data field. The mapping of the error codes to the enums is included in the quickassist/include/dc/

cpa_dc.h file.

Services 79

Programmer'sGuide

6.1.16 Intel®QuickAssist TechnologyCompressionAPI Errors

The Intel® QuickAssist Technology Compression APIs that send requests to the compression hardware
can return the error codes shown in Compression API Errors.

These APIs are:

• cpaDcCompressData()

• cpaDcCompressData2()

• cpaDcNsCompressData()

• cpaDcDecompressData()

• cpaDcDecompressData2()

• cpaDcNsDecompressData()

• cpaDcDpEnqueueOp()

• cpaDcDpEnqueueOpBatch()

Note: Decompression issues in may also apply to the compression use case due to potential issues en-
countered during a Compress-and-Verify operation. In this case, the file(s) /sys/kernel/debug/qat_*/
cnv_errorsmay show these nested errors. In some cases, the suggested corrective action may need to
be to store the block uncompressed or to compress the block with software.

6.1.16.1 CompressionAPI Errors

Table 36: Compression API Errors
Error
Code

Error Type Description Suggested Corrective
Action(s)

0 CPA_DC_OK No error detected by
compression hard-
ware.

None.

-1 CPA_DC_INVALID_BLOCK_TYPE Invalid block type
(type = 3); invalid in-
put stream detected
for decompression

Decompression error.
Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling CpaD-

cRemoveSession().
continues on next page

80 Services

Programmer'sGuide

Table 36 – continued from previous page
Error
Code

Error Type Description Suggested Corrective
Action(s)

-2 CPA_DC_BAD_STORED_BLOCK_LEN Stored block length
did not match one’s
complement; invalid
input streamdetected

Decompression error.
Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling CpaD-

cRemoveSession().
-3 CPA_DC_TOO_MANY_CODES Too many length

or distance codes;
invalid input stream
detected

Decompression error.
Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling CpaD-

cRemoveSession().
-4 CPA_DC_INCOMPLETE_CODE_LENS Code length codes in-

complete: invalid in-
put stream detected

Decompression error.
Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling CpaD-

cRemoveSession().
-5 CPA_DC_REPEATED_LENS Repeated lengths

with no first length;
invalid input stream
detected

Decompression error.
Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling CpaD-

cRemoveSession().
-6 CPA_DC_MORE_REPEAT Repeat more than

specified lengths;
invalid input stream
detected

Decompression error.
Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling CpaD-

cRemoveSession().
continues on next page

Services 81

Programmer'sGuide

Table 36 – continued from previous page
Error
Code

Error Type Description Suggested Corrective
Action(s)

-7 CPA_DC_BAD_LITLEN_CODES Invalid literal/length
code lengths; invalid
input streamdetected

Decompression error.
Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling CpaD-

cRemoveSession().
-8 CPA_DC_BAD_DIST_CODES Invalid distance code

lengths; invalid input
stream detected

Decompression error.
Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling CpaD-

cRemoveSession().
-9 CPA_DC_INVALID_CODE Invalid literal/length or

distance code in fixed
or dynamic block; in-
valid input stream de-
tected

Decompression error.
Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling CpaD-

cRemoveSession().
-10 CPA_DC_INVALID_DIST Distance is too far

back in fixed or dy-
namic block; invalid
input streamdetected

Decompression error.
Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling CpaD-

cRemoveSession(). If
the error is observed
with LZ4 decompres-
sion, ensure that the
compressor has a
history buffer limited
to 32KB.
continues on next page

82 Services

Programmer'sGuide

Table 36 – continued from previous page
Error
Code

Error Type Description Suggested Corrective
Action(s)

-11 CPA_DC_OVERFLOW Overflow detected.
This is not an error,
but an exception.
Overflow is supported
and can be handled.

Resubmitwith a larger
output buffer when
appropriate.
With decompression
executed on QAT2.0,
the application is re-
quired to resubmit the
compresseddatawith
a larger destination
buffer.

-12 CPA_DC_SOFTERR Other non-fatal de-
tected.

Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling CpaD-

cRemoveSession().
-13 CPA_DC_FATALERR Fatal error detected. Discard output and

abort the session
calling CpaDcRe-

moveSession().
-14 CPA_DC_MAX_RESUBMITERR On an error being de-

tected, the firmware
attempted to cor-
rect and resubmitted
the request, how-
ever, the maximum
resubmit value was
exceeded. Maximal
value is internally set
in the firmware to 10
attempts. This is a
QAT1.6 error only.
This error code is
considered as a fatal
error.

Discard output and
abort the session
calling CpaDcRe-

moveSession().

continues on next page

Services 83

Programmer'sGuide

Table 36 – continued from previous page
Error
Code

Error Type Description Suggested Corrective
Action(s)

-15 CPA_DC_INCOMPLETE_FILE_ERR QAT1.X device can re-
port this errorwithDe-
flate decompression.
However, it is not
exposed to the appli-
cation. The inputfile is
incomplete. This indi-
cates that the request
was submitted with a
CPA_DC_FLUSH_FINAL.
However, a BFINAL
bit was not found in
the request.
QAT2.0 can return
this error code to the
application during
LZ4 decompression.
This error is returned
when a LZ4 block is
incomplete.

Nocorrective action is
required as it is not ex-
posed to the applica-
tion.

-16 CPA_DC_WDOG_TIMER_ERR The request was
not completed as a
watchdog timer hard-
ware event occurred.
With QAT2.0 this
error can be triggered
by an internal parity
error.

Discard output and
resubmit the affected
request.

-17 CPA_DC_EP_HARDWARE This is a recoverable
error. Request was
not completed as an
endpointhardwareer-
ror occurred (for ex-
ample, a parity error).

Discard output and
abort the session
calling CpaDcRe-

moveSession().

-18 CPA_DC_VERIFY_ERR Compress and Verify
(CnV). This is a com-
pression direction er-
ror only. During the
decompression of the
compressed payload,
an error was detected
and the deflate block
produced is invalid.

Discard output; re-
submit affected
request.

continues on next page

84 Services

Programmer'sGuide

Table 36 – continued from previous page
Error
Code

Error Type Description Suggested Corrective
Action(s)

-19 CPA_DC_EMPTY_DYM_BLK Decompression re-
quest contained
an empty dynamic
stored block (not
supported).

Discard output.

-20 CPA_DC_CRC_INTEG_ERR A data integrity CRC
error was detected.

Discard output.

-93 CPA_DC_LZ4_MAX_BLOCK_SIZE_EXCEEDED LZ4maxblocksizeex-
ceeded.

Discard output.

-95 CPA_DC_LZ4_BLOCK_OVERFLOW_ERR LZ4 block overflow. Discard output.
-98 CPA_DC_LZ4_TOKEN_IS_ZERO_ERR LZ4 Decoded token

offset or token length
is zero.

Discard output.

-100 CPA_DC_LZ4_DISTANCE_OUT_OF_RANGE_ERR LZ4 distance out of
range for the len/ dis-
tance pair.

Discard output.

Note:

• Except for the errors CPA_DC_OK, CPA_DC_OVERFLOW, CPA_DC_FATALERR, CPA_DC_MAX_RESUBMITERR,
CPA_DC_WDOG_TIMER_ERR, CPA_DC_VERIFY_ERR, and CPA_DC_EP_HARDWARE_ERR, the rest of the error
codes can be considered as invalid input stream errors.

• When the suggested corrective action is to discard the output, it implies that the application must
also ignore the consumed data, the produced data, and the checksum values.

6.1.17 OverflowsErrors

This tabledescribes thebehavior of the Intel® QATcompression servicewhenanoverflowoccursduring
a compression or decompression operation. It also describes the expected behavior of an application
when an overflow occurs.

Services 85

Programmer'sGuide

Table 37: Overflows Errors
Operation Overflow

Supported
Input Data
Consumed

Valid Data
Produced?

Status Re-
turned in
Results

Note

Traditional
API

Stateless
compres-
sion

YES Possible -
indicated
in results
consumed
field

Possible -
indicated
in results
produced
field

-11 Overflow
is consid-
ered as an
exception

Stateless
decom-
pression

NO NO NO -11 Overflow is
considered
as an error

Stateful
decom-
pression

YES on
QAT1.x de-
vices NO
on QAT2.x
devices

Possible -
indicated
in results
consumed
field

Possible -
indicated
in results
produced
field

-11 Overflow
is consid-
ered as an
exception
on QAT1.x
devices.
QAT2.x
does not
support
stateful
decom-
pression.

Data Plane
API

Stateless
compres-
sion

NO NO NO -11 Overflow is
considered
as an error

Stateful
decom-
pression

NO NO NO -11 Overflow is
considered
as an error

6.1.17.1 Traditional APIOverflowException

Stateless sessions support overflowas anexception for traditionalAPI in the compressiondirectiononly.
This means that the application can rely on the cpaDcRqResults.consumed to resubmit from where the
overflow occurred. An overflow in the decompression direction must be treated as an error.

In this case, the application must resubmit the request with a larger buffer as described in the procedure
for handling overflow errors. For stateful sessions, overflow is supported only in the decompression di-
rection.

86 Services

Programmer'sGuide

6.1.17.2 Data PlaneAPIOverflowError

The Data Plane API considers overflow status as an error. If an overflow occurs with the data plane API,
the driver will output the following error message to the user:

Unrecoverable error: stateless overflow. You may need to increase the size of

your destination buffer

In this case, cpaDcRqResults.consumed, .produced and .checksum should be ignored. If length and
checksum are required, they must be tracked in the application, because they are not maintained in the
session.

6.1.17.3 HandlingOverflowErrors

Resubmit the request with the following data:

• Use the same source buffer.

• Allocate a bigger destination buffer. It is recommended to use the compressBound()APIs in com-
pression direction.

• If the overall checksum needs to be maintained, insert the checksum from the previous successful
request into the cpaDcRqResults struct.

6.1.17.4 CompressionOverflows in aVirtual Environment

In a virtual environment, the guest does not download the firmware. Only the host downloads the
firmware. As a consequence, if the guest runs a newer Intel® QAT driver than the host, the guest applica-
tion might experience false CNV errors. The correct course of action would be to update the host with
the latest Intel® QAT driver.

6.1.17.5 AvoidingCompressionOverflowExceptions

Overflow exceptions happen for 2 reasons:

1. The application allocated a destination buffer that was too small to receive the compressed data.

2. A recovery occurred after a compress and verify error with an input payload greater than 65,535
bytes if the instance lives on a QAT1.X device.

To minimize the impact of resubmitting data after and overflow exception, the API cpaDcDeflateCom-
pressBound() has been added to the Intel® QAT driver. A detailed explanation of compressBound APIs
is provided in the Maximum Compression Expansion section.

Services 87

Programmer'sGuide

6.1.18 Integrity Checksums

Integrity checksums are an additional method for payload verification throughout the compres-
sion/decompression lifecycle. They may be used to verify corruption has not happened when sending
data to and from the Intel® QuickAssist HW, or for example the integrity checksums may be stored by an
application along with the compressed data and used to detect corruption in the future without needing
to decompress the data.

They should not be confused with the Gzip/Zlib/LZ4 footer checksums of CRC32, Adler32 and
Xxhash32 that are calculated over the uncompressed input data only.

Integrity checksums use an additional structure that is the application’s responsibility to allocate, main-
tain, and free. The structure is cpaCrcData and contains the following fields:

Table 38: Integrity Checksums
cpaCrcData Fields Description
Cpa32U crc32 This is the existing CRC32 for the footer calculated across the uncom-

pressed data in either the source or dest buffer depending whether it is a
compress or decompress operation. This is the same as the value returned
in the cpaDcRqResults checksum field.

Cpu32U adler32 This is the existing Adler32/Xxhash32 for the footer calculated across the
uncompressed data in either the source or dest buffer depending whether
it is a compress or decompress operation. This is the same as the value re-
turned in the cpaDcRqResults checksum field.

CpaIntegrityCrc in-

tegrityCrc

Thisfieldcontains theQAT1.8 integritychecksums thatconsistof two32bit
CRC32’s. These are calculated on the input data to the request within the
HW and on the output data from the request within the HW.

CpaIntegrityCrc64b

integrityCrc64b

This field contains the QAT 2.0 integrity checksums that consist of two 64
bit checksums. CPM 2.0 uses CRC64 by default for these checksums. The
checksums are calculated on the input data to the request within the HW
and on the output data from the request within the HW.

Once allocated, a pointer to the cpaCrcData structure must be assigned to the pCrcData field of the re-
quests CpaDcOpData structure. The cpaCrcData structure assigned to the pCrcData pointer should be
treated in the same way as the destination buffer, not freed until the request has completed, and not
shared across requests if running asynchronously.

The integritychecksumfeature itself is enabledonaper requestbasisbysetting theintegrityCrcCheck
field contained in the CpaDcOpData structure to CPA_TRUE. Integrity checksumsare available on theTradi-
tionalAPI includingNoSessionrequests,butarenotavailableontheDataPlaneAPI. Integritychecksums
are calculated across only the current request inQAT2.0. WithQAT 1.8 it is possible to seed the integrity
checksums on stateful decompression requests by reusing the same cpaCrcData structure on the sub-
sequent request without resetting the contents. For QAT 1.8 stateful decompression requests it is the
application’s responsibility to allocate the cpaCrcData structure and keep it allocated for the lifetime of
the session. Integrity checksums are not available on devices prior to QAT 1.8.

88 Services

Programmer'sGuide

6.1.18.1 VerifyHW Integrity CRC’s

There is an additional feature to integrity checksums that can be enabled to automatically check that no
corruption to data buffers has occured during transport to and from the Intel® QAT HW. This works by
calculating integrity checksumsacross the source anddestinationbufferswithin the Intel® QATAPI, and
comparing the checksums with those generated within the Intel® QAT HW. Any discrepencies will result
in a status of CPA_DC_INTEG_ERR being returned within the cpaDcRqResults structure. These additional
checksums are calculated in SW using the CPU and have a cost in terms of performance. In order to en-
able the Verify HW Integrity CRC feature on a per request basis the verifyHwIntegrityCrcs field con-
tained in the cpaDcOpdata structure needs to be set to CPA_TRUE. Additionally the integrityCrcCheck

field must be enabled and a cpaCrcData structure allocated and a pointer to it must be assigned to the
pCrcData field.

6.1.19 DataCompressionApplications

Data compression can be used as part of application delivery networks, data de-duplication, as well as in
a number of crypto applications, for example, VPNs, IDS/IPS and so on.

6.1.19.1 Compression for Storage

In a time when the amount of online information is increasing dramatically, but budgets for storing that
information remain static, compression technology is a powerful tool for improved information manage-
ment, protection and access.

Compression appliances can transparently compress data such that clients can keep between two- and
five-times more data online and reap the benefit of other efficiencies throughout the data lifecycle. By
shrinking the primary data, all subsequent copies of that data, such as backups, archives, snapshots, and
replicas are also compressed. Compression is the newest advancement in storage efficiency.

Storage compression appliances can shrink primary online data in real time,without performancedegra-
dation. This can significantly lower storage capital and operating expenses by reducing the amount of
data that is stored, and the required hardware that must be powered and cooled.

Compression can help slow the growth of storage, reducing storage costs while simplifying both oper-
ations and management. It also enables organizations to keep more data available for use, as opposed
to storing data offsite or on harder-to-access media (such as tape). Compression algorithms are very
compute-intensive, which is one of the reasons why the adoption of compression techniques in main-
stream applications has been slow.

As an example, the DEFLATE Algorithm, which is one of the most used and popular compression tech-
niques today, involves several compute-intensive steps: string search and match, sort logic, binary tree
generation,HuffmanCodegeneration. Intel® QATdevices in theplatformsdescribed in thismanual pro-
videaccelerationcapabilities inhardware that allow theCPUtooffload thecompute-intensiveDEFLATE
algorithmoperations, thereby freeingupCPUcycles forothernetworking, encryption, orother value-add
operations.

Services 89

Programmer'sGuide

6.1.19.2 DataDeduplication andWANAcceleration

Data Deduplication and WAN Acceleration are coarse-grain data compression techniques centered
around the concept of single-instance storage. Identical blocks of data (either to be stored on disk or to
be transferred across aWAN link) areonly stored/movedonce, andany further occurrences are replaced
by a reference to the first instance.

While the benefits of deduplication and WAN acceleration obviously depend on the type of data, multi-
usercollaborativeenvironmentsarethemostsuitableduetotheamountofnaturallyoccurringreplication
caused by forwarded emails and multiple (similar) versions of documents in various stages of develop-
ment.

Deduplication strategies can vary in terms of inline vs post-processing, block size granularity (file-level
only, fixed block size or variable block-size chunking), duplicate identification (cryptographic hash only,
simple CRC followed by byte-level comparison or hybrids) and duplicate look-up (for example, Bloom
filter based index).

Cryptographic hashes are the most suitable techniques for reliably identifying matching blocks with an
improbably low risk for false positives, but they also represent the most compute-intensive workload
in the application. As such, the cryptographic acceleration services offered by the hardware through
the Intel® QAT Cryptographic API can be used to considerably improve the throughput of deduplica-
tion/WAN acceleration applications. Additionally, the compression/decompression acceleration ser-
vices can be used to further compress blocks for storage on disk, while optionally encrypting the com-
pressed contents.

6.2 Cryptographic Services

6.2.1 Introduction

Intel® QuickAssist Technology (Intel® QAT) accelerates cryptographic workloads by offloading the data
to hardware capable of optimizing those functions. This makes it easier for developers to integrate built-
in cryptographic accelerators into network and security applications.

Symmetric cryptography algorithms include:

• Cipher operations (AES, DES, 3DES, ARC4, CHA-CHA, SM4).

• Wireless (Kasumi, Snow, 3G).

• Hash/Authenticate operations (SHA-1, MD5, SHA-2, SHA-3, SHAKE).

• Authentication (HMAC, AES-XCBC, AES-CCM).

Public key algorithms include:

• RSA operation.

• Diffie-Hellman operation.

• Digital signature standard operation.

90 Services

Programmer'sGuide

• Key derivation operation.

• Elliptic curve cryptography (ECDSA and ECDH).

• Prime number testing.

6.2.1.1 SupportedCipherAlgorithms

The following table provides details on supported cipher algorithms for each platform.

Note:

• cpaCySymInitSession() returnserror statusofCPA_STATUS_UNSUPPORTED if cipher algorithm isnot
supported.

• The QAT2.0 driver has not been updated to enable the Opt-In functionality. This will be added in a
future release.

Table 39: Supported Cipher Algorithms
Algorithm QAT 1.7x QAT 1.8 QAT2.0
NULL Yes Yes Yes
ARC4 Opt-in Opt-in No
AES-ECB Opt-in Opt-in Opt-in
AES-CBC Yes Yes Yes
AES-CTR Yes Yes Yes
AES-CCM Yes Yes Yes
AES-GCM Yes Yes Yes
AES-F8 Opt-in Opt-in Opt-in
AES-XTS Yes Yes Yes
DES-ECB Opt-in Opt-in No
DES-CBC Opt-in Opt-in No
3DES-ECB Opt-in Opt-in No
3DES-CBC Opt-in Opt-in No
3DES-CTR Opt-in Opt-in No
KASUMI-F8 Yes Yes No
SNOW3G-UEA2 Yes Yes No
ZUC-EEA3 Yes Yes No
CHACHA No Yes Yes
SM4-ECB No Opt-in Opt-in
SM4-CBC No Yes Yes
SM4-CTR No Yes Yes

Services 91

Programmer'sGuide

6.2.1.2 SupportedHash/AuthenticateAlgorithms

The following table provides details on supported hash algorithms for each platform.

Note:

• cpaCySymInitSession() returns error status of CPA_STATUS_UNSUPPORTED if hash algorithm is not
supported.

• The QAT2.0 driver has not been updated to enable the Opt-In functionality. This will be added in a
future release.

Table 40: Supported Hash/Authenticate Algorithms
Algorithm QAT 1.7x QAT 1.8 QAT2.0
MD5 Opt-in Opt-in No
SHA1 Opt-in Opt-in Opt-in
SHA224 Opt-in Opt-in Opt-in
SHA256 Yes Yes Yes
SHA384 Yes Yes Yes
SHA512 Yes Yes Yes
SHA3-224 No Opt-in Opt-in
SHA3-256 Yes Yes Yes
SHA3-384 No Yes Yes
SHA3-512 No Yes Yes
AES-XCBC Yes Yes Yes
AES-CBC_MAC Yes Yes Yes
AES-CCM Yes Yes Yes
AES-GCM Yes Yes Yes
AES-GMAC Yes Yes Yes
AES-CMAC Yes Yes Yes
KASUMI-F9 Yes Yes No
SNOW3G-UIA2 Yes Yes No
ZUC-EIA3 Yes Yes No
POLY No Yes Yes
SM3 No Yes Yes

92 Services

Programmer'sGuide

6.2.1.3 SupportedPublic KeyAlgorithms

The following table provides details on supported asymmetric algorithms for each platform.

Note: QAT Public Key functions will return error status of CPA_STATUS_UNSUPPORTED if algorithm is not
supported.

Table 41: Supported Public Key Algorithms
Algorithm QAT 1.7x QAT 1.8 QAT2.0
RSA-1024 Opt-in Opt-in Opt-in
RSA-2048 Yes Yes Yes
RSA-3072 Yes Yes Yes
RSA-4096 Yes Yes Yes
RSA-8192 No No Yes
SM2 No Yes Yes
ECDH Point Multiply Yes Yes Yes
ECDSA Sign Yes Yes Yes
ECDSA Verify Yes Yes Yes
x25519 Yes Yes Yes
x448 Yes Yes Yes

6.2.2 CryptographyApplications

Cryptography applications supported by the platforms described in this manual include, but are not lim-
ited to:

• Virtual Private Networks

• Encrypted Storage

• Web Proxy Appliances

6.2.2.1 IPsec andSSLVPNs

Virtual Private Networks (VPNs) allow for private networks to be established over the public Internet by
providing confidentiality, integrity and authentication using cryptography. VPN functionality can be pro-
videdbyastandalonesecuritygatewayboxat theboundarybetweenthetrustedanduntrustednetworks.
It is also commonly combined with other networking and security functionality in a security appliance, or
even in standard routers.

VPNs are typically based on one of two cryptographic protocols, either IPsec or Datagram Transport
Layer Security (DTLS). Each has its advantages and disadvantages.

One of the most compute-intensive aspects of a VPN is the cryptographic processing required to en-
crypt/decrypt traffic for confidentiality, to perform cryptographic hash functionality for authentication

Services 93

Programmer'sGuide

and to perform public key cryptography, based on modular exponentiation of large numbers or elliptic
curve cryptography aspart of key negotiation andexchange. The accelerator provides cryptographic ac-
celeration that can offload this computation from the CPU, thereby freeing up CPU cycles to perform
other networking, encryption, or other value-add applications.

The Intel® QAT Endpoint offers its acceleration services through an API, called the Intel® QAT Crypto-
graphic API. This can be invoked from the Linux* kernel or from Linux* user space as well as from other
operating systems. Intel® also provides plugins to enable many of the PCH’s cryptographic services to
be accessed through open source cryptographic frameworks, such as the Linux* kernel crypto frame-
work/API (also known as the scatterlist API) and OpenSSL* libcrypto* (through its EVP API). This
facilitates ease of integration with certain open source implementations of protocol stacks, such as the
Linux* kernel’s native IPsec stack (called NETKEY) or with OpenVPN* (an open source SSL VPN imple-
mentation).

6.2.2.2 EncryptedStorage

In recent years, casesof lost laptopscontaining sensitive informationhavemade theheadlines all too fre-
quently. Full disk encryption has become a standard procedure for many corporate PCs. Safe-guarding
critical data however is not just a necessity in the client space, it is also a necessity in the data center.

Enterprise-class storage appliances achieve throughput rates in excess of 50 Gbps. Several high-profile
casesofdata thefthavetriggeredupdates togovernment regulationsand industrystandards. These reg-
ulations/standardsnowrequireprotectionofdata-at-rest for applications involvingsensitivedata suchas
medical and financial records, typically using strong encryption. The high computational cost of adding
encryption to storage appliances makes offload solutions an attractive value proposition.

Severalcomplimentarystandardsexist for theencryptionofdata-at-rest,which,whencombinedwith tra-
ditional network security protocols such as IPsec or SSL/TLS, provide an end-to-end encrypted storage
solution, even for data-in-flight.

The IEEE* Security in Storage working group is developing the IEEE 1619 series of standards that deal
with cipher algorithms for disk and tape storage devices (AES in CCM and GCM modes). The crypto-
graphic acceleration services of platforms that use the Intel® QAT Endpoints are ideally suited for long-
term encrypted storage solutions implementing the IEEE 1619.1 standard, by providing acceleration of
the AES-256 cipher in CBC, CCM, and GCM modes and HMAC authentication using SHA-1, SHA-256
and SHA-512 hashes.

The Trusted Computing Group’s (TCG) Storage Working Group does not prescribe a particular set of
algorithms for the disk encryption. Instead, it defines several Storage Subsystem Classes (SSC) for var-
ious usage models, which define services such as enrollment and connection, protected storage (an ex-
tension of Trusted Platform Module (TPM)), locking, logging, cryptographic services, authorization, and
firmware updates. The cryptographic acceleration services of the platform can help by providing the
highest level of encryption for authenticating thehost to trustedperipherals implementing theTCGstor-
age standards.

94 Services

Programmer'sGuide

6.2.2.3 WebProxyAppliances

Historically, Web Proxy appliances have evolved to present a public or intermediary interface for clients
seeking resources from other servers, providing services such as web page caching and load balancing.
These appliances are located at the edgeof the network, typically at network gateways. Due to their cen-
tralized presence in the network, Web Proxy appliances today (referred to with several different names,
such asApplicationDeliveryControllers, ReverseProxy, and soon) havebecomeacollection of services
that include:

• Application Load Balancing (L4-L7)

• SSL Acceleration

• WAN Acceleration

• Caching

• Traffic Management

• Web Application Firewall

SSLandWANaccelerationhavebecomecommonplacecapabilities of theWebProxy appliance, requir-
ing compute intensive algorithms for cryptography (SSL) and compression (WAN acceleration). Intel®

QATdeviceson theplatformsdescribed in thismanualprovideaccelerationofasymmetriccryptography
(RSA is the most commonly used key negotiation algorithm in SSL), symmetric cryptography (all algo-
rithms defined in the TLS RFCs can be accelerated with the PCH) and compression (DEFLATE algo-
rithm). With the prominence of Web Proxy appliances in typical networks, this use case has applications
from cloud computing to small web server deployments.

Services 95

7 SupportedAPIs

The supported APIs are classified in two categories:

• Intel QuickAssist Technology APIs

• Additional APIs

Details on the APIs are included in the following sections.

7.1 Intel QuickAssist TechnologyAPIs

The platforms described in this manual support the following Intel® QAT API libraries:

• Cryptographic: API definitions are located in: $ICP_ROOT/quickassist/include/lac, where
$ICP_ROOT is the directory where the Acceleration software is unpacked. See the Intel QuickAssist
Technology Cryptographic API Reference Manual for details.

• DataCompression: API definitions are located in: $ICP_ROOT/quickassist/include/dc. See the
Intel QuickAssist Technology Data Compression API Reference Manual for details.

7.1.1 Cryptographic andDataCompressionAPI Descriptions

Full descriptionsof the Intel® QATAPIs arecontained in the IntelQuickAssistTechnologyCryptographic
API Reference Manual and the Intel QuickAssist Technology Data Compression API Reference Manual.

In addition to the Intel® QAT Data Plane APIs, there are a number of Data Plane Polling APIs that are de-
scribed in the Polling Functions section.

96

https://cdrdv2.intel.com/v1/dl/getContent/709199?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/709199?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/709201?explicitVersion=true

Programmer'sGuide

7.1.1.1 Data PlaneAPIsOverview

The Intel QuickAssist Technology Cryptographic API Reference Manual and the Intel QuickAssist Tech-
nologyDataCompressionAPIReferenceManual contain informationontheAPIs thatarespecifictodata
plane applications.

The APIs are recommended for applications that are executing in a data plane environment where the
cost of offload (that is, the cycles consumedby thedriver sending requests to the hardware) needs to be
minimized. To minimize the cost of offload, several constraints have been placed on the APIs. If these
constraints are too restrictive for your application, the traditional APIs can be used instead (at a cost of
additional IA cycles).

The definition of the Cryptographic Data Plane APIs are contained in: $ICP_ROOT/quickassist/

include/lac/cpa_cy_sym_dp.h

The definition of the Data Compression Data Plane APIs are contained in: $ICP_ROOT/quickassist/
include/dc/cpa_dc_dp.h

7.1.1.2 IACycleCount ReductionWhenUsingData PlaneAPIs

From an IA cycle count perspective, the Data Plane APIs are more performant than the traditional APIs.
The majority of the cycle count reduction is realized by the reduction of supported functionality in the
Data Plane APIs and the application of constraints on the calling application.

Inaddition, to further improveperformance, theDataPlaneAPIsattempttoamortize thecostofanMMIO
access when sending requests to, and receiving responses from, the hardware.

Atypicalusage is tocall thecpaCySymDpEnqueueOp()or thecpaDcDpEnqueueOp() functionmultiple times
with requests toprocess and the performOpNowflag set to CPA_FALSE. Oncemultiple requests havebeen
enqueued, cpaCySymDpEnqueueOp() or cpaDcDpEnqueueOp()may be called with the performOpNow flag
set to CPA_TRUE. This sends the requests to the Intel® QAT Endpoint for processing.

The Intel® QAT API returns a CPA_STATUS_RETRYwhen the ring becomes full.

The number of requests to place on the ring is application dependent and it is recommended that per-
formance testing be conducted with tunable parameter values.

Two functions, cpaCySymDpPerformOpNow() and cpaDCDpPerformOpNow(), are also provided that allow
queued requests to be sent to the hardware without the need for queuing an additional request. This is
typically used in the scenario where a request has not been received for some time and the application
would like the enqueued requests to be sent to the hardware for processing.

SupportedAPIs 97

Programmer'sGuide

7.1.1.3 UsageConstraints on theData PlaneAPIs

The following constraints apply to the use of the Data Plane APIs. If the application can handle these
constraints, the Data Plane APIs can be used:

• Threadsafety isnotsupported. Eachsoftwarethreadshouldhaveaccessto itsownunique instance
(CpaInstanceHandle) to avoid contention on the hardware rings.

• For performance, polling is supported, as opposed to interrupts (which are comparatively more ex-
pensive).

• Polling functions are provided to read responses from the hardware response queue and dispatch
callback functions.

• Buffers and buffer lists are passed using physical addresses to avoid virtual-to- physical address
translation costs.

• Alignment restrictions are placed on the operation data (that is, the CpaCySymDpOpData structure)
passed to the Data Plane API. The operation data must be at least 8-byte aligned, contiguous, resi-
dent, DMA-accessible memory.

• Only asynchronous invocation is supported, that is, synchronous invocation is not supported.

• There is no support for cryptographic partial packets. If support for partial packets is required, the
traditional Intel® QAT APIs should be used.

• Since thread safety is not supported, statistic counters on the Data Plane APIs are not atomic.

• The default instance (CPA_INSTANCE_HANDLE_SINGLE) is not supported by the Data
Plane APIs. The specific handle should be obtained using the instance discovery func-

98 SupportedAPIs

Programmer'sGuide

tions (cpaCyGetNumInstances(), cpaCyGetInstances(), cpaDcGetNumInstances(), cpaD-

cGetInstances()).

• The submitted requests are always placed on the high-priority ring.

• The data plane APIs are supported in both user space and polling mode in kernel space, but not
supported in interrupt mode in kernel space.

7.1.2 Intel®QATAPI Limitations

Thefollowing limitationsapplywhenusingthe Intel®QATAPIsontheplatformsdescribed in thismanual:

• For all services, the maximum size of a single perform request is 4 GB.

• For all services, data structures that contain data required by the Intel® QATEndpoint should be on
a 64-byte-aligned address to maximize performance. This alignment helps minimize latency when
transferring data from DRAM to an Intel® QAT Endpoint integrated in the PCH device.

• For the key generation cryptographic API, the following limitations apply:

Table 42: Key Generation Cryptographic API Limitations
Secure Sockets Layer (SSL) key genera-
tion op-data:

Maximum secret length is 512 bytes
Maximum userLabel length is 136 bytes
Maximum generatedKeyLenInBytes is 248

Transport Layer Security (TLS) key gen-
eration op-data:

Secret length must be <128 bytes for TLS v1.0/1.1;
Secret length must be <512 bytes for TLS v1.2
Secret length must be <512 bytes for TLS v1.3
userLabel length must be <256 bytes
Maximum seed size is 64 bytes
Maximum generatedKeyLenInBytes is 248 bytes

Mask Generation Function (MGF) op-
data:

Maximum seed length is 255 bytes
Maximum maskLenInBytes is 65528

• For the cryptographic service, SNOW 3G and KASUMI* operations are not supported when Cpa-

CySymPacketType is set to CPA_CY_SYM_PACKET_TYPE_PARTIAL. The error returned in this case is
CPA_STATUS_INVALID_PARAM.

• For the cryptographic service, when using the asymmetric crypto APIs, the buffer size passed to
the API should be rounded to the next power of 2, or the next 3- times a power of 2, for optimum
performance.

• For the data compression service, the size of all stateful decompression requests have to be a mul-
tiple of two with the exception of the last request.

• For the data compression service, the CpaDcFileType field in the CpaDcSessionSetup-

Data data structure is ignored (previously this was considered for semi-dynamic compres-
sion/decompression).

SupportedAPIs 99

Programmer'sGuide

• For static compression, the maximum expansion during compression is ceiling (9xTo-
tal_Input_Byte/8)+7 bytes. If CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS or
CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_NO_HDRS is selected, the maximum expansion dur-
ing compression is the input buffer size plus up to ceiling (Total_Input_Byte/65535)x5 bytes,
depending on whether the stored headers are selected.

Note: Due to the need for a skid pad and the way the checksum is calculated in the
storedblockcase topreventcompressionoverflow, anoutputbuffer sizeof ceiling (9*To-
tal_Input_Byte/8) + 55 bytes needs to be supplied (even though the stored block output
size might be less).

• The decompression service can report various error conditions, most of which arise from process-
ing dynamic Huffman code trees that are ill-formed. These soft error conditions are reported at
the Intel® QuickAssistTechnologyAPI using the CpaDcReqStatusenumeration. At thepoint of soft
error, the hardware state will not be accurate to allow recovery. Therefore, in this case, the Intel®

QuickAssist Technology software rolls back to the previous known good state and reports that no
input hasbeenprocessedandnooutput produced. This allows anapplication to correct the source
of the error and resubmit the request.

For example, if the following source and destination buffers were submitted to the Intel® QuickAs-
sist Technology:

The result would be:

• Behavior when build flag ICP_DC_RETURN_COUNTERS_ON_ERROR is defined. In some specialized ap-
plications, when a decompression soft error occurs, the application has no way of correcting the
source of the error and resubmitting the request. The session will need to be invalidated and
terminated. In this case it is more useful to the application to output the uncompressed data

100 SupportedAPIs

Programmer'sGuide

up to the point of soft error before terminating the session. There is a compile time build flag
(ICP_DC_RETURN_COUNTERS_ON_ERROR) to select this mode of operation. This is the behavior of de-
compression in case of soft error when this build flag is used.

If the followingsourceanddestinationbuffersweresubmitted to the Intel® QuickAssistTechnology
API:

The result would be:

Warning: It is important to note in this case:

– The consumed value returned in the CpaDcRqResults structure is not reliable.

– No further requests can be submitted on this session.

7.2 Additional APIs

Note: Not all Additional APIs are supported with all versions of the software package/hardware config-
uration.

There are a number of additionalAPIs that can serve for optimization andother uses outside of the Intel®

QuickAssist Technology services.

SupportedAPIs 101

Programmer'sGuide

7.2.1 Dynamic InstanceAllocation Functions

These functions are intended for the dynamic allocation of instances in user space. The user can use
these functions to allocate/free instances defined in the [DYN] section of the configuration file.

These functions are useful if the user needs to dynamically allocate/free cryptographic (CY) or Data
Compression (DC) instances at runtime. This is in contrast to statically specifying the number of CY or
DC instances at configuration time, where the number of instances cannot be changed unless the user
modifies the .conf file and restarts the acceleration service.

The advantage of using these functions is that the number of CY/DC instances can be changed on-
demand at runtime. The disadvantage is that runtime performance is impacted if the number of CY/DC
instances is changed frequently.

If the user space application knows thenumber of instances tobeusedbefore starting, then theuser can
define Number<Service>Instances in the [User Process] section of the configuration file.

If the user space application can only know the number of instances at runtime, or wants to change the
number at runtime, then the user can call the Dynamic Instance Allocation functions to allocate/free in-
stancesdynamically. TheNumber<Service>Instances in the[DYN]sectionof the .conffile(s)defines the
maximum number of instances that can be allocated by user processes.

This can be useful when sharing instances among multiple applications at runtime. The maximum num-
ber of instances in a system is known in advance and it is possible to distribute them statically between
applications using the configuration files. Once the driver is started, however, this cannot be changed. If,
for example, there are 32 CY instances and we need to provision 16 processes, we can statically assign
twoCY instances per process. This canbe aproblemwhen aprocess needsmore instances at any given
time. With dynamic instance allocation, we can create a pool of instances that can be “shared” between
the processes.

Continuing the example above with 32 CY instances and 16 processes, we can assign statically one CY
instance to each process and create a pool of 16 [DYN] instances from the remainder. If at runtime one
process needs more acceleration power, it can allocate some more instances from the pool, say, for ex-
ample, eight, use themasappropriateand free themback to thepoolwhen theworkhasbeencompleted.
Thereafter, other processes can use these instances as needed.

All dynamic instanceallocation functiondefinitionsare located in: $ICP_ROOT/quickassist/lookaside/
access_layer/include/icp_sal_user.h

Important: Dynamic Instance Allocation Functions are not currently supported with the QAT2.0 driver.

102 SupportedAPIs

Programmer'sGuide

7.2.1.1 icp_sal_userCyGetAvailableNumDynInstances

Get the number of cryptographic instances that can be dynamically allocated using the
icp_sal_userCyInstancesAlloc function.

Syntax

CpaStatus icp_sal_userCyGetAvailableNumDynInstances (Cpa32U *pNumCyInstances);

Parameters

*pNumCyInstances Apointer to thenumberof cryptographic instancesavailable fordynamical-
location.

ReturnValue

The icp_sal_userCyGetAvailableNumDynInstances function returns one of the following codes:

CPA_STATUS_SUCCESS Apointer to thenumberof cryptographic instancesavailable fordynamical-
location.

CPA_STATUS_FAIL Indicates a failure.

7.2.1.2 icp_sal_userDcGetAvailableNumDynInstances

Get the number of data compression instances that can be dynamically allocated using the
icp_sal_userDcInstancesAlloc function.

Syntax

CpaStatus icp_sal_userDcGetAvailableNumDynInstances (Cpa32U *pNuDcInstances);

Parameters

*pNumDcInstances A pointer to the number of data compression instances available for dy-
namic allocation.

ReturnValue

The icp_sal_userDcGetAvailableNumDynInstances function returns one of the following codes:

CPA_STATUS_SUCCESS A pointer to the number of data compression instances available for dy-
namic allocation.

CPA_STATUS_FAIL Indicates a failure.

SupportedAPIs 103

Programmer'sGuide

7.2.1.3 icp_sal_userCyInstancesAlloc

Allocate the specified number of Cryptographic (CY) instances from the amount specified in the [DYN]

section of the configuration file. The numCyInstances parameter specifies the number of CY instances
to allocate and must be less than or equal to the value of the NumberCyInstancesparameter in the [DYN]
section of the configuration file.

Syntax

CpaStatus icp_sal_userCyInstancesAlloc(Cpa32U numCyInstances, CpaInstanceHandle

*pCyInstances);

Parameters

numCyInstances The number of CY instances to allocate.
*pCyInstances A pointer to the CY instances.

ReturnValue

The icp_sal_userCyInstancesAlloc function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully allocated the specified number of CY instances.
CPA_STATUS_FAIL Indicates a failure.

7.2.1.4 icp_sal_userDcInstancesAlloc

Allocate the specified number of Data Compression (DC) instances from the amount specified in the
[DYN] section of the configuration file. The numDcInstances parameter specifies the number of dc in-
stances to allocate and must be less than or equal to the value of the NumberDcInstances parameter in
the [DYN] section of the configuration file.

Syntax

CpaStatus icp_sal_userDcInstancesAlloc(Cpa32U numDcInstances, CpaInstanceHandle

*pDcInstances);

Parameters

numDcInstances The number of DC instances to allocate.
*pDcInstances A pointer to the DC instances.

ReturnValue

The icp_sal_userDcInstancesAlloc function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully allocated the specified number of DC instances.
CPA_STATUS_FAIL Indicates a failure.

104 SupportedAPIs

Programmer'sGuide

7.2.1.5 icp_sal_userCyFreeInstances

Free the specifiednumber ofCryptographic (CY) instances from the amount specified in the [DYN] sec-
tion of the configuration file. The numCyInstances parameter specifies the number of CY instances to
free.

Syntax

CpaStatus icp_sal_userCyFreeInstances(Cpa32U numCyInstances, CpaInstanceHandle

*pCyInstances);

Parameters

numCyInstances The number of CY instances to free.
*pCyInstances A pointer to the CY instances.

ReturnValue

The icp_sal_userCyFreeInstances function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully freed the specified number of CY instances.
CPA_STATUS_FAIL Indicates a failure.

7.2.1.6 icp_sal_userDcFreeInstances

Free the specified number ofData Compression (DC) instances from the amount specified in the [DYN]
section of the configuration file. The numDcInstances parameter specifies the number of DC instances
to free.

Syntax

CpaStatus icp_sal_userDcFreeInstances(Cpa32U numDcInstances, CpaInstanceHandle

*pDcInstances);

Parameters

numDcInstances The number of DC instances to free.
*pDcInstances A pointer to the DC instances to free.

ReturnValue

The icp_sal_userDcFreeInstances function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully freed the specified number of DC instances.
CPA_STATUS_FAIL Indicates a failure.

SupportedAPIs 105

Programmer'sGuide

7.2.1.7 icp_sal_userCyGetAvailableNumDynInstancesByDevPkg

Get the number of cryptographic instances that can be dynamically allocated.

Syntax

CpaStatus icp_sal_userCyGetAvailableNumDynInstancesByDevPkg(Cpa32U *pNumCyInstances,

Cpa32U devPkgID);

Parameters

pNumCyInstances Apointer to thenumberof cryptographic instancesavailable fordynamical-
location.

devPkgID The device ID of the device of interest (same as accelID in other APIs) If -1
then selects from all devices.

ReturnValue

The icp_sal_userCyGetAvailableNumDynInstancesByDevPkg function returns one of the following
codes:

CPA_STATUS_SUCCESS Successfully retrieved the number of cryptographic instances available for
dynamic allocation.

CPA_STATUS_FAIL Indicates a failure.

7.2.1.8 icp_sal_userDcGetAvailableNumDynInstancesByDevPkg

Get the number of data compression instances that can be dynamically allocated.

Syntax

CpaStatus icp_sal_userDcGetAvailableNumDynInstancesByDevPkg(Cpa32U *pNumDcInstances,

Cpa32U devPkgID);

Parameters

*pNumDcInstances A pointer to the number of data compression instances available for dy-
namic allocation.

devPkgID The device ID of the device of interest (same as accelID in other APIs) If -1
then selects from all devices.

ReturnValue

The icp_sal_userDcGetAvailableNumDynInstancesByDevPkg function returns one of the following
codes:

CPA_STATUS_SUCCESS Successfully freed the specified number of DC instances.
CPA_STATUS_FAIL Indicates a failure.

106 SupportedAPIs

Programmer'sGuide

7.2.1.9 icp_sal_userCyInstancesAllocByDevPkg

Allocate the specified number of Cryptographic (CY) instances from the amount specified in the [DYN]

section of the configuration file. The numCyInstances parameter specifies the number of CY instances
to allocate and must be less than or equal to the value of the NumberCyInstancesparameter in the [DYN]
section of the configuration file.

Syntax

CpaStatus icp_sal_userCyInstancesAllocByDevPkg(Cpa32U numCyInstances, CpaInstanceHandle

*pCyInstances, devPkgID);

Parameters

numCyInstances The number of CY instances to allocate.
*pCyInstances A pointer to the CY instances.
devPkgID The device ID of the device of interest (same as accelID in other APIs) If -1

then selects from all devices.

ReturnValue

The icp_sal_userCyInstancesAllocByDevPkg function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully allocated the specified number of CY instances.
CPA_STATUS_FAIL Indicates a failure.

7.2.1.10 icp_sal_userDcInstancesAllocByDevPkg

Allocate the specified number of Data Compression (DC) instances from the amount specified in the
[DYN] section of the configuration file. The numDcInstances parameter specifies the number of DC in-
stances to allocate and must be less than or equal to the value of the NumberDcInstances parameter in
the [DYN] section of the configuration file.

Syntax

CpaStatus icp_sal_userDcInstancesAllocByDevPkg(Cpa32U numDcInstances, CpaInstanceHandle

*pDcInstances, Cpa32U devPkgID;

Parameters

numDcInstances The number of DC instances to allocate.
*pDcInstances A pointer to the DC instances.
devPkgID The device ID of the device of interest (same as accelID in other APIs) If -1

then selects from all devices.

ReturnValue

The icp_sal_userDcInstancesAllocByDevPkg function returns one of the following codes:

SupportedAPIs 107

Programmer'sGuide

CPA_STATUS_SUCCESS Successfully allocated the specified number of DC instances.
CPA_STATUS_FAIL Indicates a failure.

7.2.1.11 icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel

Get the number of cryptographic instances that can be dynamically allocated.

Syntax

CpaStatus icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel(Cpa32U *pNumCyInstances,

Cpa32U devPkgID, Cpa32U accelerator_number);

Parameters

pNumCyInstances Apointer to thenumberof cryptographic instancesavailable fordynamical-
location.

devPkgID The device ID of the device of interest (same as accelID in other APIs) If -1
then selects from all devices.

accelerator_number Accelerator Engine to use. As 0 is the only valid value on C62x device, this
API is same as as icp_sal_userCyInstancesAllocByDevPkg

ReturnValue

The icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel function returns one of the following
codes:

CPA_STATUS_SUCCESS Successfully retrieved the number of cryptographic instances available for
dynamic allocation.

CPA_STATUS_FAIL Indicates a failure.

7.2.1.12 icp_sal_userCyInstancesAllocByPkgAccel

Allocates the specifiednumber ofCryptographic (CY) instances from the amount specified in the [DYN]
section of the configuration file. The numCyInstances parameter specifies the number of CY instances
to allocate and must be less than or equal to the value of the NumberCyInstances parameter returned by
a call to the icp_sal_userCyInstancesAllocByPkgAccel function.

Syntax

CpaStatus icp_sal_userCyInstancesAllocByPkgAccel(Cpa32U numCyInstances, CpaInstanceHan-

dle *pCyInstances, Cpa32U devPkgID, Cpa32U accelerator_number);

Parameters

108 SupportedAPIs

Programmer'sGuide

numCyInstances The number of CY instances to allocate.
*pCyInstances A pointer to the CY instances.
devPkgID The device ID of the device of interest (same as accelID in other APIs) If -1

then selects from all devices
accelerator_number Accelerator Engine to use. As 0 is the only valid value on C62x device, this

API is same as as icp_sal_userCyInstancesAllocByDevPkg

ReturnValue

The icp_sal_userCyInstancesAllocByPkgAccel function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully allocated the specified number of CY instances.
CPA_STATUS_FAIL Indicates a failure.

7.2.2 IOMMURemapping Functions

These functions are intended for IOMMU remapping operations.

All IOMMU remapping function definitions are located in: $ICP_ROOT/quickassist/lookaside/

access_layer/include/icp_sal_iommu.h

7.2.2.1 icp_sal_iommu_get_remap_size

Returns the page_size rounded for IOMMU remapping.

Syntax

size_t icp_sal_iommu_get_remap_size(size_t size);

Parameters

size The minimum required page size.

ReturnValue

The icp_sal_iommu_get_remap_size function returns the page_size rounded for IOMMU remapping.

SupportedAPIs 109

Programmer'sGuide

7.2.2.2 icp_sal_iommu_map

Adds an entry to the IOMMU remapping table.

Syntax

CpaStatus icp_sal_iommu_map(Cpa64U phaddr, Cpa64U iova, size_t size);

Parameters

phaddr Host physical address.
iova Guest physical address.
size Size of the remapped region.

ReturnValue

The icp_sal_iommu_map function returns one of the following codes:

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates a failure.

7.2.2.3 icp_sal_iommu_unmap

Removes an entry from the IOMMU remapping table.

Syntax

CpaStatus icp_sal_iommu_unmap(Cpa64U iova, size_t size);

Parameters

iova Guest physical address.
size Size of the remapped region.

ReturnValue

The icp_sal_iommu_unmap function returns one of the following codes:

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates a failure.

110 SupportedAPIs

Programmer'sGuide

7.2.2.4 IOMMURemapping FunctionUsage

These functions are required when the user wants to access an acceleration service from the Physical
Function (PF) when SR-IOV is enabled in the driver. In this case, all I/O transactions from the device go
through DMA remapping hardware.

This hardware checks:

1. If the transaction is legitimate

2. What physical address the given I/O address needs to be translated to.

If the I/O address is not in the transaction table, it fails with a DMA Read error shown as follows:

• DRHD: Handling fault status reg 3.

• DMAR:[DMA Read] Request device [02:01.2] fault addr <ADDR> DMAR:[fault reason 06] PTE
Read access is not set.

To make this work, the user must add a 1:1 mapping as follows:

1. Get the size required for a buffer.

int size = icp_sal_iommu_get_remap_size(size_of_data);

2. Allocate a buffer.

char *buff = malloc(size);

3. Get a physical pointer to the buffer.

buff_phys_addr = virt_to_phys(buff);

4. Add a 1:1 mapping to the IOMMU tables.

icp_sal_iommu_map(buff_phys_addr, buff_phys_addr, size;

5. Use the buffer to send data to the Intel® QAT Endpoint.

6. Before freeing the buffer, remove the IOMMU table entry.

icp_sal_iommu_unmap(buff_phys_addr, size);

7. Free the buffer.

free(buff);

The IOMMU remapping functions can be used in all contexts that the Intel® QAT APIs can be used, that
is, kernel anduser space in aPhysical Function (PF)Domain0, aswell as kernel anduser space in aVirtual
Machine (VM).

In the case of VM, the APIs will do nothing. In the PF Domain 0 case, the APIs will update the hardware
IOMMU tables.

SupportedAPIs 111

Programmer'sGuide

7.2.3 Polling Functions

These functions are intended for retrieving responsemessages that are on the rings anddispatching the
associated callbacks.

All polling function definitions are located in: $ICP_ROOT/quickassist/lookaside/access_layer/

include/icp_sal_poll.h

7.2.3.1 icp_sal_pollBank

Poll all rings on the given Intel® QAT Endpoint on a given bank number to determine if any of the rings
contain response messages from the Intel® QAT Endpoint. The response_quota input parameter is per
ring.

Syntax

CpaStatus icp_sal_pollBank(Cpa32U accelId, Cpa32U bank_number, Cpa32U response_quota);

Parameters

accelId The device number associated with the Intel® QAT Endpoint. valid range is
0 to number of Intel® QAT Endpoints in the system.

bank_number The number of the memory bank on the Intel® QAT Endpoint that will be
polled for response messages. The valid range is 0 to 31.

response_quota The maximum number of responses to take from the ring in one call.

ReturnValue

The icp_sal_pollBank function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully polled a ring with data.
CPA_STATUS_RETRY There isnodataonanyringonanybankor thebanksarealreadybeingpolled.
CPA_STATUS_FAIL Indicates a failure.

7.2.3.2 icp_sal_pollAllBanks

Pollallbanksonthegiven Intel® QATEndpoint todetermine ifanyof theringscontain responsemessages
from the Intel® QAT Endpoint. The response_quota input parameter is per ring.

Syntax

CpaStatus icp_sal_pollAllBanks(Cpa32U accelId, Cpa32U response_quota);

Parameters

accelId The device number associated with the Intel® QAT Endpoint. valid range is
0 to number of Intel® QAT Endpoints in the system.

response_quota The maximum number of responses to take from the ring in one call.

112 SupportedAPIs

Programmer'sGuide

ReturnValue

The icp_sal_pollAllBanks function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully polled a ring with data.
CPA_STATUS_RETRY There isnodataonanyringonanybankor thebanksarealreadybeingpolled.
CPA_STATUS_FAIL Indicates a failure.

7.2.3.3 icp_sal_CyPollInstance

Poll the Cryptographic (CY) logical instance associated with the instanceHandle to retrieve requests
that are on response rings associated with that instance and dispatch the associated callbacks. The re-

sponse_quota input parameter is the maximum number of responses to process in one call.

Note: Theicp_sal_CyPollInstance() function is used inconjunctionwith theCyXIsPolledparameter
in the acceleration configuration file.

Syntax

CpaStatus icp_sal_CyPollInstance(CpaInstanceHandle instanceHandle, Cpa32U

response_quota);

Parameters

instanceHandle The logical instance to poll for responses on the response ring.
response_quota The maximum number of responses to take from the ring in one call. When

set to 0, all responses are retrieved.

ReturnValue

The icp_sal_CyPollInstance function returns one of the following codes:

CPA_STATUS_SUCCESS The function was successful.
CPA_STATUS_RETRY There are no responses on the rings associatedwith the specified logical in-

stance.
CPA_STATUS_FAIL Indicates a failure.

Note: A ring is only polled if it contains data.

SupportedAPIs 113

Programmer'sGuide

7.2.3.4 icp_sal_DcPollInstance

Poll the Data Compression (DC) logical instance associated with the instanceHandle to retrieve re-
quests that are on response rings associated with that instance and dispatch the associated callbacks.
The response_quota input parameter is the maximum number of responses to process in one call.

Note: Theicp_sal_DcPollInstance() function is used inconjunctionwith theDcXIsPolledparameter
in the acceleration configuration file.

Syntax

CpaStatus icp_sal_DcPollInstance(CpaInstanceHandle instanceHandle, Cpa32U

response_quota);

Parameters

instanceHandle The logical instance to poll for responses on the response ring.
response_quota The maximum number of responses to take from the ring in one call. When

set to 0, all responses are retrieved.

ReturnValue

The icp_sal_DcPollInstance function returns one of the following codes:

CPA_STATUS_SUCCESS The function was successful.
CPA_STATUS_RETRY There are no responses on the rings associatedwith the specified logical in-

stance.
CPA_STATUS_FAIL Indicates a failure.

Note: A ring is only polled if it contains data.

7.2.3.5 icp_sal_CyPollDpInstance

Poll a particular Cryptographic (CY) data path logical instance associated with the instanceHandle to
retrieve requests that are on the high-priority symmetric ring associated with that instance and dispatch
the associatedcallbacks. Theresponse_quota input parameter is themaximumnumberof responses to
process in one call.

Note: This function is aDataPlaneAPI function and consequently the restrictions inUsageConstraints
on the Data Plane APIs apply.

Syntax

114 SupportedAPIs

Programmer'sGuide

CpaStatus icp_sal_CyPollDpInstance(CpaInstanceHandle instanceHandle, Cpa32U

response_quota);

Parameters

instanceHandle The logical instance to poll for responses on the response ring.
response_quota The maximum number of responses to take from the ring in one call. When

set to 0, all responses are retrieved.

ReturnValue

The icp_sal_CyPollDpInstance function returns one of the following codes:

CPA_STATUS_SUCCESS The function was successful.
CPA_STATUS_RETRY There are no responses on the rings associatedwith the specified logical in-

stance.
CPA_STATUS_FAIL Indicates a failure.

7.2.3.6 icp_sal_DcPollDpInstance

Poll a particular Data Compression (DC) data path logical instance associated with the instanceHandle
to retrieve requests that are on the response ring associated with that instance. The response_quota

input parameter is the maximum number of responses to process in one call.

Note: This function is aDataPlaneAPI function and consequently the restrictions inUsageConstraints
on the Data Plane APIs apply.

Syntax

CpaStatus icp_sal_DcPollDpInstance(CpaInstanceHandle instanceHandle, Cpa32U

response_quota);

Parameters

instanceHandle The logical instance to poll for responses on the response ring.
response_quota The maximum number of responses to take from the ring in one call. When

set to 0, all responses are retrieved.

ReturnValue

The icp_sal_DcPollDpInstance function returns one of the following codes:

CPA_STATUS_SUCCESS The function was successful.
CPA_STATUS_RETRY There are no responses on the rings associatedwith the specified logical in-

stance.
CPA_STATUS_FAIL Indicates a failure.

SupportedAPIs 115

Programmer'sGuide

7.2.4 User SpaceAccessConfiguration Functions

Functions that allow the configuration of user space access to the Intel® QAT services from processes
running in user space.

All user space access configuration function definitions are located in $ICP_ROOT/quickassist/

lookaside/access_layer/include/icp_sal_user.h

7.2.4.1 icp_sal_userStart

Initializes user space access to an Intel® QAT Endpoint and starts the ProcessName section in the given
section of the configuration file. This function needs to be called prior to any call to Intel® QAT API func-
tion from the user space process. This function is typically called only once in a user space process.

Note: The icp_sal_userStartMultiProcess() function is still supported, but the parameter limitDe-
vAccess is ignoredbecause its value is set once in the configuration file and is not allowed tobe specified
again in the function.

Theconfiguration formatallows theuser toeasily createaconfiguration formanyuser spacesprocesses.
The driver internally generates unique process names and a valid configuration for each process based
on the section name (pSectionName) and mode (limitDevAccess) provided.

For example, on a system with M number of devices, if all M configuration files contain:

[IPSec]

NumProcesses = N

LimitDevAccess = 0

Then N internal sections are generated (each with instances on all devices) and N processes can be
startedatanygiventime. Eachprocesscancallicp_sal_userStart("IPSec")andthedriverdetermines
the unique name to use for each process.

Similarly, on an M device system, if all M configuration files contain:

[SSL]

NumProcesses = N

LimitDevAccess = 1

Then MxN internal sections are generated (each with instances on one device only) and MxN processes
canbe startedat anygiven time. Eachprocesscancallicp_sal_userStart("SSL")and thedriver deter-
mines the unique name to use for each process.

Refer to Configuring Multiple Processes on a System with Multiple Intel® QAT Endpoints for detailed ex-
ample.

Syntax

CpaStatus icp_sal_userStart(const char *pSectionName);

116 SupportedAPIs

Programmer'sGuide

Parameters

pSectionName The section name described in the configuration file.

ReturnValue

The icp_sal_userStart function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully started user space access to the Intel® QAT Endpoint as de-
fined in the configuration file.

CPA_STATUS_FAIL Operation failed.

7.2.4.2 icp_sal_userStop

Closes user space access to the Intel® QATEndpoint; stops the services thatwere running and frees the
allocated resources. After asuccessful call to this function, user spaceaccess to the Intel® QATEndpoint
from a calling process is not possible. This function should be called once when the process is finished
using the Intel® QAT Endpoint and does not intend to use it again.

Syntax

CpaStatus icp_sal_userStop(void);

Parameters

None

ReturnValue

The icp_sal_userStop function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully stopped user space access to the Intel® QAT Endpoint.
CPA_STATUS_FAIL Operation failed.

7.2.5 Version Information Function

Afunctionthatallowstheretrievalofversion informationrelatedtothesoftwareandhardwarebeingused.

The version information function definition is located in: $ICP_ROOT/quickassist/lookaside/

access_layer/include/icp_sal_versions.h.

SupportedAPIs 117

Programmer'sGuide

7.2.5.1 icp_sal_getDevVersionInfo

Retrieves the hardware revision and information on the version of the software components being runon
a given device.

Note: The icp_sal_userStart function must be called before calling this function. If not, calling this
function returns CPA_STATUS_INVALID_PARAM indicating an error. The icp_sal_userStart function is re-
sponsible for setting up the ADF user space component, which is required for this function to operate
successfully.

Syntax

CpaStatus icp_sal_getDevVersionInfo(Cpa32U devId, icp_sal_dev_version_info_t

*pVerInfo);

Parameters

devId The ID (number) of the device for which version information is to be re-
trieved.

*pVerInfo A pointer to a structure that holds the version information.

ReturnValue

The icp_sal_getDevVersionInfo function returns one of the following codes:

CPA_STATUS_SUCCESS Operation finished successfully; version information retrieved.
CPA_STATUS_INVALID_PARAM Invalid parameter passed to the function.
CPA_STATUS_RESOURCE System resource problem.
CPA_STATUS_FAIL Operation failed.

7.2.6 Reset Device Function

This API can only be called in user-space.

The device can be reset using this API call. This will schedule a reset of the device. The device can also
be reset using the adf_ctl utility, e.g., by calling adf_ctl qat_dev0 reset.

118 SupportedAPIs

Programmer'sGuide

7.2.6.1 icp_sal_reset_device

Resets the device.

Syntax

CpaStatus icp_sal_reset_device(Cpa32U accelid);

Parameters

accelid The device number.

ReturnValue

The icp_sal_reset_device function returns one of the following codes:

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates a failure.

7.2.7 Thread-LessAPIs

These APIs can be used when the QAT acceleration driver has been configured not to spawn threads.

These APIs can be used in the user space application.

7.2.7.1 icp_sal_poll_device_events

This reads any pending device events from icp_dev%d_csr and forwards to interested subsystems.

Syntax

CpaStatus icp_sal_poll_device_events(void);

Parameters

None

ReturnValue

The icp_sal_poll_device_events function returns one of the following codes:

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates a failure.

SupportedAPIs 119

Programmer'sGuide

7.2.7.2 icp_sal_find_new_devices

This tries to connect to any available devices that the kernel driver has brought up and initialized for use
in user space process.

Syntax

CpaStatus icp_sal_find_new_devices(void);

Parameters

None

ReturnValue

The icp_sal_find_new_devices function returns one of the following codes:

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates a failure.

7.2.8 Compress andVerify (CnV)RelatedAPIs

APIs documented in this section are used for Compress and Verify. These APIs can be used in the user
space application.

7.2.8.1 icp_sal_get_dc_error

This API allows the application to return the number of errors that occurred a particular number of times
during the lifetime of a process.

Syntax

Cpa64U icp_sal_get_dc_error(Cpa8S dcError);

Parameters

dcError Compression Error code exposed by CpaDcReqStatus enum in cpa_dc.h

ReturnValue

Theicp_sal_get_dc_error function returnsa64bit unsigned integer representinghowmany times the
error type specified by Cpa8S dcError occurred in the current process.

120 SupportedAPIs

Programmer'sGuide

7.2.8.2 icp_sal_dc_simulate_error

This API injects a simulated compression error for a defined number of compression or decompres-
sion requests. The simulated compression errors can only be applied to the traditional APIs. It must
be called prior the APIs that perform the request. In the case of a simulated Compress and Ver-
ify error for a single request, the application would call icp_sal_dc_simulate_error() API as such:
icp_sal_dc_simulate_error(1, CPA_DC_VERIFY_ERROR);

Syntax

CpaStatus icp_sal_dc_simulate_error(Cpa8U numErrors, Cpa8S dcError);

Parameters

numErrors Number of simulated compression or decompression errors desired.
dcError Desired error code to be returned by the compression or decompression

API.

ReturnValue

The icp_sal_dc_simulate_error function returns one of the following codes:

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates that an invalid error type was assigned to dcError parameter.

7.2.9 Heartbeat APIs

TheseAPIscheckfirmware/hardwarestatusforagivendeviceandareusedaspartof theHeartbeat func-
tionality.

7.2.9.1 icp_sal_check_device

This function checks the status of the firmware/hardware for a given device and is used as part of the
Heartbeat functionality.

Syntax

CpaStatus icp_sal_check_device(Cpa32U accelID);

Parameters

accelID The device ID.

ReturnValue

The icp_sal_check_device function returns one of the following codes:

SupportedAPIs 121

Programmer'sGuide

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates a failure.

7.2.9.2 icp_sal_check_all_devices

This function checks the status of the firmware/hardware for all devices and is used as part of the Heart-
beat functionality.

Syntax

CpaStatus icp_sal_check_all_devices(void);

Parameters

None

ReturnValue

The icp_sal_check_all_devices function returns one of the following codes:

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates a failure.

7.2.9.3 icp_sal_heartbeat_simulate_failure

This function simulates heartbeat failure for a specific device.

Syntax

CpaStatus icp_sal_heartbeat_simulate_failure(Cpa32U accelID);

Parameters

accelID The device ID.

ReturnValue

The icp_sal_heartbeat_simulate_failure function returns one of the following codes:

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates a failure.

122 SupportedAPIs

Programmer'sGuide

7.2.10 Device PollingAPIs

APIs documented in this section are used for polling devices.

7.2.10.1 icp_sal_poll_device_events

This function polls for device reset events.

Syntax

CpaStatus icp_sal_poll_device_events(void);

Parameters

None

ReturnValue

The icp_sal_poll_device_events function returns one of the following codes:

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates a failure.

Note: The events are sent to each instance that has registered a callback function. The callbacks are
registered using cpaCyInstanceSetNotificationCb and cpaDcInstanceSetNotificationCb.

7.2.10.2 cpaCyInstanceSetNotificationCb

Cryptographic instances use this function to register for device event notifications.

Syntax

CpaStatus cpaCyInstanceSetNotificationCb(const CpaInstanceHandle instanceHandle, const

CpaCyInstanceNotificationCbFunc pinstanceNotificationCb, void *pCallbackTag);

Parameters

instanceHandle Instance handle.
pinstanceNotificationCb Instance notification callback function pointer.
*pCallbackTag Opaque value provided by user.

ReturnValue

The cpaCyInstanceSetNotificationCb function returns one of the following codes:

SupportedAPIs 123

Programmer'sGuide

CPA_STATUS_SUCCESS The function was successful.
CPA_STATUS_FAIL Indicates a failure.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_UNSUPPORTED Function is not supported.

The signature for the callback function is:

typedef void (*CpaCyInstanceNotificationCbFunc)(

const CpaInstanceHandle instanceHandle,

void * pCallbackTag,

const CpaInstanceEvent instanceEvent);

Parameter:

typedef enum _CpaInstanceEvent

{

CPA_INSTANCE_EVENT_RESTARTING = 0,

CPA_INSTANCE_EVENT_RESTARTED,

CPA_INSTANCE_EVENT_FATAL_ERROR

} CpaInstanceEvent;

7.2.10.3 cpaDcInstanceSetNotificationCb

Data compression instances use this function to register for device event notifications.

Syntax

CpaStatus cpaDcInstanceSetNotificationCb(const CpaInstanceHandle instanceHandle, const

CpaDcInstanceNotificationCbFunc pinstanceNotificationCb, void *pCallbackTag);

Parameters

instanceHandle Instance handle.
pinstanceNotificationCb Instance notification callback function pointer.
*pCallbackTag Opaque value provided by user.

ReturnValue

The cpaDcInstanceSetNotificationCb function returns one of the following codes:

CPA_STATUS_SUCCESS The function was successful.
CPA_STATUS_FAIL Indicates a failure.
CPA_STATUS_INVALID_PARAM Invalid parameter passed in.
CPA_STATUS_UNSUPPORTED Function is not supported.

The signature for the callback function is:

124 SupportedAPIs

Programmer'sGuide

typedef void (*CpaDcInstanceNotificationCbFunc)(

const CpaInstanceHandle instanceHandle,

void * pCallbackTag,

const CpaInstanceEvent instanceEvent);

Parameter:

typedef enum _CpaInstanceEvent

{

CPA_INSTANCE_EVENT_RESTARTING = 0,

CPA_INSTANCE_EVENT_RESTARTED,

CPA_INSTANCE_EVENT_FATAL_ERROR

} CpaInstanceEvent;

7.2.11 CongestionManagementAPIs

Congestion Management or Back-pressure mechanism APIs are intended to handle the cases when the
device is busy. These APIs ensures there is enough space on the ring before submitting a request.

Applications canquery the appropriate ringoneach instance and select any instancewith enough space
without creating any OpData structures.

All these API definitions are located in: $ICP_ROOT/quickassist/lookaside/access_layer/include/
icp_sal_congestion_mgmt.h.

Important: Congestion Management APIs are not currently supported with the QAT2.0 driver.

7.2.11.1 icp_sal_SymGetInflightRequests

This function is used to fetch in-flight and max in-flight request counts for the given symmetric instance
handle.

Syntax

CpaStatus icp_sal_SymGetInflightRequests(CpaInstanceHandle instanceHandle, Cpa32U

*maxInflightRequests, Cpa32U *numInflightRequests);

Parameters

instanceHandle Symmetric instance handle.
*maxInflightRe-

quests

A pointer to the max in-flight request count.

*numInflightRe-

quests

A pointer to the current in-flight request count.

ReturnValue

SupportedAPIs 125

Programmer'sGuide

The icp_sal_SymGetInflightRequests function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully retrieved the request counts.
CPA_STATUS_INVALID_PARAM Invalid parameter passed to the function.
CPA_STATUS_FAIL Indicates a failure.

7.2.11.2 icp_sal_AsymGetInflightRequests

This function is used to fetch in-flight andmax in-flight request counts for thegivenasymmetric instance
handle.

Syntax

CpaStatus icp_sal_AsymGetInflightRequests(CpaInstanceHandle instanceHandle, Cpa32U

*maxInflightRequests, Cpa32U *numInflightRequests);

Parameters

instanceHandle Asymmetric instance handle.
*maxInflightRe-

quests

A pointer to the max in-flight request count.

*numInflightRe-

quests

A pointer to the current in-flight request count.

ReturnValue

The icp_sal_AsymGetInflightRequests function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully retrieved the request counts.
CPA_STATUS_INVALID_PARAM Invalid parameter passed to the function.
CPA_STATUS_FAIL Indicates a failure.

7.2.11.3 icp_sal_dp_SymGetInflightRequests

Thisdataplane function isused to fetch in-flightandmax in-flight requestcounts for thegivensymmetric
instance handle.

Syntax

CpaStatus icp_sal_dp_SymGetInflightRequests(CpaInstanceHandle instanceHandle, Cpa32U

*maxInflightRequests, Cpa32U *numInflightRequests);

Parameters

126 SupportedAPIs

Programmer'sGuide

instanceHandle Symmetric instance handle.
*maxInflightRe-

quests

A pointer to the max in-flight request count.

*numInflightRe-

quests

A pointer to the current in-flight request count.

ReturnValue

The icp_sal_dp_SymGetInflightRequests function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully retrieved the request counts.
CPA_STATUS_INVALID_PARAM Invalid parameter passed to the function.
CPA_STATUS_FAIL Indicates a failure.

7.2.12 Service Specific PollingAPIs

TheseservicespecificpollingAPIsare intendedfor retrievingresponsemessagesthatareonthespecific
ring and dispatching the associated callback.

All these API definitions are located in: $ICP_ROOT/quickassist/lookaside/access_layer/include/
icp_sal_poll.h

7.2.12.1 icp_sal_CyPollSymRing

Poll the symmetric logical instance associated with the instanceHandle to retrieve requests that are
on the response rings associated with that instance and dispatch the associated callbacks. The re-

sponse_quota input parameter is the maximum number of responses to process in one call.

Syntax

CpaStatus icp_sal_CyPollSymRing(CpaInstanceHandle instanceHandle, Cpa32U

response_quota);

Parameters

instanceHandle Instance handle to poll for responses on the response ring.
response_quota The maximum number of messages that will be read in one polling. Setting

the response quota to zero means that all messages on the ring will be read.

ReturnValue

The icp_sal_CyPollSymRing function returns one of the following codes:

SupportedAPIs 127

Programmer'sGuide

CPA_STATUS_SUCCESS Successfully polled a ring with data.
CPA_STATUS_INVALID_PARAM Invalid parameter passed to the function.
CPA_STATUS_RETRY There are no responses on the rings associated with the instance.
CPA_STATUS_FAIL Indicates a failure.
CPA_STATUS_RESTARTING Device restarting. Resubmit the request.

7.2.12.2 icp_sal_CyPollAsymRing

Poll the asymmetric logical instance associated with the instanceHandle to retrieve requests that are
on the response rings associated with that instance and dispatch the associated callbacks. The re-

sponse_quota input parameter is the maximum number of responses to process in one call.

Syntax

CpaStatus icp_sal_CyPollAsymRing(CpaInstanceHandle instanceHandle, Cpa32U

response_quota);

Parameters

instanceHandle Instance handle to poll for responses on the response ring.
response_quota The maximum number of messages that will be read in one polling. Setting

the response quota to zero means that all messages on the ring will be read.

ReturnValue

The icp_sal_CyPollAsymRing function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully polled a ring with data.
CPA_STATUS_INVALID_PARAM Invalid parameter passed to the function.
CPA_STATUS_RETRY There are no responses on the rings associated with the instance.
CPA_STATUS_FAIL Indicates a failure.
CPA_STATUS_RESTARTING Device restarting. Resubmit the request.

7.2.13 CheckDeviceAvailability APIs

7.2.13.1 icp_sal_userIsQatAvailable

This API allows an application to establish if there is any active QAT device present on system, without
calling internal libadf APIs or without a dependency on icp_sal_userStart()

Syntax

CpaBoolean icp_sal_userIsQatAvailable(void);

Parameters

128 SupportedAPIs

Programmer'sGuide

None

ReturnValue

The icp_sal_userIsQatAvailable function returns one of the following codes:

CPA_TRUE Indicates that there is at least one active device.
CPA_FALSE Indicates that there are no active devices.

SupportedAPIs 129

8 Virtualization

8.1 VirtualizationDeploymentModel for Intel®QAT2.0

Three different methods of virtualization are supported as shown in the below image.

Note: Single Root IOV (SR-IOV) and Scalable IOV (S-IOV) virtualization methods cannot be used si-
multaneously on the same Physical Function (PF).

8.2 Physical DeviceDirect Assignment

The hardware exposes one Physical Function (PF) per QAT Endpoint to the host. Number of QAT End-
points per platform is included in the Dimensions.

One or more PFs may be passed to a single virtual machine.

There is no sharing of the PF.

130

Programmer'sGuide

Note: Hot plugging of Physical Functions (PFs) is not supported. To ensure the device functions cor-
rectly after being added, please restart the virtual machine.

8.3 Single Root IOV (SR-IOV)

WhenSR-IOVisenabled, thehardwareexposesonePhysicalFunction(PF)andnVirtualFunctions(VFs)
perQATEndpoint to thehost, wheren is defined inDimensions. Number ofQATEndpoints per platform
is also included in the Dimensions.

One or more VFs can be passed through to different guests/VMs

For details on enabling SR-IOV refer to the Virtualization Deployment Guide.

8.4 Scalable IOV (S-IOV)

Scalable I/O Virtualization enables flexible composition of Virtual Functions by software from native
hardware interfaces. Rather than implementing a complete SR-IOV virtual function (VF) interface, an
S-IOV device exposes light-weight Assignable Device Interfaces (ADIs) that are optimized for fast-path
(data-path) operations from the guest.

S-IOV uses PASID rather than BDF to identify unique address spaces which allow greater scalability.
Number of supported ADIs is defined in Dimensions.

The public specification is available at Introducing Intel® Scalable I/O Virtualization.

Note: S-IOV isdisabled inLinuxKernel after v5.16. Effort is underway to reenable in future kernel version.

For details on enabling S-IOV refer to the Virtualization Deployment Guide.

8.5 ReducingNumber of VFs per Endpoint

Note: Reducing number of VFs per endpoint is supported starting with QAT Gen 4.

When the acceleration software is installed for SR-IOV use case, all VFs are enabled. In some instances,
it is not desirable to enable all VFs.

The following commands can be used to limit VFs exposed per PF.

1. Disable all VFs on a specific device (6b:00.0 in this example):

Virtualization 131

https://www.intel.com/content/www/us/en/developer/articles/technical/introducing-intel-scalable-io-virtualization.html

Programmer'sGuide

echo 0 > /sys/bus/pci/devices/0000\:6b:00.0/sriov_numvfs

2. Enable number of desired VFs for specific device (4 VFs on 6b:00.0 in this example):

echo 4 > /sys/bus/pci/devices/0000\:6b:00.0/sriov_numvfs

Important:

• Restart the acceleration software for this change to take place.

• This change is not persistent. After a reboot, all VFs are exposed per PF.

After reducing the number of VFs per PF, it is possible that the mapping of QAT VF to configuration file
has changed. This mapping is very important especially when there are different services enabled with
each PF/VF configuration, remembering that to enable a service in a VF requires the same service to
be enabled in the PF. The configuration file for the VF can be determined by examining the qat_service
output.

For example, in the following output:

Checking status of all devices.

There is 100 QAT acceleration device(s) in the system:

qat_dev0 - type: 4xxx, inst_id: 0, node_id: 0, bsf: 0000:6b:00.0, #accel: 1

↪→#engines: 9 state: up

qat_dev1 - type: 4xxx, inst_id: 1, node_id: 0, bsf: 0000:70:00.0, #accel: 1

↪→#engines: 9 state: up

qat_dev2 - type: 4xxx, inst_id: 2, node_id: 0, bsf: 0000:75:00.0, #accel: 1

↪→#engines: 9 state: up

(continues on next page)

132 Virtualization

Programmer'sGuide

(continued from previous page)

qat_dev3 - type: 4xxx, inst_id: 3, node_id: 0, bsf: 0000:7a:00.0, #accel: 1

↪→#engines: 9 state: up

qat_dev4 - type: 4xxx, inst_id: 4, node_id: 1, bsf: 0000:e8:00.0, #accel: 1

↪→#engines: 9 state: up

qat_dev5 - type: 4xxx, inst_id: 5, node_id: 1, bsf: 0000:ed:00.0, #accel: 1

↪→#engines: 9 state: up

qat_dev6 - type: 4xxx, inst_id: 6, node_id: 1, bsf: 0000:f2:00.0, #accel: 1

↪→#engines: 9 state: up

qat_dev7 - type: 4xxx, inst_id: 7, node_id: 1, bsf: 0000:f7:00.0, #accel: 1

↪→#engines: 9 state: up

qat_dev8 - type: 4xxxvf, inst_id: 80, node_id: 0, bsf: 0000:6b:00.1, #accel: 1

↪→#engines: 1 state: up

qat_dev9 - type: 4xxxvf, inst_id: 81, node_id: 0, bsf: 0000:6b:00.2, #accel: 1

↪→#engines: 1 state: up

qat_dev10 - type: 4xxxvf, inst_id: 82, node_id: 0, bsf: 0000:6b:00.3, #accel: 1

↪→#engines: 1 state: up

qat_dev11 - type: 4xxxvf, inst_id: 83, node_id: 0, bsf: 0000:6b:00.4, #accel: 1

↪→#engines: 1 state: up

qat_dev12 - type: 4xxxvf, inst_id: 84, node_id: 0, bsf: 0000:70:00.1, #accel: 1

↪→#engines: 1 state: up

qat_dev13 - type: 4xxxvf, inst_id: 85, node_id: 0, bsf: 0000:70:00.2, #accel: 1

↪→#engines: 1 state: up

qat_dev14 - type: 4xxxvf, inst_id: 86, node_id: 0, bsf: 0000:70:00.3, #accel: 1

↪→#engines: 1 state: up

qat_dev15 - type: 4xxxvf, inst_id: 87, node_id: 0, bsf: 0000:70:00.4, #accel: 1

↪→#engines: 1 state: up

qat_dev16 - type: 4xxxvf, inst_id: 88, node_id: 0, bsf: 0000:75:00.1, #accel: 1

↪→#engines: 1 state: up

qat_dev17 - type: 4xxxvf, inst_id: 89, node_id: 0, bsf: 0000:75:00.2, #accel: 1

↪→#engines: 1 state: up

qat_dev18 - type: 4xxxvf, inst_id: 90, node_id: 0, bsf: 0000:75:00.3, #accel: 1

↪→#engines: 1 state: up

qat_dev19 - type: 4xxxvf, inst_id: 91, node_id: 0, bsf: 0000:75:00.4, #accel: 1

↪→#engines: 1 state: up

The configuration file name will be /etc/4xxxvf_dev<x>.confwhere x is inst_id.

For qat_dev9, the configuration file is /etc/4xxxvf_dev81.conf

Virtualization 133

9 SecureArchitectureConsiderations

This section describes the potential threats identified as part of the secure architecture analysis of the
Intel® QuickAssistTechnologyaccelerationcomplexand theactions thatcanbe taken toprotect against
these threats. This chapter concentrates on the acceleration complex. First, the terminology covering
the main threat categories and mechanisms, attacker privilege and deployment models are presented.
Then, some common mitigation actions that can be applied to many of these threat categories and
mechanisms are discussed. Finally, more specific threat/attack vectors, including attacks against spe-
cific services of the PCH device are described.

9.1 Terminology

Each of the potential threat/attack vectors discussed may be described in terms of the following:

• Threat Categories

• Attack Mechanism

• Attacker Privilege

• Deployment Models

9.1.1 Threat Categories

System threats can be classified into the categories in the following table.

Table 43: Threat Categories
Category Nature of Threat and Examples
Exposure of Data Attacker reads data to which they should not have read access.

Attacker reads cryptographic keys.
Modification of Data Attacker overwrites data to which they should not have write access.

Attacker overwrites cryptographic keys.
Denial of Service Attacker causes application or driver software (running on an IA core)

to fail or terminate.
Attacker causes Intel® QuickAssistAccelerator firmware tohang, tem-
porarily impeding service.

continues on next page

134

Programmer'sGuide

Table 43 – continued from previous page
Category Nature of Threat and Examples

Attacker causes excessive use of resource (IA core, Intel® QuickAssist
Acceleratorfirmware thread, siliconslice,PCIe*bandwidth, andsoon),
thereby reducing availability of the service to legitimate client.

9.1.2 AttackMechanism

Attack Mechanisms and Examples

Some of the mechanisms by which an attacker can carry out an attack are listed in the following table.

Table 44: Attack Mechanism
Mechanism Examples
Contrived Packet Stream Attacker crafts a packet stream that exploits known vulnerabilities in

the software, firmware, or hardware. This could include vulnerabilities
such as buffer overflow bugs, lack of parameter validation, and so on.

Compromised Application
Software

Attacker modifies the application code calling the Intel® QuickAssist
TechnologyAPI to exploit knownvulnerabilities in thedriver/hardware.

Application Malware In an environment where an attacker may be able to run their own ap-
plication, separate fromthemainapplicationsoftware, theymay invoke
the Intel® QuickAssist Technology API to exploit known vulnerabilities
in the driver/hardware.

Compromised IAdriver soft-
ware

Attacker modifies the IA driver to exploit known vulnerabilities in the
driver/hardware.

Defect It is also possible that the attack is notmalicious, but rather an uninten-
tional defect.

9.1.3 Attacker Privilege

The following table describes the privileges that an attacker may have. The table describes the case of a
non-virtualized system.

Table 45: Attacker Privilege
Privilege Comments
Physical access There is no attempt to protect against threats, such as signal probes,

where the attacker has physical access to the system. Customers can
protect their systems using physical locks, tamper-proof enclosures,
Faraday cages, and so on.

Logged in as privileged user There is no attempt to protect against threats where the attacker is
logged inasaprivilegeduser. Customerscanprotect their systemsus-
ing strong, frequently changed passwords, and so on.

continues on next page

SecureArchitectureConsiderations 135

Programmer'sGuide

Table 45 – continued from previous page
Privilege Comments
Logged in as unprivileged
user

If the attacker is logged into a platform as an unprivileged user, it is im-
portant to ensure that they cannot use the services of the PCH to ac-
cess (read or write) any data to which they would not otherwise have
access.

Ability to send packets In almost all deployments, attackers have the ability to send arbitrary
packets from the network into the system. It is assumed that threats
(for example, denial of service attacks) may arrive in this way.

9.1.4 DeploymentModels

Some of the possible deployment models are given in the following table.

Table 46: Deployment Models
DeploymentModel Examples
System with no untrusted users

• Network security appliance
• Server in data center

System with potentially untrusted users
• Server in data center

9.2 Threat/AttackVectors

A thorough analysis has been conducted by considering each of the threat categories, attack mecha-
nisms, attacker privilege levels, and deployment models. As a result, the following threats have been
identified. Also described are the steps a user of the PCH chipset can take to mitigate against each
threat. Some general practices that mitigate many of the common threats are considered first. There-
after, threats on specific services and mitigation against those threats are described.

9.2.1 GeneralMitigation

The following mitigation techniques are generic to different threats and attack vectors:

• Ensure that all software running on the platform that has access to Intel® Quick Assist Technology
devices is within the trust boundary of the platform owner. This mitigation includes software run-
ning in virtual machines and containers.

• Intel® followsSecureCodingguidelines, includingperformingcode reviewsand runningstatic anal-
ysis on its driver software and firmware, to ensure its compliance with security guidelines. It is

136 SecureArchitectureConsiderations

Programmer'sGuide

recommended that customers follow similar guidelines when developing application code. This
should include the use of tools such as static analysis, fuzzing, and so on.

• Ensure each hardware component, including the PCH chipset, processor, and DRAM, is physically
secured from attackers. This can include such examples as physical locks, tamper proofing, and
Faraday cages (to prevent side-channel attacks via electromagnetic radiation).

• Ensure thatnetworkservicesnot requiredonthemodulearenotoperatingandthat thecorrespond-
ing network ports are locked down.

• Use strong passwords to protect against dictionary and other attacks on administrative and other
login accounts.

9.2.2 General Threats

General threats include the following:

• DMA

• Intentional Modification of IA Driver

• Modification of the QAT Configuration File

• Malicious Application Code

• Denial of Service

9.2.2.1 DMA

Threat: The PCH can perform Direct Memory Access (DMA, the copying of data) between defined
memory locations. Once an attacker has sufficient privilege to invoke the Intel® QuickAssist Technology
API, or to write to/read from the hardware rings used by the driver to communicate with the device, they
can send requests to the Intel® QuickAssistAccelerator toperformsuchDMA,passingarbitraryphysical
memory addresses as the source and/or destination addresses, thereby exposing or modifying regions
of memory to which they would otherwise not have access.

Mitigation 1: Ensure that Intel® Input-Output Memory Management Unit (IOMMU) is enabled. This will
force USDM to create QuickAssist IOMMU domain and all memory allocated by USDM will be mapped
into this domain, hence malicious user or error in user application cannot read or write memory outside
this domainwhichmitigates the risk. However because there is only single domain, there is noprotection
between individual Virtual Functions(VFs) or applications. This design is done for simplicity of memory
manager and if needed, VFIO-PCI should be used to create individual domains per VF.

Mitigation 2: Ensure that only trusted users are granted permissions to access the Intel® QuickAssist
Technology API, or to write to and read from the hardware rings. Specifically, the PCH configuration file
describes logical instances of acceleration services and the set of hardware rings to be used for each
such instance. User processes can ask the kernel driver to map these rings into their address spaces.
To access a given device (identified by the number in the filenames below), the user must be granted
read/write access to the following files, which may be in /dev:

SecureArchitectureConsiderations 137

Programmer'sGuide

• uio<0..N> (where <0..N> are the qat uio device numbers)

• qat*

• usdm_drv

9.2.2.2 IntentionalModification of IADriver

Threat: An attacker can potentially modify the IA driver to behave maliciously. This may lead to a denial
of service of Intel® Quick Assist Technology services.

Mitigation: Thedriverobject/executablefileondisk shouldbeprotectedusing thenormal fileprotection
mechanisms so that it is writable only by trusted users, for example, a privileged user or an administrator.
Specifically, the Intel® QuickAssist Technology kernel objects and libraries should not be writeable by
user. If the qat user group is being used to provide access to Intel® Quick Assist Technology services,
then this group should not have write permission to the binaries.

9.2.2.3 Modification of theQATConfiguration File

Threat: The QATconfiguration file is read at initialization time by the driver and specifies what instances
of each service (cryptographic, data compression) should be created, and which rings each service in-
stance will use. Modifying this file could lead to denial of service by deleting required instances or could
beused toattempt tocreateadditional instances that theattackercouldsubsequentlyattempt toaccess
for malicious purposes.

Mitigation: The configuration file should be protected using the normal file protection mechanisms so
that it is writable only by trusted users, for example, a privileged user or an administrator.

Note: By default, the configuration file is stored in the /etcdirectory and may be named something like,
c6xxx_dev0.conf . Its default permissions are that it is readable and writeable only by root user and qat
group.

9.2.2.4 MaliciousApplicationCode

Threat: Anattackerwhocangain access to the Intel® QuickAssistTechnologyAPImaybeable toexploit
the following features of the API:

• Buffers passed to the API have a specified length of up to 32 bits. By specifying excessive lengths,
an attacker may be able to cause denial of service by overwriting data beyond the end of a buffer.

• Buffer lists passed to the API consist of a scatter gather list (array of buffers). An attacker may in-
correctly specify the number of buffers, causing denial of service due to the reading or writing of
incorrect buffers.

138 SecureArchitectureConsiderations

Programmer'sGuide

Mitigation: Platformmanagementcan includetheRateLimitingfeaturetomitigateagainstNoisyNeigh-
bors. Only trustedusers andapplications shouldbeallowed to access the Intel® QuickAssistTechnology
API, as described in General Mitigations.

9.2.2.5 Denial of Service

Threat: An attacker may construct a service request that does not conform to the specification, result-
ing in low of service due to service timeouts, halting of Quick Assist service or undesired platform level
conditions.

Mitigation: The current generation of Intel® Quick Assist Technology has been designed for perfor-
mance, providing direct access to hardware via PCIe* MMIO space. Misuse of hardware registers is to
be avoided, and the threat against intentional misuse must be mitigated by ensuring all software on the
platform is trusted.

Anattackermayattempt tocontriveapacket streamthatmonopolizes theaccelerationservices, thereby
denying service to legitimate users. This may consist of one or more of the following:

• Sending packets that are compressed (for example, using IPComp) or encrypted (for example, us-
ing IPsec), thereby reducing the availability of these services to legitimate traffic.

• Sending excessively large packets, causing some latency for legitimate packets.

• Sendingsmall packetsat ahighpacket rate, causingextrabandwidthutilizationon thePCIExpress*
bus connecting the device to the processor.

Mitigation: PropermonitoringofDeviceUsage (DU)and theconstructionofServiceLevelAgreements
(SLA) are now available as part of the Rate Limiting feature.

9.2.3 Threats Specific toCryptographic Service

Threats against the cryptographic service include:

9.2.3.1 ReadingCryptographic Keys

Threat: Cryptographic keys are stored in DRAM. An attacker who can determine where these are stored
could read the DRAM to get access to the keys or could write the DRAM to use keys known by the at-
tacker, thereby compromising the confidentiality of data protected by these keys. Some cryptographic
keys have long lives. The impact of an attacker obtaining the keymayexist for the lifetimeof the key itself.

Mitigation: DRAMisconsidered inside thecryptographicboundary (asdefinedbyFIPS140-2). Thenor-
mal memory protection schemes provided by the Intel® architecture processor and memory controller,
and by the operating system, prevent unauthorized access to these memory regions.

SecureArchitectureConsiderations 139

10 RevisionHistory

Document
Version

Description Date

004 Updates for 1.1.40 Release March 2024
003 RSA-1024 added as Opt-in. June 2023
002 Note added about using SR-IOV and S-IOV simultaneously

on same PF (not supported).
May 2023

001 Initial Release February 2023

140

	About this Document
	Conventions and Terminology

	Architecture
	Infrastructure
	Queues and Queue Pairs
	Queues Pairs
	Queue Bundles

	Service Instances
	Configurable Items (via config file)

	Memory Management
	Shared Virtual Memory
	SVM Kernel Requirements

	DMA-able Memory
	Memory Type Determination
	Buffer Formats
	Flat Buffers
	Scatter-Gather List (SGL) Buffers

	Huge Pages

	Modes of Operation
	Calling Semantics
	Asynchronous (Polled)
	Asynchronous (Interrupts)
	Synchronous
	Pros And Cons

	Load Balancing
	Per Endpoint
	Across Endpoints
	Load Sharing Criteria

	Dimensions

	Debugability
	Overview of Intel® QAT debugfs entries
	Entries in /sys/kernel/debug/qat_*
	Memory driver queries (qae_mem_slabs)

	Heartbeat
	Heartbeat Operation
	Initialization
	Heartbeat Monitoring
	Resetting a Failed Device
	Function Signatures

	Incorporating Heartbeat into Intel® QAT Applications
	Restart Sequence
	Status of Packets in Flight (Crypto Applications Only)
	Determining Device ID
	Testing Heartbeat
	Simulated Heartbeat Failure Configuration
	Simulating Heartbeat Failure
	System Virtual Files
	Heartbeat Polling Frequencies

	Handling Device Failures in a Virtualized Environment
	Incorporating Dummy Responses into an Intel® QAT Application

	Telemetry
	Telemetry Usage
	Telemetry Control
	Telemetry Commands
	Selecting Ring Pairs

	Device Level Telemetry Values
	Ring Pair Level Telemetry Values

	Monitoring Telemetry - Text Based

	Rate Limiting
	Service Level Agreement (SLA)
	SLA Units
	SLA Manager Application
	SLA Commands

	Power Management
	Configuration
	Usage
	Considerations

	Reliability, Availability, and Stability (RAS)
	RAS Usage
	AER Errors

	Acceleration Driver
	Controlling the Driver
	qat_service
	qat_service Usage

	adf_ctl
	adf_ctl Usage
	Examples

	Application Payload Memory Allocation
	Services
	Thread Specific USDM

	Return Codes
	Linux* Device Driver Operations Return Codes

	Configuration Files
	Configuration File Overview
	General Section
	ServicesEnabled
	Performance Considerations

	ServicesProfile
	General Default Configuration Parameters

	Concurrent Requests
	Power Management Parameters
	Shared Virtual Memory (SVM) Parameters
	SVMEnabled
	ATEnabled

	Logical Instances Section
	[KERNEL] Section
	User Process [xxxxx] Sections
	Cryptographic Logical Instance Parameters
	Data Compression Logical Instance Parameters
	Setting the Core Affinity Parameter for a Logical Instance

	Maximum Number of Process Calculations
	Increasing the Maximum Number of Processes/Instances
	Invalid Configurations
	Configuring Instances for Virtual Functions

	Configuring Multiple Intel® QuickAssist Technology Endpoints in a System
	Configuring Multiple Processes on a System with Multiple Intel® QAT Endpoints
	Sample Configuration Files

	Services
	Data Compression
	Compresion Features
	Compression Limitations
	Compression Session Setup
	Decompression Session Setup
	Deflate Decompression
	LZ4 Decompresion
	LZ4 Decompression Limitations
	Multi-frame decompression support

	Performance Considerations
	Flush Flags
	Checksums
	LZ4s Compressed Data Block format
	LZ4 Compression Support

	Compress-and-Verify
	Compress and Verify Error log in Sysfs
	Compress and Verify and Recover (CnVnR)

	Dynamic Compression
	Maximum Expansion with Auto Select Best Feature (ASB)
	Maximum Compression Expansion
	No Session API
	Compression Levels
	Compression Status Codes
	Intel® QuickAssist Technology Compression API Errors
	Compression API Errors

	Overflows Errors
	Traditional API Overflow Exception
	Data Plane API Overflow Error
	Handling Overflow Errors
	Compression Overflows in a Virtual Environment
	Avoiding Compression Overflow Exceptions

	Integrity Checksums
	Verify HW Integrity CRC’s

	Data Compression Applications
	Compression for Storage
	Data Deduplication and WAN Acceleration

	Cryptographic Services
	Introduction
	Supported Cipher Algorithms
	Supported Hash/Authenticate Algorithms
	Supported Public Key Algorithms

	Cryptography Applications
	IPsec and SSL VPNs
	Encrypted Storage
	Web Proxy Appliances

	Supported APIs
	Intel QuickAssist Technology APIs
	Cryptographic and Data Compression API Descriptions
	Data Plane APIs Overview
	IA Cycle Count Reduction When Using Data Plane APIs
	Usage Constraints on the Data Plane APIs

	Intel® QAT API Limitations

	Additional APIs
	Dynamic Instance Allocation Functions
	icp_sal_userCyGetAvailableNumDynInstances
	icp_sal_userDcGetAvailableNumDynInstances
	icp_sal_userCyInstancesAlloc
	icp_sal_userDcInstancesAlloc
	icp_sal_userCyFreeInstances
	icp_sal_userDcFreeInstances
	icp_sal_userCyGetAvailableNumDynInstancesByDevPkg
	icp_sal_userDcGetAvailableNumDynInstancesByDevPkg
	icp_sal_userCyInstancesAllocByDevPkg
	icp_sal_userDcInstancesAllocByDevPkg
	icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel
	icp_sal_userCyInstancesAllocByPkgAccel

	IOMMU Remapping Functions
	icp_sal_iommu_get_remap_size
	icp_sal_iommu_map
	icp_sal_iommu_unmap
	IOMMU Remapping Function Usage

	Polling Functions
	icp_sal_pollBank
	icp_sal_pollAllBanks
	icp_sal_CyPollInstance
	icp_sal_DcPollInstance
	icp_sal_CyPollDpInstance
	icp_sal_DcPollDpInstance

	User Space Access Configuration Functions
	icp_sal_userStart
	icp_sal_userStop

	Version Information Function
	icp_sal_getDevVersionInfo

	Reset Device Function
	icp_sal_reset_device

	Thread-Less APIs
	icp_sal_poll_device_events
	icp_sal_find_new_devices

	Compress and Verify (CnV) Related APIs
	icp_sal_get_dc_error
	icp_sal_dc_simulate_error

	Heartbeat APIs
	icp_sal_check_device
	icp_sal_check_all_devices
	icp_sal_heartbeat_simulate_failure

	Device Polling APIs
	icp_sal_poll_device_events
	cpaCyInstanceSetNotificationCb
	cpaDcInstanceSetNotificationCb

	Congestion Management APIs
	icp_sal_SymGetInflightRequests
	icp_sal_AsymGetInflightRequests
	icp_sal_dp_SymGetInflightRequests

	Service Specific Polling APIs
	icp_sal_CyPollSymRing
	icp_sal_CyPollAsymRing

	Check Device Availability APIs
	icp_sal_userIsQatAvailable

	Virtualization
	Virtualization Deployment Model for Intel® QAT 2.0
	Physical Device Direct Assignment
	Single Root IOV (SR-IOV)
	Scalable IOV (S-IOV)
	Reducing Number of VFs per Endpoint

	Secure Architecture Considerations
	Terminology
	Threat Categories
	Attack Mechanism
	Attacker Privilege
	Deployment Models

	Threat/Attack Vectors
	General Mitigation
	General Threats
	DMA
	Intentional Modification of IA Driver
	Modification of the QAT Configuration File
	Malicious Application Code
	Denial of Service

	Threats Specific to Cryptographic Service
	Reading Cryptographic Keys

	Revision History

