
Dive into Retrieval Augmented Generation (RAG), the innovative approach
that defines how organizations harness the value of their data with large
language models (LLMs). Explore some of the Intel hardware and software
building blocks that optimize RAG applications, enabling contextual, real-
time responses while simplifying deployment and enabling scale.

Building Blocks
of RAG with Intel

› Tailoring GenAI for your Application . 2

› What is Retrieval Augmented Generation (RAG)? 3

› Standard RAG Solution Architecture . 4

› Technologies for RAG . 5

› Accelerating RAG in Production . 6

› Opportunities for RAG in Enterprise . 9

› Take the Next Step . 9

Authors: Eduardo Alvarez, Senior AI Solutions Engineer, Intel • Sancha Norris, AI Product Marketing, Intel

Tailoring GenAI for Your Application

The public debut of ChatGPT has changed the AI landscape. Enterprises are rushing to take advantage of
this new technology to give them a competitive edge with new products, improved productivity and more
cost-efficient operations.

Generative AI (GenAI) models, like Grok-1 (300B+ parameters) and GPT-4 (trillions+), are trained on
massive amounts of data from the internet and other text sources. These 3rd party large language models
are good for general-purpose use cases. However, most use cases for enterprises will require AI models to
be trained and/or augmented with your data so the results can be more relevant to your business. Here are
some examples of how generative AI can be applied within various industries.

While you can use your data to fine-tune a model,
retraining a model takes additional time and
resources. An alternative popular technique,
retrieval augmented generation (RAG), creates a
domain-specific LLM by augmenting open-source
pre-trained models with your proprietary data to
develop business-specific results. RAG allows you
to keep your data safe and secure without sharing it
with third-party large foundation models.

Consumer Goods
and Retails

Healthcare
& Medicine Manufacturing

Media &
Entertainment Financial Services

• Virtual fitting rooms

• Delivery and installation

• �In-store product-finding
assistance

• �Demand prediction and
inventory planning

• Novel product designs

Source: Compiled by MIT Technology Review Insights, based on data from "Retail in the Age of Generative AI,"9 "The Great Unlock: Large Language Models in Manufacturing,"10 "Generative AI Is
Everything Everywhere, All at Once," and "Large Language Models in Media & Entertainment, "12 Databricks, April-June 2023.

• Assist busy front-line staff

• �Transcribe and summarize
medical notes

• �Chatbots and answer
medical questions

• �Predictive analytics to
inform diagnosis and
treatments

• �Expert copilot for
technicians

• �Conversational interactions
with machines

• �Prescriptive and
proactive field service

• �Natual language
troubleshooting

• �Warranty status and
documentation

• �Understanding process
bottlenecks, devising
recovery strategies

• �Intelligent search, tailored
content discovery

• �Headline and copy
development

• �Real-time feedback on
content quality

• �Personalized playlists, news
digests, recommendations

• �Interactive storytelling via
viewer choices

• �Targeted offers,
subscription plans

• �Uncovering trading
signals, alerting traders
to vulnerable postitions

• ��Accelerating underwriting
decisions

• �Optimizing and rebuilding
legacy system

• �Reverse-engineering
banking and insurance
models

• �Monitoring for potential
financial crimes and fraud

• �Automating data gathering
for regulatory compliance

• �Extracting insights from
corporate disclosures

In this introductory guide, we will explain how RAG
can be paired with various Intel optimizations and
platforms to yield incredible value and performance
for production GenAI systems.

2

What is retrieval augmented generation (RAG)?

The RAG technique adds dynamic, query-dependent data into the model's prompt stream. Relevant
data is retrieved from a custom-built knowledge base stored in a vector database. The prompt and the
retrieved context enrich the model's output, delivering more relevant and accurate results. RAG allows
you to leverage your data with an LLM while keeping the integrity of your data private, as it's not sent to a
third party managing the model. The key components of the RAG workflow can be captured in four simple
steps: user query processing, retrieval, context incorporation and output generation. The diagram below
illustrates this basic flow.

?

User Prompt

Ask

Prompt +
Retrieved

Context
Generate

Answer

Generated Response
based on Retrieved

Context + User Prompt

Pre-Trained LLMRetrieval
Mechanisms

Private Knowledge
(Vector Database)

Vector
Search

Relevant
Context
Retrieved

RAG’s utility is not confined to text; it can
revolutionize video search and interactive document
exploration, even enabling a chatbot to draw on PDF
content for answers.

RAG applications are often called "RAG pipelines"
due to their consistent data process flow, starting
with the user prompt. The prompt is passed through
the core component, the retrieval mechanism, which
converts it into a vector embedding and uses vector
search to find similar content in a pre-constructed
vector database (e.g., from PDFs, logs, transcripts).

The most relevant data is retrieved, incorporated
with the user's prompt, and passed to a model
for inference service and final output generation.
This context incorporation provides models with
additional information unavailable during pre-
training, better aligning them with the user's task or
domain of interest. Because RAG does not require
retraining or fine-tuning the model, it can be an
efficient way to add your data to provide context to
an LLM.

The next section will explore the RAG solution
architecture and stack.

3

Standard RAG Solution Architecture

The following RAG solution architecture provides an overview of the building blocks of a standard RAG
implementation. Core components of the flow include building the knowledge base, query and
context retrieval, response generation and production monitoring across applications.

FEC91BFEC91B

RAG LLM Architecture

Query and Context Retrieval

Response Generation

Build Knowledge Base

stored

retrieval

Private
knowledge

base
Vector DB

Pre-processing
pipeline

Processed
objects

Data
chunking

Embedding
model

Retrieval
vector search

Retrieved
context Top-K

Reranking

Prompt
templateLLM inference

Production Monitoring

Output
guardrailing

Output

Input
guardrailing

User
authentication

User query

Let’s expand on some of these components:

 Build the knowledge base:
• �Data Collection: Assemble a private knowledge base from text-

based sources such as transcripts, PDFs and digitized documents.

• �Data Processing Pipeline: Utilize a RAG-specific pipeline for
extracting text, formatting content for processing, and chunking
data into manageable sizes.

• �Vectorization: Process chunks through an embedding model to
convert text into vectors, optionally including metadata for richer
context.

• �Vector Database Storage: Store vectorized data in a scalable
vector database, ready for efficient retrieval.

 Query and context retrieval:
• �Query Submission: Users or a subsystem submit queries through a

chat-like interface or API calls, authenticated by a secure service.

• �Query Processing: Implement input safeguards for security and
compliance, followed by query vectorization.

• �Vector Search and Re-ranking: Conduct an initial vector search to
retrieve relevant vectors, followed by a re-ranking process to refine
results using a more complex model.

 Response generation:
• �LLM Inference and Response Generation: Combine top context

with the user query, process through a pre-trained or fine-tuned
LLM and post-process for quality and safety.

• �Response Delivery: Return the final response to the user or
subsystem through the interface, ensuring a coherent and
contextually accurate answer.

 Production monitoring:
• �Retrieval Performance: Monitor latency and accuracy of the

retrieval process, keeping records for auditing purposes.

• �Re-ranking Efficiency: Track re-ranking performance, ensuring
contextual relevance and speed.

• �Inference Service Quality: Observe latency and quality of LLM
inference, maintaining logs for auditing and improvement.

• �Guardrail Effectiveness: Monitor guardrails for input and output
processing, ensuring compliance and content safety.

1

3

4

1 2

2

3 4

4

Technologies for RAG

Developing RAG applications usually starts with integrated RAG frameworks, such as Haystack,
LlamaIndex, LangChain and Intel Lab's fastRAG. These frameworks streamline development by offering
optimizations and integrating essential AI toolchains.

Let's consider the RAG toolchain in the three familiar components: knowledge base construction, query
and context retrieval and response generation. Often, RAG frameworks provide APIs that encompass the
entire toolchain. Choosing between using these abstractions and leveraging independent components is a
thoughtful engineering decision that should be considered carefully.

Intel optimizations bridge the gap between the toolchain and hardware, enhancing performance across the chain while ensuring compatibility
and improved functionality on Intel® Xeon® CPUs and Intel® Gaudi® accelerators. These optimizations are integrated into stock frameworks
or distributed as add-on extensions, with the goal to decrease the need for extensive low-level programming. This abstraction enables
developers to focus on building RAG applications efficiently and effectively, leveraging enhanced performance and tailored solutions for
their specific use cases.

Let’s explore the various components of the toolchain in more detail.

Building the knowledge base + context retrieval:
• �Integrated Frameworks: Haystack and LangChain are notable RAG

frameworks that offer high-level abstractions for vector databases
and search algorithms, enabling developers to manage complex
processes within Python-based environments.

• �Vector Database Technologies: Pinecone, Redis and Chroma are
some key vector database solutions that support popular search
algorithms. Scalable Vector Search (SVS) from Intel Labs is
another promising addition, expected to integrate with major vector
databases by early 2024.

• �Embedding and Model Accessibility: Embedding models, which
are often integrated via Hugging Face APIs, can be seamlessly
incorporated into RAG frameworks, making it easier to include
advanced natural language processing (NLP) models.

Response generation:
• �Low-Level Optimizations: oneAPI performance libraries optimize

popular AI frameworks like PT, TF, and ONNX so you can use your
familiar open source tools knowing they are optimized for Intel®
hardware.

• �Advanced Inference Optimization: Extensions such as Intel®
Extension for PyTorch add advanced quantized inference
techniques, boosting performance for large language models.

As you can see, RAG involves several interconnected components
and managing them on a single platform, like Intel Xeon CPUs,
streamlines configuration, deployment and maintenance. For larger
LLMs or high-throughput LLM inference, integrating Gaudi accelerators
becomes an optimal solution for fulfilling application needs.

The following section dives into the complexities of RAG in production,
addressing various considerations and technologies that help teams
achieve successful deployment.

Building Knowledge Base

Intel Opimizations

Query and Context Retrieval

Compute Platform

Data Processing

oneMKL oneDAL oneDNN oneCCL

RAG FrameworksVector Databases Search Algorithms

• Faiss

• SVS

• HNSW

• Vamana

Response Generation

5

Accelerating RAG in Production

Many components of the RAG pipeline are computationally intense, while at the same time, end
users require low-latency responses. Additionally, because RAG is often used for confidential data, the
entire pipeline must be secure. Intel technologies can power the RAG pipeline, contributing to secure
performance across compute platforms and helping enable the full power of generative AI tailored to
specific domains and industries.

Computational demand
Generally, LLM inference is the most computationally-intensive
phase of a RAG pipeline, particularly in a live production environment.
However, creating the initial knowledge base — processing data and
generating embeddings — can be equally demanding, depending on
the data's complexity and volume. Intel's advancements in general
compute technology, AI accelerators and confidential computing
provide the essential building blocks for addressing the
compute challenges of the entire RAG pipeline while ensuring
data privacy and security.

Like most software applications, RAG benefits from a scalable
infrastructure tailored to meet end-users’ transactional
demands. As transaction demand increases, developers may
experience increased latency due to the load on compute
infrastructure, which becomes saturated by vector database
queries and inference calculations. For this reason, it's crucial
to have access to readily available compute resources to scale
up systems to quickly handle increased demand. Equally
important is the need to implement critical optimizations to
boost the performance of key components such as embedding
generation, vector search and inference.

Data privacy and security
• �Secure AI Processing: Intel® Software Guard Extensions

(Intel® SGX) and Intel® Trust Domain Extensions (Intel®
TDX) boost data security via confidential computing and
data encryption in CPU memory during processing. These
technologies are crucial for handling sensitive information,
contributing to the creation of secure RAG applications with
encrypted data throughout the pipeline's various parts. This
is an essential feature for RAG applications that require secure
processing of sensitive data during vector embedding generation,
retrieval, or inference.

• �Implement Proper Guardrailing: In RAG applications, guardrailing
involves implementing measures to manage the behavior of the
LLM within the RAG system. This includes monitoring the model's
responses, helping to adhere to guidelines and best practices,
and controlling its output to decrease the risks of toxicity, unfair
bias, and privacy breaches. Guardrailing in RAG applications helps
maintain the trust and responsible usage of the LLM while ensuring
it aligns with the system's overall goals and requirements.

Open-source optimizations
Embedding optimizations
• �Quantized Embedding Models: Intel Xeon processors can take

advantage of quantized embedding models to optimize the
generation of vector embeddings from documents. A great
example is bge-small-en-v1.5-rag-int8-static, a version of BAAI/
BGE-small-en-v1.5 quantized with Intel® Neural Compressor
and compatible with Optimum-Intel. Retrieval and re-ranking
performance tasks using the quantized model on the Massive Text
Embedding Benchmark (MTEB) reveals a < 2% difference between
the floating-point (FP32) and the quantized INT8 version, on MTEB
performance metric, while enhancing throughput (see footnote 1,3).

batch size

ex
am

pl
es

/s
ec

1 4 8 16 32 64 128 256

2000

1500

1000

500

0

BGE-small Throughput

IPEX int8 IPEX bf16 (torchscript) bf16 (pytorch)

In a recent study with Hugging Face, we evaluated throughput for
peak encoding performance in terms of documents per second.
Overall, for all model sizes, the quantized model shows up to 4x
improvement compared to the baseline bfloat16 (BF16) model in
various batch sizes. Read more here: https://huggingface.co/blog/
intel-fast-embedding

Figure 1: Throughput for BGE small source:
https://huggingface.co/blog/intel-fast-embedding

Vector search optimizations
• �CPU-Optimized Workloads: Vector search operations are

highly optimized on Intel Xeon processors, particularly with the
introduction of Intel® Advanced Vector Extensions 512 (Intel® AVX-
512) in 3rd generation processors or later. Intel AVX-512 leverages
the fused multiply-add (FMA) instruction, which combines
multiplication and addition in a single operation, enhancing inner
product calculations — a fundamental operation in vector search.
This capability significantly improves throughput and performance
by reducing the number of instructions needed for computation.

• �Scalable Vector Search (SVS): Scalable Vector Search (SVS)
technology delivers fast vector search capabilities, optimizing
retrieval times and improving overall system performance. SVS
optimizes graph-based similarity search using locally-adaptive
vector quantization (LVQ), which minimizes memory bandwidth
requirements while maintaining accuracy. The result is significantly
reduced distance calculation latency and higher performance in
throughput and memory requirements, as demonstrated in the
figure below.

6

https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/overview.html
https://huggingface.co/Intel/bge-small-en-v1.5-rag-int8-static
https://www.intel.com/content/www/us/en/developer/tools/oneapi/neural-compressor.html
https://huggingface.co/docs/optimum/intel/index
https://huggingface.co/blog/intel-fast-embedding
https://huggingface.co/blog/intel-fast-embedding
https://github.com/IntelLabs/ScalableVectorSearch

Figure 2. Query per Second (Throughput) performance of SVS compared to other well adopted implementations, HNSWlib
and FAISS’s. The figure shows the QPS vs recall curves for the rqa-768-10M-OOD dataset (10M 768-dimensional embeddings
generated with the dense passage retriever model RocketQA [QDLL21] with out-of-distribution queries). (Footnote 2,3)
source: https://intellabs.github.io/ScalableVectorSearch/benchs/static/latest.html

Figure 3. Llama 2 13B and GPT-J 6B performance on 5th Gen Intel® Xeon® Scalable processors3

Inference Optimizations
RAG primarily involves inference operations, which Intel Xeon
processors support through advanced model compression
techniques. These techniques enable operations at reduced
precisions (BF16 and INT8) without significant performance loss.
For larger models and high throughput requirements, Intel Gaudi
accelerators offer excellent price/performance benefits and can
replace CPUs and other accelerators for RAG inference. In this
section, we'll outline various inference-specific optimizations
and opportunities.

• �Intel Advanced Matrix Extensions (Intel AMX): The 4th and 5th Gen
Intel Xeon Scalable processors incorporate Intel AMX, enabling
more efficient matrix operations and improved memory management.

• �Open Source SOTA Inference Optimization Tools: Intel
contributes to and extends popular deep learning frameworks like
PyTorch, TensorFlow, Hugging Face, DeepSpeed, etc. Of interest
for the RAG workflow are the opportunities to optimize LLMs by
implementing model compression techniques like quantization.
Intel® Extension for PyTorch currently provides a variety of state-
of-the-art (SOTA) LLM quantization recipes such as SmoothQuant,
weight-only quantization, and mixed precision (FP32/BF16). The
figure below showcases the inference latency performance of an
INT8-quantized Llama 2 model running on a single-socket 4th Gen
Intel Xeon platform.

rqa-768-10M-OODquery batch = 10 query batch = 1000
T

hr
ou

gh
pu

t (
Q

P
S

)

SVS

0.80 0.85 0.90

10 recall@10 10 recall@10

0.95 1.00

100K

10K

1K

HNSWlib Faiss-IVFPQfs

rqa-768-10M-OOD

0.80 0.85 0.90 0.95 1.00

100K

10K

1K

5th Gen Xeon best market requirements on LLM latencies
Single node 2S 5th Gen Xeon 8592+ (64C) Large Language Model Next Token Latency

Llama2
13B

Market requirement
<100ms

GPT-J
6B

150 ms

125 ms

100 ms

75 ms

50 ms

25 ms

0

Text
G

enera
tio

n
Text

Class
ific

atio
n

Searc
h

Coding G
enera

tio
n

Conte
nt C

re
atio

n
Chat b

ot

Text
G

enera
tio

n
Text

Class
ific

atio
n

Searc
h

Coding G
enera

tio
n

Conte
nt C

re
atio

n
Chat b

ot

See backup configuration for workload and configurations. Results may vary.

7

https://www.intel.com/content/www/us/en/developer/tools/oneapi/optimization-for-pytorch.html

Figure 4. LLM inference performance on Intel Gaudi 3

Inference complexity and Intel Gaudi
One of the benefits of RAG is that since you depend less on the LLM’s “knowledge” and more on its “language modeling capabilities,” you can
use models with a much lower parameter count. In many cases, a smaller 7B parameter model with RAG can beat larger models with tens of
billions of parameters on domain-specific tasks associated with the RAG model’s knowledge base.

Highly specialized tasks may sometimes require larger models and, consequently, specialized accelerators like Intel Gaudi processors. For
RAG applications requiring the highest throughput or lowest latency, run LLM inference on the highest-performing AI accelerator available,
such as an Intel Gaudi 3 processor.

Explore Intel Gaudi RAG resources to learn more
• �Multi-Modal RAG Demo at Intel® Vision 2024 from Intel Labs Cognitive AI team

• �A scalable Retrieval Augmented Generation (RAG) application using Hugging Face tools as an way of deploying optimized
applications utilizing the Intel Gaudi 2 accelerator

*Source: NV H100 comparison based on https://nvidia.github.io/TensorRT-LLM/performance.html#h100-gpus-fp8 , Mar 28th, 2024.
Reported numbers are per GPU. Vs Intel® Gaudi® 3 projections for LLAMA2-7B, LLAMA2-70B & Falcon 180B projections. Results may vary.

1 0.9

1.2
1.1

1.5

2.7

0.9 0.95
1.1

1

Nvidia
H100

LLAMA – 7B LLAMA – 70B Falcon 180B

R
el

at
iv

e
sp

ee
du

p
(t

hr
ou

gh
pu

t i
n

tp
s)

H

ig
he

r i
s

be
tte

r

1.1

1.7

4

12
8

in
pu

t
12

8
ou

tp
ut

12
8

in
pu

t
20

48
 o

ut
pu

t

20
48

 in
pu

t
12

8
ou

tp
ut

20
48

 in
pu

t
20

48
 o

ut
pu

t

12
8

in
pu

t
12

8
ou

tp
ut

12
8

in
pu

t
20

48
 o

ut
pu

t

20
48

 in
pu

t
12

8
ou

tp
ut

20
48

 in
pu

t
20

48
 o

ut
pu

t

12
8

in
pu

t
12

8
ou

tp
ut

12
8

in
pu

t
20

48
 o

ut
pu

t

20
48

 in
pu

t
12

8
ou

tp
ut

20
48

 in
pu

t
20

48
 o

ut
pu

t

1.5x faster
inferencing
Average projection for Intel® Gaudi® 3 accelerator
vs. Nvidia H100, running common Large Language Models*

8

https://www.youtube.com/watch?v=OfUzQieTvik
https://url.emailprotection.link/?bFcG_JQUknCem-FMDyz_A687S1rs-o8rBX47sy0y_u8pEQ8V6bkH75_k4cNyqA74z0e27zN6n7TO9PGscKbJbDUGNvuHQzTxczDo2JHTjbzYRZaeGX3ew_4e_P5bYkvJHQkL7hINmjsrrltSiRHpee8mois0pxsF9DgGSpveSYjQ~

Retail
Retailers face the challenge of recommending products that match
their customers' diverse and changing preferences. Traditional
recommendation systems may not effectively account for the latest
trends or individual customer feedback, leading to less relevant
suggestions.

Implementing a RAG-based recommendation system enables
retailers to dynamically incorporate the latest trends and individual
customer feedback into personalized product suggestions. This
system enriches the shopping experience by offering relevant,
timely and personalized product recommendations, driving sales
and customer loyalty.

LEARN MORE

Manufacturing
In manufacturing, unexpected downtime due to equipment failure is
a significant cost driver. Traditional predictive maintenance models
may miss subtle anomalies that precede a failure, especially in
complex machinery where historical failure data may be limited or
nonexistent.

A RAG-based anomaly detection system for predictive maintenance
can analyze vast amounts of operational data in real-time, comparing
it against an extensive knowledge base of equipment performance
to identify potential failures before they occur. This approach
minimizes downtime and maintenance costs while extending
equipment life.

LEARN MORE

Financial services
Providing personalized financial advice at scale can be challenging
due to the vast amount of ever-changing financial data and regulations.
Customers expect quick, relevant and personalized financial advice
that traditional chatbots cannot always accurately provide.

A RAG model enhances a financial advice chatbot by dynamically
pulling the most current financial data and regulations to generate
personalized advice. By leveraging a vast knowledge base, the chatbot
can provide clients with tailored investment strategies, real-time market
insights and regulatory advice, enhancing customer satisfaction
and engagement.

LEARN MORE

Opportunities for RAG in Enterprise

Intel® Tiber™ Developer Cloud
Accelerate AI development using Intel®-optimized software on

the latest Intel® Xeon® processors and GPU compmute.

Accelerate AI development using Intel®-
optimized software on the latest Intel® Xeon®
processors, Intel® Gaudi® Accelerators, and
other Intel platforms.

Your Official Source for Developing on
Intel® Hardware and Software

Explore Intel's most popular
development areas and resources.

 Intel GenAI Development Resources

Access Intel hardware and start building RAG applications
on cloud providers like Amazon Web Services, Google Cloud

Platform and Microsoft Azure.

Take the next step
When you are ready to kick-start your implementation, Intel provides
a suite of resources to help you get started, from hardware access in
the Intel® Tiber™ Developer Cloud to ubiquitous compute in major
cloud providers like Google Cloud Platform, Amazon Web Services,
and Microsoft Azure. For developers seeking code samples,
walkthroughs, training and more, please visit Intel Developer Zone.

	 1	Performance claims based on 4th gen Intel Xeon 8480+ with 2 sockets, 56 cores per socket. Pytorch model was evaluated with 56 cores on 1 CPU socket. IPEX/Optimum setups were evaluated with
ipexrun, 1 CPU socket, and cores ranging from 22-56. TCMalloc was installed and defined as an environment variable in all runs. See www.intel.com/performanceindex for details. Results may vary.

	2	Performance claims based on a 2-socket 4th generation Intel® Xeon® Platinum 8480L CPU with 56 cores per socket, equipped with 512GB DDR4 memory per socket @4800MT/s speed, running
Ubuntu 22.04. 1 2 For the deep-96-1B, dataset we use a server with the same characteristics except that it is equipped with 1TB DDR4 memory per socket @4400MT/s speed. See www.intel.com/
performanceindex for details. Results may vary.

	3	Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex. Performance results are based on testing as of dates shown in configurations and may
not reflect all publicly available updates. No product or component can be absolutely secure. Your costs and results may vary. Intel technologies may require enabled hardware, software or service
activation. © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.	

© Intel Corporation.  Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.  Other names and brands may be claimed as the property of others.
		 0424/SN/MESH/PDF 358260-001US

9

https://medium.com/@eduand-alvarez/transforming-retail-with-rag-the-future-of-personalized-shopping-1ac0565d98ed
https://medium.com/@eduand-alvarez/transforming-manufacturing-with-rag-delivering-nextgen-equipment-maintenance-89861698edd6
https://medium.com/@eduand-alvarez/transforming-financial-services-with-rag-personalized-financial-advice-f58de9d2d7e0
https://www.intel.com/content/www/us/en/developer/topic-technology/artificial-intelligence/training/generative-ai.html?cid=sem&source=sa360&campid=2024_ao_cbu_us_gmo_gmocrbu_awa_text-link_brand_exact_cd_ai-solutions_3500186468_google_b2b_is_non-pbm_intel&ad_group=AI_Brand-AI-Solutions_Generative+AI_Exact&intel_term=intel+GenAI&sa360id=43700079820228634&gad_source=1&gclid=Cj0KCQjwztOwBhD7ARIsAPDKnkB29Ynju1W3M-rLnIuBy6JdsiHmlSUWvkf1PJubWu_kbQilxfulAcIaApV5EALw_wcB&gclsrc=aw.ds
https://url.emailprotection.link/?b4Z8ByTP5rh6bUczV7psW0OcyfoIMcy_T1rgxLS1vco67uH7QtlLjSS8mJ--7WS22ic53ct0WvXEh0IQPwQZAwzMf-oLYNSuppSl_AXBxK8tqmWtNpKvi3fYQ4kOgPwgT
https://www.intel.com/performanceindex
https://www.intel.com/performanceindex
https://www.intel.com/performanceindex
https://www.Intel.com/PerformanceIndex

