

Ethernet: The Future of Enterprise Al Connectivity

Al everywhere needs Ethernet everywhere

Current State of Al Connectivity

Al connectivity needs differ based on where Al is used

- CPU and/ or GPUs
- Inference vs. Tuning vs. Training

InfiniBand is technology of choice by main GPU vendor

- Only available from 1 vendor
- Closed software
- Expensive
- Different operations stack vs rest of network

Server design evolution

Networks used in Al: Today's solution

Scale-out network (Network 2)

Network semantics (RDMA/MPI)

Targets scaling for data parallel

Large average transactions (8KB-> MBs)

Needs traditional DC networking (multitenancy)

Solutions: Ethernet, InfiniBand

Front-end network (Network 1)

Standard data center network on Ethernet

Scale-up network (Network 3)

Network (RDMA/MPI) and Mem (LD/ST) semantics

Higher BW scaling for model parallel

Multiple GPUs in each node

Average transaction > 8KB

Solutions: Nvlink, XeLink, Ethernet (Intel), CXL

Intel's Vision for Al Connectivity

Open ecosystem

Enable an open ecosystem for AI networking solutions that eliminates single-vendor tecnologies.

Standard protocols

Replace InfiniBand with open Ethernet based protocols from UEC. Replace proprietary Scale-Up links with an open, standard based protocol on high speed SERDES.

Partnerships

Build partnerships to enable complete, open solutions.
Differentiate offerings via cost, power, system integration, and open software.

Connectivity solutions for Al clusters

Ethernet Adapter

- 1. Standard Ethernet server adapter
- 2. Broad workload deployments including AI
- 3. Reliable transport: RoCE v2
- 4. Al cluster scale: <1,000 GPU nodes per fabric

IPU Adapter

- 1. Premium server adapter that's highly customizable with premium features
- 2. Broad workload deployments including AI
- 3. Reliable transport: Falcon RT and RoCE v2
- 4. Al cluster scale: Small to large clusters

AINIC

- 1. Al-optimized server and NIC design
- 2. Optimized for Al workloads
- 3. Reliable transport: Al-optimized RoCE v2
- 4. Al cluster scale: 64K+ GPU nodes per fabric

It takes an open ecosystem

Solution includes Intel® one API, Intel® Ethernet Fabric Suite, third-party switches

Intel® Ethernet AI training performance

2 oneCCL ranks per node, --batch-size=102 --model=resnet50 --device=cpu --num-warmup-batches=20 --num-batches-per-iter=10 --num-iters=200

* See backup for workloads and configurations. Results may vary

Enabling scaling beyond RoCE v2

Commonly used for clusters and storage

Scaling becomes an issue for standardsbased RoCE v2

Problem: Customers tell us they want the same technology for clusters and storage at every scale

Developed by Google, released publicly through OCP

Addresses the Ethernet RoCE v2 scale issue

Intel® IPU E200 Series is the world's Falcon compatible devices

We're not alone. The industry agrees.

Our mission

Deliver an Ethernet-based open, interoperable, high performance, full-communications stack architecture to meet the growing network demands of Al and HPC at scale

Ethernet Adapters for AI/HPC solutions

Intel® Ethernet 800 Series

IPU Adapters for edge/enterprise Al use cases Intel® IPU 2000 Series

Secure, Multi-tenant Al Edge inference

NGINX: secure add-on for authentication / proxy function

IPU:

- physical segmentation of infra and user space
- Customizable data path filters
- Encryption accelerators

General Purpose Reliable Transport

Falcon Transport: support for AI and storage over lossy fabrics

IPU:

- physical segmentation of infra and user space
- Encryption accelerators
- ARM core complex for custom datapath or controller functions

Jason Carolan
Chief Innovation Officer

Flexential

Andrew Thorstensen
Chief Engineer

IBM

Get ready to deploy Ethernet-based Al products now

Intel, with the industry, is enabling **Ethernet for Al everywhere**

Intel has a broad portfolio of AI connectivity products both available now and coming soon

Contact your Intel sales rep for more info

Notices and Disclaimers

For notices, disclaimers, and details about certain performance claims, visit www.intel.com/PerformanceIndex or scan the QR code:

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

intel VISION

Thank You!

Backup

Configuration for MLPerf[™] Resnet runs – E810 vs. HDR

Tests performed 11/28/2022 on 2-socket Intel® Xeon® Platinum 8480+ CPU @ 3.0-3.8GHz. Intel® Hyper-Threading Technology enabled. Intel® Turbo Boost Technology enabled with Intel Pstate driver. Red Hat Enterprise Linux 8.6 (Ootpa). 4.18.0-372.9.1.el8.x86_64 kernel. 16x32GB, 512 GB total, 4800 MT/s. Intel® MPI 2021.6. irdma version 1.9.30. ice version 1.9.5. DDP version 1.3.30.0. Intel® Ethernet E800 Series firmware-version: 4.00 0x800117e9 1.3236.0, 104 TxRx queues. pfc_enable: 0x1. Intel® Ethernet 800 Series tf2 firmware-version: 4.00 0x800117e9 1.3236.0, 104 TxRx queues. pfc_enable: 0x1. Intel® Ethernet Fabric Suite 11.4.0.0.78. Intel® Ethernet E810-CQDA2 network adapter: PFC enabled, DCB on switch, willing mode on NICs. Accton/Edgecore x86_64-accton_as9516_32d-r0 (Intel® Tofino™ 2 switch). HDR: MLNX_OFED_LINUX-5.4-1.0.3.0. MLPerf™ ResNet50 v1.5 with PyTorch. Results may vary.

intel. VISION

intel