
Abstract 
Video Super Resolution (VSR) has become an essential part in the dynamic 
landscape of video enhancement workloads, with streaming, broadcast and user-
generated content (UGC) applications. To date, VSR has been implemented 
using deep-learning AI algorithms requiring GPU architectures. This paper 
describes the collaboration between Intel and AWS to deploy VSR on CPUs 
taking advantage of the acceleration feature in Intel® Xeon® processors available 
on AWS. This paper provides an overview of the use cases and algorithms for 
VSR, how Intel works to make VSR available in open-source software for Intel 
processors, and how to implement VSR using pre-built pipelines from AWS.

Introduction
The rise of free ad-supported streaming TV (FAST) services has surfaced a 
comprehensive range of personalized content, including old-fashioned movies. 
However, most of this content is only available in lower-resolution formats (SD) 
and needs a better viewing experience on a home TV screen. Traditionally, 
low-complexity methods such as Lanczos3 and bicubic6 have been used for 
spatial upscaling by 2x and 4x. However, these techniques often introduce 
image artifacts such as blurring and pixelation. On the other hand, deep learning 
(DL) approaches such as SRCNN2 and Enhanced Deep Residual Networks 
for Single Image Super-Resolution (EDSR)7 have shown remarkable results 
for super- resolution, overperforming classical algorithms in objective quality 
metrics (VMAF, SSIM, PSNR). Nevertheless, DL super-resolution methods are 
computationally expensive, which makes them unsuitable for low-cost channels, 
the most typical case in FAST services. Therefore, we propose a cost-effective 
architecture for video super-resolution that leverages the benefits of Amazon 
Spot instance to process video assets following a best-effort strategy. In our 
approach, mezzanine files are split into smaller pieces (2 to 10 minutes) and 
independently processed by a super-resolution pipeline using Intel® Advanced 
Vector Extensions 512 (Intel® AVX-512) and leveraging the Intel® Library  
for Video.

The Intel® Library for Video Super Resolution (Intel® Library for VSR)2 is an 
open-source framework that implements machine learning based video super-
resolution, which is trained on a diverse dataset to meet performance and quality 
for real world scenarios. For the evaluation phase, we use selected Alliance for 
Open Media (AOM)  videos to assess the objective visual quality in terms of 
state-of-the-art referenced and non-referenced quality metrics, such as VMAF, 
SSIM, and RAPIQUE.10 Our approach reported considerable benefits against 
classical interpolation methods while providing a manageable computational 
cost utilizing a CPU architecture.
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The Intel® Library for Video Super Resolution
The Intel Library for Video Super Resolution harnesses 
the power of upscaling videos to a higher resolution, 
to enhance visual experience while meeting industry 
standards and resolution of end devices in a cost-effective 
manner. It includes an enhanced implementation of the 
Rapid and Accurate Image Super Resolution algorithm 
(RAISR),9 to meet real-world customer needs and 
deployment. This implementation takes advantage of 
machine learning techniques to produce high quality 
versions of low-resolution video content without adding 
artifacts, a common hallucination issue caused by artificial 
intelligence generating unnatural looking details. To apply 
the algorithm to large-scale industry use, especially in 
broadcasting and streaming applications, the enhanced 
RAISR implementation is trained on a highly diverse data 
set, enables two-step filtering, supports 8-bit and 10-bit 
processing and is optimized for native CPU instruction sets. 

The algorithm is implemented in C++ and the filters are 
trained with diverse content types encompassing various 
scenes ranging from natural scenes, animation, action, 
sports, sitcoms, news conferences and more. The dataset 
contains pairs of low-resolution and high-resolution images 
generated by multiple downscaling and degradation 
techniques, to make it suitable for upscaling real-world 
content. The implementation supports scaling by factors of 
1.5x or 2x, enabling commonly used upscales like 480p to 
720p, 540p to 1080p, 1080 to 4K, or all the way up to 8K for 
both 8-bit and 10-bit content. The two-step filtering option 
enables the use of an additional pre or post upscaling filter, 
which could be used to control sharpness or denoising.

Figure 1 shows a high-level implementation overview 
of the Intel Library for VSR, available in open source 
under the Open Visual Cloud project. It is available as a 
plugin to FFmpeg, the most common framework used 
in the development of multimedia applications to ease 
development. The Intel Library for VSR has implemented 
multiple filters based on the content characteristic used 
in the training, called filters_lowres, filters_highres, 
filters_denoise. As the name suggests, each filter is trained 
with a specific type of data to address specific needs. For 
example, filter_denoise is trained on the video content 
where different types of noises are present to denoise 
and upscale the low-resolution input using the two-pass 

option. The training framework for the Intel Library for VSR3 
enables easy retraining of these filters on custom content. 
The implementation scales efficiently with the available 
processing cores, utilizing an x86 instruction set including 
Intel AVX-512 for the Intel® Xeon® Scalable processor 
family or the Xe-core for Intel® GPUs. These optimizations 
enable real-time processing of multiple video streams on 
Intel architecture. The implementation also supports a 
quantized FP16 datatype to further boost performance on 
the latest generations of Intel Xeon Scalable processors5 
and Intel® Data Center GPUs.4

AWS implementation
As mentioned previously, implementing the enhanced 
RAISR algorithm utilizing Intel AVX-512 requires AWS-
specific instance types, such as c5.2xlarge, c6i.2xlarge, 
and c7i.2xlarge. We leverage AWS Batch4 to compute 
jobs and automate the entire pipeline rather than dealing 
with all the underlying infrastructure, including start and 
stop instances. We also automate the ingress and egress 
workflow to trigger each job based on an S3 bucket event. 
Therefore, AWS customers interested in using the benefits 
of the enhanced RAISR algorithm for super-resolution can 
continue focusing on the ABR transcoding pipeline and 
adapt their existing workflow to leverage AWS Batch as a 
preprocessing stage.

The first step is to create a compute environment in AWS 
Batch, where CPU requirements are defined, including the 
type of EC2 instance allowed. The second step regards 
creating a job queue associated with the proper computing 
environment. Each job submitted in this queue will be 
executed using the specific EC2 instances. 

The third step involves the definition of a job. At this point, 
it is necessary to have a container registered in the AWS 
Elastic Container Register (ECR5). Building the container 
is further detailed in AWS-VSR GitHub repository.6 The 
container includes installing the Intel Library for VSR, 
open-source FFmpeg tool, and AWS CLI to perform API 
calls to S3 buckets. Once the job is properly defined (image 
registered in ECR), the job can start being submitted into 
the queue. This process is automated using a lambda 
function that receives a trigger from an S3 bucket (source), 
performs some validation (video codec, resolution, 
etc.), and sends an API call to AWS-Batch to start the 
super-resolution job. Once the VSR process has finished, 

Figure 1. Overview of the Intel® Library for Video Super Resolution.
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the resulting high-dimensional video is uploaded to a 
destination S3 bucket, becoming the new mezzanine file 
for the following ABR transcoding stages, which does not 
depend on an encoder vendor. After that, the job concluded, 
the underlying infrastructure automatically deployed 
during the processing is immediately deleted. As a variant, 
during the computing environment step, the option of 
spot-instance can be selected, saving up to 90% of the total 
cost. Therefore, the jobs in the queue will wait until a spot 
EC2 instance with the specific types is available. Figure 2 
describes the general architecture. 

Performance and results
Intel evaluation
To verify the effectiveness of the enhanced RAISR 
implementation, Intel did both objective and subjective 
visual quality (VQ) assessments against a traditional 
upscaling approach (Lanczos). 21 video sequences of 
different resolutions were selected from the Pexels dataset8 
to gather objective quality outcomes. These original videos 
serve as a ground truth for the objective evaluation. The 
selection for VQ metrics was made based on industry-
standard techniques, including peak signal-to-noise ratio 
(PSNR), structural similarity index measure (SSIM), and 
video multimethod assessment fusion (VMAF). The 
methodology involved creating input videos from the 
ground truth by downscaling using bilinear interpolation. 
These low-resolution inputs were then upscaled using 
Lanczos and the enhanced RAISR implementation and 
compared with ground truth to measure VQ metrics. 

The quantitative comparison is categorized based on input 
resolution as shown in Table 1. The results illustrate that all 
VQ metrics of enhanced RAISR consistently outperform 
Lanczos. The implementation has shown significant 
improvements in the perceptual video quality indicator 
measured by VMAF while demonstrating less significant 
improvements in PSNR and SSIM.

Further, a subjective quality assessment was done on an 
extended list of sequences to include videos from the AOM 
dataset1 and considerable improvements in the quality of 
the video were observed as well. Here the ground truth is 
used as input and upscaled using Lanczos and enhanced 
RAISR for comparison. As shown in Figure 3, the globe on 
a high-rise building along with the roof and the windows 
behind it show better contrast and are sharper on the edges. 
Figure 4 illustrates the visual improvements from a sports 
fans sequence where the writing on a T-shirt is visually 
clearer and sharper.

Lanczos Enhanced RAISR

Input Res PSNR SSIM VMAF PSNR SSIM VMAF

sub-720p 31.013 0.897 64.967 31.343 0.902 75.197

sub-1080p 35.759 0.945 63.810 36.319 0.950 75.139

1080p 37.863 0.946 71.865 38.134 0.948 80.162

Table 1. Objective quality comparison with different  
video resolutions.
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AWS evaluation
As described in the introduction, one of the critical drivers 
of this implementation is running FAST channels, where, 
in many cases (old movies and series), the original film 
was produced in SD resolution. Consequently, the target 
high- resolution video does not exist. In that case, well-
known referenced quality metrics such as VMAF and 
SSIM are unsuitable. This fact motivates the execution 
of a new set of tests — referenced (VMAF) and non-
referenced (RAPIQUE) state-of-the-art quality metrics. 
Table 2 presents a selected set of sequences from the 
AOM dataset. For each of those videos, a linear downscaled 
version is performed using ffmpeg parameter CRF=30, 
and then this new file is used as input for the Lanczos 
and Enhanced RAISR algorithm. In this case, we can use 
VMAF because our environment is controlled (existence of 
reference high-resolution source). However, our objective is 
to demonstrate the relation between VMAF and RAPIQUE 
features, providing the support to use RAPIQUE as a 
mechanism for quality control in production environments 
where the reference high-resolution video does not exist. 
In this case, the RAPIQUE score determines if a video has 
been improved or not. Figure 5 provides an example of  
a subjective visual improvement and the relation to 
RAPIQUE results.

LR 540p Lanczos 1080p Enhanced RAISR 1080p

Sequence RQ RQ VMAF RQ VMAF

Motorcycle 0.6530 0.6751 56.3497 0.6861 63.6224

MountainBike 0.6986 0.7287 64.2387 0.7402 70.5487

Skater227 0.4603 0.4872 65.8142 0.4980 69.1595

TreesAndGrass 0.6260 0.6362 64.4056 0.6460 67.9418

WorldCup_far 0.6269 0.6366 67.9202 0.6469 75.7239

Table 2. Objective quality comparison with different video resolutions (RQ=RAPIQUE).

Figure 3. Side by side view of the output of Lanczos (left) 
and enhanced RAISR (right) upscale of a building.

Conclusion
The optimized implementation of enhanced RAISR offers 
an economically efficient means of upscaling videos while 
improving quality. This approach eliminates the risk of 
introducing undesirable artifacts into the video, hence 
facilitating automated enabling at scale for the upscaling 
pipeline. In the future, the same approach could be 
applied to video quality enhancement pipelines focusing 
on improving visual quality without upscaling. Such an 
enhancement may have a wider impact with a growing 
number of videos in streaming applications, often captured 
with low-quality cameras or transcoded several times, 
impacting visual quality severely.

More Information
For more information on how to use Intel Xeon 
CPUs for Video Super Resolution, visit github.com/
OpenVisualCloud/Video-Super-Resolution-Library.  

For more information on AWS services for Video Super 
Resolution, visit github.com/aws-samples/video-super-
resolution-tool.

Figure 5. Subjective evaluation and RAPIQUE features score.

Figure 4. Side by side view of the output of Lanczos (left) 
and Enhanced RAISR (right) upscale of a T-shirt.
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