intel.

Intel® Firmware Support Package

External Architecture Specification

Revision 2.5

July 2024

Document Number: 736809

intel

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis. You may not
use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which
includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with
your system manufacturer or retailer or learn more at intel.com.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

Altering clock frequency, voltage, or memory interface speeds may void any product warranties and reduce stability, security,
performance, and life of the processor and other components. Intel has not validated processor running memory above Plan-Of-
Record (POR) speed. DRAM/DIMM devices should support desired speed, check with DRAM/DIMM vendors for details. System
manufacturers are responsible for all validation and assume the risk of any stability, security, performance, or other functional
issues resulting from such alterations.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
*Other names and brands may be claimed as the property of others.
Copyright© 2020-2024 Intel Corporation. All rights reserved.

2 736809

Contents
1.0 B} o o« [T ot o o o 11
1.1 P U P OS 1ttt e 11
1.2 Intended AUdIENCE .. vttt e e e 11
1.3 (2= =1 (=Te B B To Yol 8] o o 1= | o= 11
2.0 FSP OVeIVIieW .uuueciiiiii s imnrssss s nsssssss s s ssssss s s asaassssssssssnsnnssssssnnnnnnssnnnnnnns 12
2.1 Design PhiloSOPRNY v 12
2.2 TeChNICAl OVEIVIEW ..ttt r e aeaanes 12
2.2.1 Data Structure DescCriptionS....vvviiiiiiiii i i e iieeeea 12
3.0 FSP Integration.....ciicciiicimrcmmsmmsessmsassmssssssssssssassssanssssanssssnnsssansssnnnnnnns 13
3.1 FSP Distribution Packagecvviiiiiiiiii i v nee e 13
4.0 FSP Binary Formatccciiiiiiisiss s sns s s s s s s s s s s s n s nnm s nm s nnn 14
4.1 FSP COMPONENES .ot e 14
4.1.1 FSP-T: Temporary RAM Initialization Phasecccvieinennnnn. 14
4.1.2 FSP-M: Memory Initialization Phase..........ccciiiiiiiiiiiiic i, 14
4.1.3 FSP-S: Silicon Initialization Phaseccovoiiiiiiiiiiiiii i 14
4.1.4 FSP-I: SMM Initialization Phaseccoiiiiiiiiiiiiiccii e 15
4.1.5 OEM Components (FSP-0) ...cuiiiiiiiiiiiiiii e eee e 16
4.2 FSP Component Identification........c.oooiiiiiiiiiii e 16
4.2.1 FSP Image ID and ReVISION ...icviiiiiiiii i e neannenaaeas 16
4.2.2 FSP Component LayoUt......coviiiiiiiiiiii i e nennneeeeas 16
5.0 FSP Information Tables.....ciccciiimmiminnmmsnsmssssssssnssssnssssansssnnnsssnnsssnnnnsnns 18
5.1 FSP_INFO_HEADERttt e et aeaanes 18
5.2 FSP_INFO_EXTENDED_HEADER......ciiitiiii it s e e aaeenannes 21
5.3 Locating FSP_INFO_HEADERciiiiiiiii it e ree e s e s aaeeeennes 22
5.4 FSP DescCription Filecoiiiiiii it e e eaneea e 23
5.5 FSP Patch Table (FSPP) ... 24
5.5.1 EXAMIPIE e 24
6.0 FSP Configuration Data........cciecriemmiemnnsmemsmssssnssanssasssnssanssanssnssnnssanssnnns 26
6.1 UPD Standard FIeldsuiiueiiii i e e et e e s e e nes 26
6.1.1 FSP-T UPD SErUCEUNE ..t re s a e aneeas 27
6.1.2 FSP-M UPD StrUCTUIE. .. e e r e e nes 28
6.1.3 FSP-S UPD StrUCtUIre .ot st nnaeee s 30
6.1.4 FSP-T UPD SErUCEUINE . ittt et e e nnaeee s 32
7.0 2700 T 3 o o 3 33
7.1 API MOdE BOOt FIOW ettt st et e et e e e e e aneraaeaaeaanes 33
7.1.1 Boot FIoW Description ..oiviuiiiii i 33
7.2 Dispatch Mode BoOt FIOW ..uiiiiiiiii i e e e e anee e 36
7.2.1 High Level OVerVIEWo e 37
7.2.2 Boot FIow Description ..oiviuiiiii i e 37
7.2.3 Alternate Boot FIow DescCriptionccevviiiiiiiiiiii i cieea 40
8.0 System Management Modecciciimmiemmem i ssssssssn s s s s n s annannnas 42
8.1 MOdEl 1 = NO SMM ittt r e s e s ra e sanr e saaneeaannennn 42
8.2 Model 2 = FSP OWNS SMRAM .. uiiiiiii i e et neaanes 43
736809 3

intel

9.0

8.3 Model 3 - Bootloader Provides MM Foundation (Dispatch Mode Only)...... 43
8.4 High Level FIOW ..uriiiii i e ettt e e e e s aane e aaneeaas 44
8.4.1 APL MO ottt 44

8.4.2 DiSpatch MO . uvii i 45

FSP API Mode Interface.....cccivumrimmiemnnnssamssenssnssnnssnnssnnssnssnnssnnssnssnnssnnsnnnss 46
9.1 Entry-Point Invocation Environment.......ccoiiiiiiiiiiiiii e 46
9.2 Data Structure ConVeNtioN ... cei it r e ar e s anne e anneeans 46
9.3 Entry-Point Calling Conventionccoiiiiiiiiiii e 46
9.4 RetUrn Status Code .. ittt a e ane e eanes 47
9.5 Y Sl V=T o =P 47
9.5.1 PI Specification Architecturally Defined Status Codes................ 48

9.5.2 DebUg LOG MESSAGES ..uviitiiiriiitiitiine it iitestaasesaresnnaaneaaneannenns 48

9.5.3 POST Progress COAES ..viiiiiiiiiiiiii i i ciee et eanaesaneananees 49

9.5.4 MIPI Sys-T Catalog Debug Log Messagescccvvvvieieinennnnnnns. 49

9.5.5 Related Definitions ...oveiiiii i 49

9.5.6 FSpEventHandler..... oo 50
0.5.6.1 PrototyPe. . s 50

O.5.6.2 Parameters ..cviiiiiiiii i 50

9.5.6.3 Return Valuesccviiiiiiiiiiiiiii e 51

9.5.7 FspDebugHandler.....cccviiiiiii i e 51
9.5.7.1 Prototype....ccoiiiiiii 51

O.5.7.2 Par@ametersoiiiiiiiiiiiiii i 51

9.5.7.3 Return Valuescciiiiiiiiiiiii e es 51

9.6 FSP Variable ServiCes ...ttt et anes 51
9.6.1 Variable Store Contentsocviiiiiiiii i 52

9.6.2 API Mode Variable SequenCecooviiiiiiiiiiii e 52

9.6.3 Variable Service DesCriptionS....cvcviiiiiiiiiiiiiii i i aae s 54
9.6.3.1 GetVariable....ooiiiiiii e 54

9.6.3.1.1 Parameters...ccoiiiiiiiiiiiiic i e 54

9.6.3.1.2 Descriplionocviiiiiiiiiiii i 55

9.6.3.1.3 Return Valuesccooeiiiiiiiiiiiii i 55

9.6.3.2 GetNextVariableNamecooiiiiiiiiiiiiiiii e 56

9.6.3.2.1 Parameters ...ccoiiiiiiiiiiiiii i 56

9.6.3.2.2 Descriplionocuviiiiiiii i 57

9.6.3.2.3 Return Valuesovvviiiiiiiiiii i i aaeas 57

9.6.3.3 SetVariable ..o 57

9.6.3.3.1 Parameters......ocoiiiiiiiiiiiii 57

9.6.3.3.2 DescCription ..cciiiiiiiiiii e 58

9.6.3.3.3 Return Valuescciiiiviiiiiiiiii i nnneeenans 58

9.6.3.4 QueryVariableInfo.......cooiiiiiiiii 59

9.6.3.4.1 Parameters....c.ociiiiiiiiiiiiii e 59

9.6.3.4.2 DescCription ..cciiiiiiiiiiiii e 60

9.6.3.4.3 Return Valuesccviiiiiiiiiiiiiii e 60

9.7 TempRamMINIt APT ..o e 60
9.7.1 PrOtOtY P . 61

9.7.2 ParamEtErS . 61

9.7.3 REtUMN ValUBS .. it e e aaaaas 61

9.7.4 Y=Yl o] 0] u o] o F 62

9.8 (] 0] N 1= 1o T Y2 1 L oA = S 62
9.8.1 PrOtOtY P e 62

9.8.2 ParamMEtErS i 63

736809

10.0

736809

9.8.3 REtUIN ValU@S ... i e e aeaas 63

9.8.4 DS CIPEION .1ttt 63

9.9 TempPRAMEXIt APT ... 64
9.9.1 POt oY P e e 64

9.9.2 = L= = o= o= 64

9.9.3 REtUIN ValUES ... it aaaas 64

9.9.4 [T ol o) o 1SS 65

9.10 FsPSIliCONINIt APL. ... e 65
9.10.1 ProtOtY P .t 65

9.10.2 Par@melers . 65

9.10.3 RELUIMN ValUBS ..ttt ittt a e r e e aaneaaneas 65

0.10.4 DesSCHiPEiON . .t e, 66

9.11 FspMultiPhaseMem/SiInit APT ...t e eeas 66
1S T I R R o /0] 0 Y o 1= PP 67

0.11.2 Para@melers .ot 67

9.11.3 Related Definitions ..oiciviiii e 67

9.11.4 RetUIMN ValUBS . ittt st a e e areaesaneaanens 69

120 N IS B 1=l |] of o] o 69

9.12 FspSMMINIt AP .o e 70
0.12.1 ProtOtY P .t 70

0.12.2 Para@melers .t 70

9.12.3 RELUIMN ValUBS .ttt et a et e e aaneaanens 70

0.12.4 DeSCHiPIiON . . e, 71

1S T 0 T [0 1 iV o =] S A o PP 71
0.13. 1 PrOtOtY P i 71

0.13.2 Para@melers .ot 71

9.13.3 Related Definitions ..o 71

9.13.4 RetUIMN ValUBS . ittt et a s e e e e aaneaanens 72

120 G TR TN B T=1=To] o | 0] of o] o 72

FSP Dispatch Mode Interfacecccvimriemmiemsimsnmsiamssnss s s ssnnn s snnnsn 74
10.1 Dispatch Mode DeSIgN ..uuiiuiiiiiiiiiii i s s e s aeaneaeens 74
10.2 PEI Phase ReqUIrEMENTS . ..ottt e re e et e e e e e e e eneaaeneanens 75
10.3 DXE and BDS Phase Requirements....coiviiiiiiiiiiiii i i eieenae e 75
10.4 Dispatch Mode APl ..ot e 76
10.4.1 TempRamInit APL......oiiiii e 76

10.4.2 EFI PEI Core Firmware Volume Location PPI..........c.ccvvivvinnnnnen. 76

10.4.3 FSP Temporary RAM EXit PPI.....ccoiiiiiiiiii i aaea 77
10.4.3.1 SUMMANY tiuiiiiiiiiii s s st sareaaaaes 77

10.4.3.2 GUID .ottt ee s e a e s aee e e nes 77

10.4.3.3 Prototype...ciiiiiiiiiiii 77

10.4.3.4 Parameters ..ooviiiiiiiiii i e 77

10.4.3.5 DescCriplion ..oo.oiieiiiiiiii i 77

10.4.4 FSP_TEMP_RAM_EXIT_PPI.TempRamEXit () ...ccoovvvviniiiniinnnnnens 77
O s R Y U o oY 1= S 77

10.4.4.2 Prototype.. i 77

10.4.4.3 Parameters ...ocviiiiiiiiiiiii i e 78

10.4.4.4 DescCriplion ...ocviieiiiiiiiii i 78

10.4.4.5 RetUM ValUBS....ciiuiiieiiiiii i ae e s e aneanes 78

10.4.5 FSP-M Architectural Configuration PPIcoooviiiiiiiiiiiininens 78
10.4.5.1 SUMMAIY 1ttt it i e saaaee e s eaaanaaeeaaanns 78

10.4.5.2 GUID .oiiiiiiiii it ae e s e e nes 79

10.4.5.3 Prototype...cciieiiiiiiiiii 79

10.4.5.4 Parameters . .ccviiiiiiiiiiiiii i e 79

intel

10.4.5.5 DesCription .oiiiiiiiiii i i i e 79

10.4.6 EDKII PEI Variable PPI....c.cciiiiiiiiiiiii i 80
10.4.6.1 SUMMAIY tiiiiiiiii i e e esaatee e s eaaanseeeaaannn 80

10.4.6.2 GUID .oiuiiiiiii i e s ree s s e seenes 80

10.4.6.3 Prototype.. i 80

10.4.6.4 Parameters . .cccviiiiiiiiii i e 80

10.4.6.5 DescCriplioncoiiuiiiiiiiiiiii 80

10.4.7 EDKII_PEI_VARIABLE_PPI.GetVariable ()...ccccovviviiiiiiiiiiiinnnnens 80
10.4.7.1 SUMMAIY 1ttt s ate s e et e raeeaneanes 80

10.4.7.2 Prototy Pl i i e 81

10.4.7.3 Parameters ...oovviiiiiiiiiii i e 81

10.4.7.4 DesCriplion ...oiiiiiiiiiiiiii i 81

10.4.7.5 Return Valuescceviiiiiiiiiiiiii i ee s 81

10.4.8 EDKII_PEI_VARIABLE_PPI.GetNextVariableName () 82
10.4.8.1 SUMMAIY tiiiiiiiiie ittt e s esaaaee e s eaaansaeeaaanns 82

10.4.8.2 Prototype. ..o 82

10.4.8.3 Parameters ..ooviiiiiiiiii i 82

10.4.8.4 DesCription .oiiiiieiiiiiiiii i r s e n e aaaas 82

10.4.8.5 Return ValuEscivviiiiiiiiiiiiiiii e enna e 83

10.4.9 EDKII_PEI_VARIABLE_PPI.SetVariable () ...c.coviviiiiiiiiiiiieannens 83
10.4.9.1 SUMMAIY tiuiiiiiiiiiiei e aae s e aaaeannanes 83

10.4.9.2 ProtOty Pl it e e 83

10.4.9.3 Parameters ..ooviiiiiiiii i i 83

10.4.9.4 DesCriplion ..ooviiiiiiiiiiii i 84

10.4.9.5 Return Valuescceviiiiiiiiiiiiii i ee s 84

10.4.10 EDKII_PEI_VARIABLE_PPI.QueryVariableInfo ()......ccocevieinennnns 85

B O 0 e Y U o Y = S 85

10.4.10. 2 PrototyPe. e 85

10.4.10.3 Parameters ..oouii i e 85

10.4.10.4 DesCriplion ..oviiieiiiiiii e 85
10.4.10.5RetuUrN ValuEsoiviiiiiiii i e 85

10.4.11 FSP Error Information......ccoviiiiiiii e 86
10.4.11.1 SUMMANY 1ttt sats s sassaeans 86

0 I A € U 1 1 2P 86

10.4.11. 3 PrototyPe. e 86

10.4.11.4 Parameters oo e 86
10.4.11.5DeSCriplion .ooviiiei i 86

10.4.12 FSP DeEbUQG MESSAGES . euueruenenenieaeeaeaeanesneanaaeaanaanraeaeaneanannans 87

11.0 FSP OUtPUL...ciciiiirsrnseme s s s s s s ssanssanssanssnnssnnsannsnnssnnsnnsnnnssnnen 88
11.1 FSP_RESERVED_MEMORY_RESOURCE_HOB.......cciiiiiiiiiiiiiiiie i neaaen 88
11.2 FSP_NON_VOLATILE_STORAGE_HOB2ciiiiiiiiiiieiie s sneeneaaens 88
11.3 FSP_NON_VOLATILE_STORAGE_HOBctiiiiiiiii i i it neaaneas 90
11.4 FSP_BOOTLOADER_TOLUM_HOBciiiiiiiiii i it eeeaeeaaeennanneannens 91
11.5 EFI_PEI_GRAPHICS_INFO_HOB....cciiiiiiiiiiiiiiii i eneaneaaneas 91
11.6 EFI_PEI_GRAPHICS_DEVICE_INFO_HOBciitiiiiiiiiiiiiiiesiesieeneaaens 92
11.7 FSP_ERROR_INFO_HOB.. .ttt i ei st et et e st s e e e aee s neanneaaneas 92
11.8 FSP_SMM_BOOTLOADER_FV_CONTEXT_HOBccviiiiiiiiiiiiiieciieneaaens 93
12.0 Other Host Bootloader Considerationsccvecrvemmsemmsnssanssnssasssnsssnssanssnnsas 95
072 X G = P 95
12.2 BUS ENUMEration .o e 95
G Y = ol B | Y 95
Appendix A Data StructUres........ccicciiiiiiirire s s s s s s s s r s na s a s aamanannannns 96

6 736809

A.l 210 1 2 11 5 96
PIBOOTMOE. N ..uiiiiii i 96
A.2 g IS I L0 P 96
UefiBaseTyPe. N o e 96
L0 1] o=) B o Yo PP 97
A3 EFI_PEI_GRAPHICS_INFO_HOB....ciiiiiiiiiiiiie e e e ee e rneenenaenens 97
GraphicsINfOHOD. ... 97
A.4 EFI_PEI_GRAPHICS_DEVICE_INFO_HOBcccviiiiiiiiiiiiiiiene e 98
GraphicSINfOHOD. N . .uii i e 98
A.5 g S 1 P 98
Base.h 98
A.6 EFL_MEMORY _TYPE .ttt e e e e e 98
UefiMUIIPhase. h. .. e e 98
A.7 (=T aTe IO i i =1 o Yol Qi ([=) P 99
PiHob.h 99
A.8 Firmware Volume and Firmware Filesystem......c.ccooiiiiiiiiiiiiiiieiii e 102
PiFirmwareVolume. N ... e 102
PiFirmWareFilE. No ittt 104
A.9 (D1 o8 Lo I = o o]l Y T P 106
DebUgLIbD. N c 106
F N O T V=T o | o @0 o [T N = PP 107
A.11 EFI_STATUS_CODE_STRING_DATA. ..t re e e e 108
APPENAiX B ACKONY IS 1uitiuaautianstrssnmrsssmrsssssrssssssssssssssmsssssssssssssssssssssssssssssssssssssssannnnsnn 109
Figures
Figure 1. FSP Component Logical ViEeW.....cooiiiiiiiiiiiic s eeaaes 15
Figure 2. FSP Component Layout VIieWooviiiiiiiiiiii e 17
Figure 3. FSP Component Headerscouviiiiiiiiiiiiini e e 23
Figure 4. API Mode BOOE FIOW ..uuiiiiiiiiiiie i s e et e e aee s st e e ane e saneeaaneeaas 33
Figure 5. Dispatch Mode BOOt FIOW ...uiviiiiiiiiiiiiii i et aae e eanes 37
T LU = ST T V7= 44
Figure 7. FspMemorylnit() Variable Services Invocation Sequence 53
Figure 8. FspSiliconInit() Variable Services Invocation Sequence....................... 54
Figure 9. Dispatch Mode DeSigN ...uiuviiriiiiiiiiiiiiisie i se e saraaesaresaneaneannes 74
Tables
Table 1. FSP_INFO_HEADER ..ottt e e e e e e e e e e e e neneeneas 18
Table 2. FSP_INFO_EXTENDED_HEADER.......cciiiiiiiiiiiii e 22
736809 7

intel

Table 3. FSPP — PatchData ENCOAINGcivviiiiiiiiiiiiii it neaaaesaeennnennes 24
Table 4. UPD Standard Fields.o e e e aeaeaeas 27
Table 5. EFI_STATUS_CODE_TYPE to MIPI_SYST_SEVERITY Mapping.....cccvveeeerareernnnenns 48
Table 6. Return Values - FspEventHandler()coovviiiiiiii i i einee e 51
Table 7. List of FSP Variable Services.......cociviiiiiiiiiiiiiii e 52
Table 8. Return Values — GetVariable Service ..o 55
Table 9. Return Values — GetNextVariableName Service...........ocovviiiiiiiiinnnn, 57
Table 10. Return Values — SetVariable Service........ovviiiiiiiiiiiiiii 58
Table 11. Return Values — QueryVariableInfo Servicecccoviiiiiiiiiiiiiiiiiiiinenn, 60
Table 12. Return Values - TempRamInit() APTc.oeiiiiiiii e 62
Table 13. Return Values - FspMemoryInit() APIL......ccoiiiiiiiiiiiiie e 63
Table 14. Return Values - TempRamEXit() APL....ccoiiiiiiiiiiiiii i iae e 64
Table 15. Return Values — FspSiliconInit() APciiiiiiiiiiiiiiiii i ccee e 66
Table 16. Return Values — FspMultiPhaseSiInit() API.......cccoiiiiiiiiiiiiiiiieeeaens 69
Table 17. Return Values - FspSmmINit() APLoriiiiiii e 71
Table 18. Return Values — NotifyPhase() API ..o 72
Table 19. Return Values - TempRamEXit() PPl ...cccviiiiiiiii i eeeee 78
Table 20. Return Values - GetVariable() ...coviiiiiiiiii e 81
Table 21. Return Values - GetNextVariableName()ccccviiiiiiiiiiiiiiiieeeee 83
Table 22. Return Values - SetVariable() ... 84
Table 23. Return Values - QueryVariableInfo()....ccovviiiiiiiiiiii i eiaeas 85
8 736809

intel

Revision History

Revision Date

Revision
Number

Description

July 2024

2.5

e FSP_INFO_HEADER changes
— Updated SpecVersion from 0x24 to 0x25
— Updated HeaderRevision from 7 to 8

— Defined bit 4 in ImageAttribute to indicate support for
Configurable FSP TemporaryRamSize.

e Updated FSPT_ARCH2_UPD
— Updated Revision from 2 to 3

— Added FspTemporaryRamSize

December 2022

2.4 Errata A

¢ Fixed HeaderLength field in FSP_INFO_HEADER

August 2022

2.4

e Based on FSP EAS v2.3.

e FSP_INFO_HEADER changes
— Updated SpecVersion from 0x23 to 0x24
— Updated HeaderRevision from 6 to 7

— Defined bit 2 in ImageAttribute to indicate support for
64-bit interfaces.

e Extended FSP API calling convention to support both 32-bit and
64-bit interfaces.

e Updated FSP status code and OEM status code definition to
support both 32-bit and 64-bit interfaces.

e Added FSP-I SMM component
o Added FspMultiPhaseMemInit() API
o Added Variable Services interface

July 2021

2.3

e Based on FSP EAS v2.2 - Backward compatibility is retained.
e FSP_INFO_HEADER changes

— Updated SpecVersion from 0x22 to 0x23

— Updated HeaderRevision from 5 to 6

— Added ExtendedImageRevision
e Added FSP_NON_VOLATILE_STORAGE_HOB2

May 2020

2.2

e Based on FSP EAS v2.1 - Backward compatibility is retained.

e Added multi-phase silicon initialization to increase the
modularity of the FspSiliconInit() API.

e Added FSP event handlers.
o Added FspMultiPhaseSiInit() API
e FSP_INFO_HEADER changes
— Updated SpecVersion from 0x21 to 0x22
— Updated HeaderRevision from 4 to 5
— Added FspMultiPhaseSiInitEntryOffset
e Added FSPT_ARCH_UPD
— Added FspDebugHandler
¢ FSPM_ARCH_UPD changes
— Added FspEventHandler

736809

intel.

Revision Date

Revision
Number

Description

e Added FSPS_ARCH_UPD

10

8§

736809

. t I
In e ® Introduction

1.0 Introduction

1.1 Purpose

The purpose of this document is to describe the external architecture and
interfaces provided in the Intel® Firmware Support Package (FSP). Implementation
specific details are outside the scope of this document. Refer to Integration Guide
for details.

1.2 Intended Audience

This document is targeted at all platform and system developers who need to
generateor consume FSP binaries in their bootloader solutions. This includes but is
not limited to: System firmware or UEFI firmware or BIOS developers, bootloader
developers, system integrators, as well as end users.

1.3 Related Documents

e Intel® FSP EAS version 2.4: https://cdrdv2-
public.intel.com/736809/736809 FSP EAS v2.4 Errata A.pdf

e Boot Specification File (BSF) Specification: https://software.intel.com/en-
us/download/boot-setting-file-specification-release-10

e Unified Extensible Firmware Interface (UEFI) Specification:
http://www.uefi.org/specifications

e Platform Initialization (PI) Specification v1.7 (Errata A):
https://uefi.org/sites/default/files/resources/PI Spec 1 7 A final Mayl.pdf

¢ Binary Configuration Tool (BCT) for Intel® Firmware Support Package — available
at: http://www.intel.com/fsp

¢ Intel’ Firmware Module Management Tool (Intel® FMMT) — available at:
https://software.intel.com/en-us/download/intel-firmware-module-management-
tool-intel-fmmt-r22

e A Tour Beyond BIOS Launching Standalone SMM drivers in the PEI Phase using
theEFI Developer Kit II (May 2015):
https://www.intel.com/content/dam/develop/public/us/en/documents/a-tour-
beyond-bios-launching-standalone-smm-drivers-in-pei-using-the-efi-developer-
kit-ii.pdf

8§

736809 11

https://cdrdv2-public.intel.com/736809/736809_FSP_EAS_v2.4_Errata_A.pdf
https://cdrdv2-public.intel.com/736809/736809_FSP_EAS_v2.4_Errata_A.pdf
https://software.intel.com/en-us/download/boot-setting-file-specification-release-10
https://software.intel.com/en-us/download/boot-setting-file-specification-release-10
http://www.uefi.org/specifications
https://uefi.org/sites/default/files/resources/PI_Spec_1_7_A_final_May1.pdf
http://www.intel.com/fsp
https://software.intel.com/en-us/download/intel-firmware-module-management-tool-intel-fmmt-r22
https://software.intel.com/en-us/download/intel-firmware-module-management-tool-intel-fmmt-r22
https://www.intel.com/content/dam/develop/public/us/en/documents/a-tour-beyond-bios-launching-standalone-smm-drivers-in-pei-using-the-efi-developer-kit-ii.pdf
https://www.intel.com/content/dam/develop/public/us/en/documents/a-tour-beyond-bios-launching-standalone-smm-drivers-in-pei-using-the-efi-developer-kit-ii.pdf
https://www.intel.com/content/dam/develop/public/us/en/documents/a-tour-beyond-bios-launching-standalone-smm-drivers-in-pei-using-the-efi-developer-kit-ii.pdf

FSP Overview

2.0

intel

FSP Overview

2.1

2.2

2.2.1

12

Design Philosophy

Intel recognizes that it holds the key programming information that is crucial for
initializing Intel silicon. Some key programming information is treated as
proprietaryinformation and may only be available with legal agreements.

Intel® Firmware Support Package (Intel® FSP) is a binary distribution of necessary Intel
silicon initialization code. The first design goal of FSP is to provide ready access to
thekey programming information that is not publicly available. The second design
goal is to abstract the complexities of Intel Silicon initialization and expose a limited
number of well-defined interfaces.

A fundamental design philosophy is to provide the ubiquitously required silicon
initialization code. As such, FSP will often provide only a subset of the product’s
features.

Technical Overview

The FSP provides chipset and processor initialization in a format that can easily be
incorporated into many existing bootloaders.

The FSP performs the necessary initialization steps as documented in the BIOS
WritersGuide (BWG) / BIOS Specification including initialization of the processor,
memory controller, chipset, and certain bus interfaces, if necessary.

FSP is not a stand-alone bootloader; therefore, it needs to be integrated into a
bootloader to carry out other functions such as:

e Initializing non-Intel components
e Bus enumeration and device discovery

e Industry standards

Data Structure Descriptions
All data structures defined in this specification conform to the “little endian” byte

order(i.e., the low-order byte of a multibyte data items in memory is at the lowest
address), while the high-order byte is at the highest address.

All reserved fields defined in this specification must be zero unless stated otherwise.

8§

736809

In e ® FSP Integration

3.0

FSP Integration

3.1

736809

The FSP binary can be integrated into many different bootloaders and embedded
operating systems.

Below are some required steps for the integration:

e Customizing:

The FSP has configuration parameters that can be customized to meet the needs
of the target platform.

e Rebasing:
The FSP is not Position Independent Code (PIC) and each FSP component has to

be rebased if it is placed at a location which is different from the preferred base
address specified during the FSP build.

e Placing:

Once the FSP binary is ready for integration, the bootloader needs to be
modified to place this FSP binary at the specific base address identified above.

e Interfacing:

The bootloader needs to add code to setup the operating environment for the
FSP, call the FSP with the correct parameters, and parse the FSP output to
retrieve the necessary information returned by the FSP.

FSP Distribution Package

The FSP distribution package contains the following:
e FSP Binary

e Integration Guide

e Data structure definitions

e Boot Settings File (BSF)

The Binary Configuration Tool (BCT) can be used to configure the FSP. BCT is
available as a separate package.

8§

13

. t I
FSP Binary Format I n e ®

4.0 FSP Binary Format

The FSP binary follows the UEFI Platform Initialization Firmware Volume
Specification format. The Firmware Volume (FV) format is described in the Platform
Initialization (PI) Specification - Volume 3: Shared Architectural Elements
specification as referenced in Section 1.3 Related Documents.

Firmware Volume (FV) is a way to organize/structure binary components and
enables a standardized way to parse the binary and handle the individual binary
components that make up the Firmware Volume (FV).

4.1 FSP Components

The FSP will have several components each containing one or more firmware
volumes (FV). Each component provides a phase of initialization as below

4.1.1 FSP-T: Temporary RAM Initialization Phase

Primary purpose of this phase is to initialize the Temporary RAM along with any other early
initialization.

This phase consists of below FSP API

e TempRamInit()

4.1.2 FSP-M: Memory Initialization Phase

Primary purpose of this phase is to initialize the permanent memory along with any
other early silicon initialization.

This phase consists of below FSP API
e FspMemorylnit()

e FspMultiPhaseMemInit()

e TempRamExit()

4.1.3 FSP-S: Silicon Initialization Phase

Primary purpose of this phase is to complete the silicon initialization including CPU
andIO controller initialization.

This phase consists of below FSP API
e FspSiliconInit()
e FspMultiPhaseSilnit()

¢ NotifyPhase()-Post PCI bus enumeration, Ready To Boot and End of Firmware.

14 736809

. t I
I n e ® FSP Binary Format

4.1.4 FSP-1I: SMM Initialization Phase

An FSP may include an FSP-I component. This phase will initialize SMM and provide
OSruntime silicon services; including Reliability, Availability, and Serviceability
(RAS) features implemented by the CPU.

This phase consists of below FSP API
e FspSmmiInit()

Figure 1. FSP Component Logical View

736809

15

. t I
FSP Binary Format I n e ®

4.1.5

4.2

4.2.1

4.2.2

16

OEM Components (FSP-0)

An FSP may include optional OEM components that provide OEM extensibility. This
component shall have an FSP_INFO_HEADER with component type in Image
attributefield set to FSP-O.

FSP Component Identification

Each FSP component will have an FSP_INFO_HEADER as the first FFS file in the
firstFirmware Volume (FV). The FSP_INFO_HEADER will have an attribute field
that can beused to identify that component as an FSP-T / FSP-M / FSP-S / FSP-1 /
FSP-O component.

There can be only one instance of the FSP-T / FSP-M / FSP-S / FSP-1in an FSP
binary,while multiple instances of the FSP-O component are valid.

FSP Image ID and Revision

The FSP_INFO_HEADER structure inside each FSP component also contains an
Imageldentifier field and an Image Revision field that provide the identification
and revision information for the FSP binary. It is important to verify these fields
while integrating theFSP as the FSP configuration data could change over different
FSP Image identifiers and revisions.

The FSP Image Identifier field should be the same for all the FSP components within
the same FSP binary.
FSP Component Layout

All the FSP components are packaged back-to-back within the FSP and the size of
eachcomponent is available in the component’s FSP_INFO_HEADER structure.

Furthermore, if there are multiple Firmware Volume(s) inside the FSP component,

theyare also packaged back-to-back. These components can be packaged in any
order inside the FSP binary.

736809

intel

Figure 2. FSP Component Layout View

736809

FSP Top

FSP Binary Format

FSP-T

Temp RAM Phase Data

FSP_INFO_HEADER - T

8§

FSP Base

17

. t I
FSP Information Tables In e ®

5.0 FSP Information Tables

Each FSP component has an FSP_INFO_HEADER table and may optionally have
additional tables as described below.

All FSP tables must have a 4 bytes aligned base address and a size that is a multiple
of4 bytes.

All FSP tables must be placed back-to-back.
All FSP tables must begin with a DWORD signature followed by a DWORD length field.

A generic table search algorithm for additional tables can be implemented with a
signature search algorithm until a terminator signature ‘FSPP’ is found.

5.1 FSP_INFO_HEADER

The FSP_INFO_HEADER structure conveys the information required by the
bootloader to interface with the FSP binary.

Table 1. FSP_INFO_HEADER

Size
(?f‘f,::t in Field Description
Bytes
0 4 Signature ‘FSPH’. Signature for the FSP_INFO_HEADER.
Length of the header in bytes. The current
4 4 HeaderlLength valuefor this field is 88.
8 2 Reservedl Reserved bytes for future.

Indicates compliance with a revision of this
specification in the BCD format.

10 1 SpecVersion 3 : 0 - Minor Version
7 : 4 - Major Version
For revision v2.5 the value will be 0x25.

Revision of the header. The current value for

11 1 HeaderRevision this field is 8.

Revision of the FSP binary.
Major.Minor.Revision.Build

If FSP HeaderRevision is <= 5, the
ImageRevision can be decoded as follows:

7 : 0 - Build Number
15 : 8 - Revision

23 : 16 - Minor Version
31 : 24 - Major Version

12 4 ImageRevision

18 736809

intel

FSP Information Tables

Byte
Offset

Size

Bytes

Field

Description

If FSP HeaderRevision is >= 6, ImageRevision
specifies the low-order bytes of the build
number and revision while
ExtendedImageRevision specifies the high-
order bytes of the build number and revision.
7 : 0 - Low Byte of Build Number

15 : 8 - Low Byte of Revision

23 : 16 - Minor Version

31 : 24 - Major Version

16

Imageld

8 ASCII character byte signature string that
willhelp match the FSP binary to a supported
hardware configuration. Bootloader should not
assume null-terminated.

24

ImageSize

Size of this component in bytes.

28

ImageBase

Preferred base address for this component. If
the FSP component is located at the address
different from the preferred address, the FSP
component needs to be rebased.

32

ImageAttribute

Attributes of the FSP binary. The value of this

field must be consistent across the FSP-T,

FSP- M and FSP-S components within a FSP

image.

e Bit 0: Graphics Support — Set to 1 when FSP
supports enabling Graphics Display.

e Bit 1: Dispatch Mode Support — Set to 1
when FSP supports the optional Dispatch
Mode API defined in Section 7.2 and 10.0. This
bit is onlyvalid if FSP HeaderRevision is >= 4.

Bit 2: 64-bit Mode Support - Set to 1 to
indicate FSP supports 64-bit long mode
interfaces. Set to 0 to indicate FSP supports
32-bit mode interfaces. This bit is only valid if
FSP HeaderRevision is >= 7.

Bit 3: FSP Variable Services Support — Set
to 1to indicate FSP utilizes the FSP Variable
Services defined in Section 9.6 to store non-
volatile data. This bit is only valid if FSP
HeaderRevision is >= 7.

Bit 4: Configurable TemporaryRamSize
support — Set to 1 to indicate FSP will
support configurability of TempRamSize via
FspTemporaryRamSize UPD in
FSPT_ARCH2_UPD, defined in Section 6.1.1.
Set to 0 indicates FSP will utilize the default
TempRamSize that is part of FSP binary.
This bit is only valid if FSP HeaderRevision is
>= 8.

e Bits 15:5 — Reserved

34

ComponentAttribute

Attributes of the FSP Component

736809

19

FSP Information Tables

20

intel

Byte
Offset

Size

Bytes

Field

Description

e Bit 0 — Build Type
0 - Debug Build
1 - Release Build
e Bit 1 — Release Type
0 -Test Release
1 -Official Release
e Bit 11:2 - Reserved
e Bits 15:12 - Component Type
0000 - Reserved
0001 - FSP-T
0010 - FSP-M
0011 - FSP-S
0100 - FSP-I (FSP SMM)
0101 to 0111 - Reserved
1000 - FSP-O
1001 to 1111 - Reserved

36

CfgRegionOffset

Offset of the UPD configuration region. This
offset is relative to the respective FSP
Component base address.

Please refer to Section 6.0 for details.

40

CfgRegionSize

Size of the UPD configuration region.
Please refer to Section 6.0 for details.

44

Reserved2

This value must be 0x00000000 if the FSP
HeaderRevision is >=3.

48

TempRamInitEntryOf
fset

Offset for the API to setup a temporary stack
till the memory is initialized.

If the value is set to 0x00000000, then this
API is not available in this component.

52

Reserved3

This value must be 0x00000000 if the FSP
HeaderRevision is >=3.

56

NotifyPhaseEntryOff
set

Offset for the API to inform the FSP about the
different stages in the boot process.

If the value is set to 0x00000000, then this
API is not available in this component.

60

FspMemoryInitEntry
Offset

Offset for the API to initialize the Memory.

If the value is set to 0x00000000, then this
API is not available in this component.

64

TempRamEXxitEntryO
ffset

Offset for the API to tear down the temporary
memory.

If the value is set to 0x00000000, then this
API is not available in this component.

68

FspSiliconInitEntryOf
fset

Offset for the API to initialize the processor
and chipset.

736809

intel

FSP Information Tables

Byte
Offset

Size

Bytes

Field

Description

If the value is set to 0x00000000, then this
API is not available in this component.

72

FspMultiPhaseSiInitE
ntryOffset

Offset for the API for the Multi-Phase
processor and chipset initialization defined in
Section 9.11. This value is only valid if FSP
HeaderRevision is >= 5.

If the value is set to 0x00000000, then this
API is not available in this component.

76

ExtendedImageRevis
ion

This value is only valid if FSP HeaderRevision is
>=6.

ExtendedImageRevision specifies the high-
order byte of the revision and build number in
the FSP binary revision.

7 : 0 - High Byte of Build Number
15 : 8 - High Byte of Revision

The FSP binary build number can be decoded
as follows:

Build Number = ExtendedImageRevision[7:0]
<< 8) | ImageRevision[7:0]

Revision = (ExtendedImageRevision[15:8] << 8)
| ImageRevision[15:8]

Minor Version = ImageRevision[23:16]
Major Version = ImageRevision[31:24]

78

Reserved4

80

FspMultiPhaseMemI
nitEntryOffset

Offset for the API for the Multi-Phase memory
initialization defined in Section 9.11. This
value is only valid if FSP HeaderRevision is
>= 7.

If the value is set to 0x00000000, then this
API is not available in this component.

84

FspSmmInitEntryOff
set

Offset for the API to initialize SMM defined in
Section 9.12. This value is only valid if FSP
HeaderRevision is >= 7.

If the value is set to 0x00000000, then this
API is not available in this component.

5.2 FSP_INFO_EXTENDED_HEADER

The FSP_INFO_EXTENDED_HEADER structure conveys additional information
aboutthe FSP binary component. This allows FSP producers to provide additional

information about the FSP instantiation.

736809

21

FSP Information Tables

intel

Table 2. FSP_INFO_EXTENDED_HEADER

5.3

22

Size
(?f‘f,stgt in Field Description
Bytes
. ‘FSPE’. Signature for the
0 4 Signature FSP_INFO_EXTENDED_HEADER
Length of the table in bytes, including all
4 4 Length additional FSP producer defined data.
8 1 Revision FSP producer defined revision of the table.
9 1 Reserved Reserved for future use.
10 6 FspProducerld FSP producer identification string.
FSP producer implementation revision humber.
16 4 FspProducerRevision Larger numbers are assumed to be newer
revisions.
20 4 FspProducerDataSize Size of the FSP producer defined data (n) in
bytes.
24 n FSP producer defined data of size (n) defined
by FspProducerDataSize.

Locating FSP_INFO_HEADER

The FSP_INFO_HEADER structure is stored in a firmware file, called the
FSP_INFO_HEADER file and is placed as the first firmware file within each of the
FSPcomponent’s first Firmware Volume (FV). All firmware files will have a GUID
that can beused to identify the files, including the FSP_INFO_HEADER file. The
FSP_INFO_HEADER file GUID is FSP_FFS_INFORMATION_FILE_GUID

#define FSP_FFS INFORMATION FILE GUID \
{ 0x912740be, 0x2284, 0x4734, { 0xb9, 0x71, 0x84, 0xbO,
0x27,0x35, 0x3f, 0x0c }};

The bootloader can find the offset of the FSP_INFO_HEADER within the FSP
component’s first Firmware Volume (FV) by the following steps described below:

e Use EFI_FIRMWARE_VOLUME_HEADER to parse the FSP FV header and skip the
standard and extended FV header.

e The EFI_FFS_FILE_HEADER with the FSP_FFS_INFORMATION_FILE_GUID islocated at
the 8-byte aligned offset following the FV header.

e The EFI_RAW_SECTION header follows the FFS File Header.

e Immediately following the EFI_RAW_SECTION header is the raw data. The
format of this data is defined in the FSP_INFO_HEADER and additional header
structures.

A pictorial representation of the data structures that is parsed in the above flow is
provided in below figure.

736809

intel.

FSP Information Tables

Figure 3. FSP Component Headers

5.4

736809

Firmware Volume

Header
Firmware File RAW Section
Header Header
Firmware Volume
Extended Header
i Fil RAW Data has
— irmware File
= : the FSP INFO
T 8 Byte Alignment Section (Type Header
g RAW)
=)
2 Firmware File 1
o
= =
=
E
=

Firmware File 2

Firmware File System (FFS)

More Firmware
Files

FSP Description File

An FSP component may optionally include an FSP description file. This file will
provideinformation about the FSP including information about different silicon
revisions theFSP supports. The contents of the FSP description file must be an ASCII
encoded text string.

The file, if present, must have the following file GUID and be included in the FDF
file asshown below.

#define FSP_FFS_INFORMATION FILE GUID \
{ 0xd9093578, 0x08eb, 0x44df, { 0xb9, 0xd8, 0xd0, Oxcl,
0xd3, 0xd5, 0x5d, 0x96 }};

#

Description file

23

. t I
FSP Information Tables In e ®

#
FILE RAW = D9093578-08EB-44DF-B9D8-D0C1D3D55D9%6 {
SECTION RAW = FspDescription/FspDescription.txt

5.5 FSP Patch Table (FSPP)

FSP Patch Table contains offsets inside the FSP binary which store absolute
addresses based on the FSP base. When the FSP is rebased the offsets listed in this
table needs tobe patched accordingly.

A PatchEntryNum of 0 is valid and indicates that there are no entries in the patch
tableand should be handled as a valid patch table by the rebasing software.

typedef struct {

UINT32 Signature; ///< FSP Patch Table Signature “FSPP”
UINT16 Length; ///< Size including the PatchData
UINT8 Revision; ///< Revision is set to 0x01

UINT8 Reserved;

UINT32 PatchEntryNum; ///< Number of entries to Patch
UINT32 PatchDatal]; ///< Patch Data

} FSP PATCH TABLE;

Table 3. FSPP - PatchData Encoding

BIT [23:00] | Image OFFSET to patch

Patch type
0000: Patch DWORD at OFFSET with the delta of the new and old base.
BIT [27:24] NewValue = OldValue + (NewBase - OldBase)

1111: Same as 0000
Others: Reserved

BIT [28:30] | Reserved

0: The FSP image offset to patch is determined by Bits[23:0]
1: The FSP image offset to patch is calculated by (ImageSize -
BIT [31] (0x1000000 - Bits[23:0]))

If the FSP image offset to patch is greater than the ImageSize in the
FSP_INFO_HEADER, then this patch entry should be ignored.

5.5.1 Example

Let's assume the FSP image size is 0x38000. And we need to rebase the FSP base
fromOxFFFC0000 to OXFFF00000.

Below is an example of the typical implementation of the FSP_PATCH_TABLE:

FSP PATCH TABLE mFspPatchTable =
{

24 736809

intel

736809

0x50505346,
1o,
0x01,
0x00,
1 14
{
OxFFFFFFFC
}
}s

//7/<
//7/<
//7/<
//7/<
//7/<

/1<

FSP Information Tables

Signature (FSPP)

Length;

Revision;

Reserved;

PatchEntryNum;

Patch FVBASE at end of FV

Looking closer at the patch table entries:

OxFFFFFFFC,

The image offset to patch in the FSP image is indicated by BIT[23:0], OXFFFFFC.
SinceBIT[31] is 1, the actual FSP image offset to patch should be:

ImageSize - (0x1000000 - OxFFFFFC) = 0x38000 - 4 = 0x37FFC

VAN

Patch FVBASE at end of FV

If the DWORD at offset 0x37FFC in the original FSP image is OxFFFC0000, then the
newvalue should be:

OldValue + (NewBase - OldBase) = OxFFFC0000 + (OxFFF00000 -

OxFFFCO000) =0xFFFO0000

Thus, the DWORD at FSP image offset 0x37FFC should be patched to xFFFO0000

afterthe rebasing.

88

25

FSP Configuration Data I n te I ®

6.0

FSP Configuration Data

6.1

26

Each FSP module contains a configurable data region which can be used by the FSP
during initialization. This configuration region is a data structure called the
Updateable Product Data (UPD) and will contain the default parameters for FSP
initialization. The UPD data structure is only used by the FSP when the FSP is being
invoked using the APImode interface defined in Section 8.0.

When the FSP is invoked according to the dispatch mode interface defined in
Section 10.0, the UPD configuration region and the UPD data structure are not
used by the FSP.In dispatch mode, the PPI database and PCD database are shared
between the boot loader and the FSP. Because they are shared, the UPD
configuration region is not needed to provide a mechanism to pass configuration
data from the bootloader to the FSP. Instead, configuration data is communicated
to the FSP using PCD and PPI. The bootloader may utilize the UPD to influence PCD
and PPI contents provided to the FSP in dispatch mode.

The UPD parameters can be statically customized using a separate Binary
ConfigurationTool (BCT). There will be a Boot Setting File (BSF) provided along
with FSP binary to describe the configuration options within the FSP. This file
contains the detailed information on all configurable options, including description,
help information, valid value range and the default value.

The UPD data can also be dynamically overridden by the bootloader during runtime
inaddition to static configuration. Platform limitations like lack of updateable
memory before calling TempRamInit() API may pose restrictions on the FSP-T data
runtime update. Any such restrictions will be documented in the Integration Guide.

The UPD data is organized as a structure. The TempRamInit(), FspMemorylInit() and
FspSiliconInit() API parameters include a pointer which can be initialized to point to
the UPD data structure. If this pointer is initialized to NULL when calling these
APIs’, the FSP will use the default built-in UPD configuration data in the respective
FSP components. However, if the bootloader needs to update any of the UPD
parameters, it is recommended to copy the whole UPD structure from the FSP
component to memory, update the parameters and initialize the UPD pointer to
the address of the updated UPD structure. The FSP API will then use this data
structure instead of the default configuration region data for platform initialization.
The UPD data structure is a project specific structure. Please refer to the
Integration Guide for the details of this structure.

The UPD structure has some standard fields followed by platform specific

parametersand the UPD structure definition will be provided as part of the FSP
distribution package.

UPD Standard Fields

The first few fields of the UPD Region are standard for all FSP implementations as
documented below.

736809

- t I
I n e ® FSP Configuration Data

Table 4. UPD Standard Fields

6.1.1

736809

Offset Field

UPD Region Signature. The signature will be
“XXXXXX_T” for FSP-T
"XXXXXX_M" for FSP-M

0x00 - 0x07
"XXXXXX_S"” for FSP-S
UXXXXXX_I" for FSP-1
Where XXXXXX is a unique signature
0x08 Revision of the Data structure
0x09 - Ox1F Reserved[23]
0x20 - n Platform Specific Parameters, where the n is equal to

(FSP_INFO_HEADER.CfgRegionSize - 1)

typedef struct {

UINT64 Signature;
UINTS Revision;
UINTS8 Reserved[23];

} FSP_UPD HEADER;

FSP-T UPD Structure

The UPD data structure definition for the FSP-T component will be provided as part
ofthe FSP release package and documented in the integration guide as well.

typedef struct {

FSP _UPD HEADER UpdHeader;
FSPT ARCH2 UPD FsptArchUpd;
/**

Platform specific parameters

**/

} FSPT UPD;

typedef struct {

UINTS Revision;
UINTS Reserved[3];
UINT32 Length;

FSP DEBUG HANDLER FspDebugHandler;
UINT8 Reservedl [20];
} FSPT ARCH UPD;

typedef struct {

UINTS Revision;
UINTS8 Reserved[3];
UINT32 Length;

27

FSP Configuration Data

6.1.2

28

intel

EFI PHYSICAL ADDRESS FspDebugHandler;
UINT32 FspTemporaryRamSize;

UINT8 Reservedl[12];
} FSPT ARCH2 UPD;

Revision

Revision of the structure. If this value is 1 then the
structure definition shall be FSPT_ARCH_UPD. If this
value is >=2 then the structure definition shall be
FSPT_ARCH2_UPD. All FSP implementations
compliant to v2.4 or newer version of this specification
shall use FSPT_ARCH2_UPD regardless of whether 32-
bit x86 or 64-bit x64 mode is used.
FspTemporaryRamSize is added to the structure
FSPT_ARCH2_UPD staring from v2.5 of this
specification.

The current value of Revision is 3 for this version of the
specification.

Length

Length of the structure in bytes. The current value for
thisfield is 32.

FspDebugHandler

Optional debug handler for the bootloader to receive
debug messages occurring during FSP execution. This
function shall have a signature matching
FSP_DEBUG_HANDLER. Refer to Section 9.5 for more
details.

FspTemporaryRamSize

If BIT4 in the ImageAttribute field of the
FSP_INFO_HEADER is set, bootloader can pass
temporary RAM size as input to FspTempRamInit() API.
Value passed by Bootloader shall not exceed the
maximum temporary Ram size defined in the
Integration Guide.

If BIT4 in the ImageAttribute field of the
FSP_INFO_HEADER is not set, bootloader must pass a
value of 0 or FSP defined default value as
FspTemporaryRamSize.

If bootloader passes a value of 0 as
FspTemporaryRamSize then FspTempRamlInit () API will
use FSP defined default value.

FSP-M UPD Structure

The UPD data structure definition for the FSP-M component will be provided as part
ofthe FSP release package and documented in the integration guide as well.

typedef struct {

FSP _UPD HEADER UpdHeader;
FSPM_ARCHZ_UPD FspmArchUpd;
/**

Platform specific parameters

**/

} FSPM_UPD;

736809

intel.

736809

typedef struct {

FSP Configuration Data

UINTS8 Revision;

UINTS Reserved[3];

VOID *NvsBufferPtr;

VOID *StackBase;

UINT32 StackSize;

UINT32 BootLoaderTolumSize;
UINT32 BootMode;

FSP_EVENT HANDLER FspEventHandler;
UINTS8 Reservedl [4];

} FSPM _ARCH UPD;

typedef struct {
UINTS

UINTS

UINT32

EFI PHYSICAL ADDRESS
EFI PHYSICAL ADDRESS
UINTG4

UINT32

UINT32

EFI PHYSICAL ADDRESS
UINTS8

} FSPM ARCH2 UPDj;

Revision;
Reserved[3]:;

Length;
NvsBufferPtr;
StackBase;
StackSize;
BootLoaderTolumSize;
BootMode;
FspEventHandler;
Reservedl[16];

Revision

Revision of the structure. If this value is 1 or 2 then
thestructure definition shall be FspM_ARCH_uPpD. If this
value is 3 then the structure definition shall be
FSPM_ARCH2_UPD. The current value of Revision is 3
for this version of the specification. All FSP
implementations compliant to v2.4 of this specification
shall use FSPM_ARCH2_UPD regardless of whether 32-
bit x86 or 64-bit x64 mode is used.

Length

Length of the structure in bytes. The current value for
this field is 64.

This value only exists if Revision >= 3.

NvsBufferPtr

This value is deprecated starting with v2.4 of this
specification and will be removed in an upcoming
version of this specification. If BIT3 (Variable
Support) in the ImageAttribute field of the
FSP_INFO_HEADER isset, then this value is unused and
must be set to NULL. In this case, the FSP shall use
the FSP variable services described in Section 9.6 instead.

Pointer to the non-volatile storage (NVS) data buffer.
If it is NULL it indicates the NVS data is not available.

Refer to Section 11.2 and 11.3 for more details.

29

E t I
FSP Configuration Data I n e ®

6.1.3

30

Pointer to the temporary RAM base address to be
consumed inside FspMemorylInit() API.

For FSP implementations compliant to v2.0 or v2.4 of
this specification, the temporary RAM is used to
establish a stack and a HOB heap. For FSP
implementations compliant to v2.1, v2.2, or v2.3 of
this specification, the temporary RAM is only used for
a HOB heap.

FSP implementations compliant to v2.1 through v2.3
of this specification will run on top of the stack
provided by the bootloader instead of establishing a
separate stack. Starting with v2.4 of this specification,
the behavior from v2.0 is restored and a separate
stack will be established.

StackBase

For FSP implementations compliant to v2.0 or v2.4 of
this specification, the temporary RAM size used to
establish a stack and HOB heap. Consumed by the
FspMemorylInit() API.

For FSP implementations compliant to v2.1 through
v2.3 of this specification, the temporary RAM size
used to establish a HOB heap inside the
FspMemorylInit() API. Starting with v2.4 of this
specification, the behavior from v2.0 is restored and a
separate stack will be established.

Refer to the Integration Guide for the minimum
required temporary RAM size.

StackSize

Size of memory to be reserved by FSP below "top of
BootloaderTolumSize low usable memory" for bootloader usage. Refer to
Section 11.4 for more details.

Current boot mode. Values are defined in Section 13.1
BootMode Appendix A — Data Structures. Refer to the Integration
Guide for supported boot modes.

Optional event handler for the bootloader to be
informed of events occurring during FSP execution.
FspEventHandler This function shall have a signature matching
FSP_EVENT HANDLER. Refer to Section 9.5 for moredetails.

This value is only valid if Revision is >= 2.

FSP-S UPD Structure

The UPD data structure definition for the FSP-S component will be provided as part
ofthe FSP release package and documented in the integration guide as well.

typedef struct {

FSP_UPD HEADER UpdHeader;
FSPS ARCH2 UPD FspsArchUpd;
/**
Platform specific parameters
**/

} FSPS UPD;

736809

intel

typedef struct {

FSP Configuration Data

UINTS8 Revision;

UINTS Reserved[3];

UINT32 Length;

FSP EVENT HANDLER FspEventHandler;

UINTS EnableMultiPhaseSiliconInit;

UINT8 Reservedl[19];
} FSPS ARCH UPD;

typedef struct {
UINTS

UINTS

UINT32

EFI PHYSICAL ADDRESS
UINTS

} FSPS ARCH2 UPD;

Revision;
Reserved[3]:;
Length;
FspEventHandler;
Reservedl[16];

Revision of the structure. If this value is 1 then the
structuredefinition shall be FSPS_ARCH_UPD. If this
value is 2 thenthe structure definition shall be
FSPS_ARCH2_UPD. The current value of Revision is 2

Revision for this version of the specification. All FSP
implementations compliant to v2.4 ofthis specification
shall use FSPS_ARCH2_UPD regardless of whether 32-
bit x86 or 64-bit x64 mode is used.
Length of the structure in bytes. The current value for
Length

thisfield is 32.

FspEventHandler

Optional event handler for the bootloader to be
informed ofevents occurring during FSP execution. This
function shall have a signature matching
FSP_EVENT_HANDLER. Refer to Section 9.5 for more
details.

EnableMultiPhaseSiliconInit

This value is deprecated and has been removed starting
with v2.4 of this specification. Multi-phase silicon
initialization is mandatory for all FSP implementations
compliant to v2.4 of this specification, see Section 9.11 for
further details.

For FSP implementations compliant to v2.2 through v2.3
of this specification, an FSP binary may optionally
implement multi-phase silicon initialization, see Section
9.11 for further details. This is only supported if the
FspMultiPhaseSilnitEntryOffset field in
FSP_INFO_HEADER is non-zero, see Section 5.1.1 for
further details.

To enable multi-phase silicon initialization, the
bootloader must set EnableMultiPhaseSiliconInit to a
non- zero value.

736809

31

. t I
FSP Configuration Data I n e ®

6.1.4

32

FSP-I UPD Structure

If the FSP includes the FSP-I component, the UPD data structure definition for it will
beprovided as part of the FSP release package and documented in the Integration
Guide.

typedef struct {

FSP UPD HEADER UpdHeader;
FSPI ARCH UPD FspiArchUpd;
/**
Platform specific parameters
**/

} FSPI _UPD;

typedef struct {

UINTS8 Revision;

UINTS8 Reserved[3];

UINT3 Length;

EFI PHYSICAL ADDRESS BootloaderSmmFvBaseAddress;
UINTo64 BootloaderSmmFvILength;

EFI PHYSICAL ADDRESS BootloaderSmmFvContextData;
UINT16 BootloaderSmmFvContextDatalLength;
UINTS8 Reservedl [30];

} FSPI_ARCH UPD;

Revision of the structure is 1 for this version of the

Revision e
specification.

Length of the structure in bytes. The current value

Length for this field is 64.

The physical memory-mapped base address of the

BootloaderSmmFvBaseAddress bootloader SMM firmware volume (FV).

The length in bytes of the bootloader SMM

BootloaderSmmFvLength firmware volume (FV).

The physical memory-mapped base address of the
bootloader SMM FV context data. This data is
BootloaderSmmFvContextData provided to bootloader SMM drivers through a HOB
by the FSP MM Foundation. Please see Section 11.8
for details.

The length in bytes of the bootloader SMM FV
context data. This data is provided to bootloader

BootloaderSmmFvContextDatalLength SMM drivers through a HOB by the FSP MM

Foundation. Please see Section 11.8 for details.

88§

736809

. t I
In e ® Boot Flow

7.0 Boot Flow

The FSP v2.1 specification defines two possible FSP boot flows. The first boot flow
isthe "API mode” boot flow. This boot flow is very similar to the boot flow defined in
the FSP v2.0 specification. This specification also defines the “dispatch mode” boot
flow. It is not required for a specific implementation of FSP to support the dispatch
mode bootflow. The API mode boot flow is mandatory for all FSP implementations.

FSP_INFO_HEADER indicates if dispatch mode is supported by the FSP.

7.1 API Mode Boot Flow

Figure 4. API Mode Boot Flow

z Reset System @
Reset Vector

Switch to 32 bit Mode Find FSP Header in FSP-S
call FspSiliconInit()

Find FSP Header in FSP-T
call TempRamlInit()
Setup Stack
Pre-Mem Init

Reset
Required?

call
FspMultiPhaseSiInit()
Find FSP Header in FSP-M
call FspMemoryInit() Yes

Reset O
Required?
Yes
Y

Reset Bus and Device Init
Required? call NotifyPhase() API (post PCI)

Boot Device Init
call NotifyPhase() API

(ReadyToBoot)
Call

FspMultiPhaseMemInit() Load OS / Payload

call NotifyPhase()
API (EndOfFirmware)
Y W handoff to O
SIS Reset FSP-I
Z Required? =

Find FSP Header in FSP-I
call FspSmmInit()
Migrate Temp Stack
call TempRamEXxit()

7.1.1 Boot Flow Description

e Bootloader starts executing from Reset Vector.
= Switches the mode to 32-bit mode.

736809 33

Boot Flow

34

intel

= If 64-bit mode support is indicated by
FSP_INFO_HEADER.ImageAttribute[2], switch to x64 long mode and execute
the remaining steps in this mode.
= Initializes the early platform as needed.
= Finds FSP-T and calls the TempRamInit() API. The bootloader also has the
option to initialize the temporary memory directly, in which case this step
and step 2 are skipped.

e FSP initializes temporary memory and returns from TempRamInit() API.

e Bootloader initializes the stack in temporary memory.
= Initializes the platform as needed.
= Finds FSP-M and calls the FspMemoryInit() API.

e FSP initializes memory and returns from FspMemorylInit() APL.

= If the FspMemorylInit() API returns the status code
FSP_STATUS VARIABLE REQUEST:

= The bootloader shall call the FspMultiPhaseMemInit() API with the
EnumMultiPhaseGetVariableRequestinfo parameter to get the details of the
requested non-volatile data access request.

= Bootloader shall perform the access request and return the results to the
FSP by calling the FspMultiPhaseMemInit() API with the
EnumMultiPhaseCompleteVariableRequest parameter.

= The call to the FspMultiPhaseMemInit() API with the
EnumMultiPhaseCompleteVariableRequest parameter could return
FSP STATUS VARIABLE REQUEST again. In this scenario, the previous
calling sequence of EnumMultiPhaseGetVariableRequestInfo followed by
EnumMultiPhaseCompleteVariableRequest will be repeated until
EnumMultiPhaseCompleteVariableRequest returns a status code other than
FSP_STATUS VARIABLE REQUEST. Execution of the FspMemorylInit() API
shall not be considered complete until a statuscode other than
FSP_STATUS VARIABLE REQUEST is returned.

e Bootloader calls the FspMultiPhaseMemInit() API with the
EnumMultiPhaseGetNumberOfPhases parameter to discover the number of memory
initialization phases supported by the FSP.

o If the number of phases returned previously is greater than zero, the Bootloader must
call the FspMultiPhaseMemlInit() API with the EnumMultiPhaseExecutePhase parameter n
times, where n is the number of phases returned previously. Bootloader may perform
board specific code in between each phase as needed.

= The number of phases, what is done during each phase, and anything the
bootloader may need to do in between phases shall be described in the
Integration Guide.
= If the FspMultiPhaseMemInit() API returns the status code
FSP_STATUS_VARIABLE_REQUEST:
= The bootloader shall call the FspMultiPhaseMemInit() API with the
EnumMultiPhaseGetVariableRequestinfo parameter to get the details of
the requested non-volatile data access request.
= Bootloader shall perform the access request and return the results to the
FSP by calling the FspMultiPhaseMemInit() API with the
EnumMultiPhaseCompleteVariableRequest parameter.
= The call to the FspMultiPhaseMemInit() API with the

EnumMultiPhaseCompleteVariableRequest parameter could return
FSP_STATUS_VARIABLE_REQUEST again. In this scenario, the previous

736809

intel

736809

Boot Flow

calling sequence of EnumMultiPhaseGetVariableRequestinfo followed by
EnumMultiPhaseCompleteVariableRequest will be repeated until
EnumMultiPhaseCompleteVariableRequest returns a status code other
than FSP_STATUS_VARIABLE_REQUEST. Execution of
EnumMultiPhaseExecutePhase shall not be considered complete until a
status code other than FSP_STATUS_VARIABLE_REQUEST is returned.

Bootloader relocates itself to Memory.

Bootloader calls TempRamExit() API. If Bootloader initialized the temporary
memory in step 1)d)... this step and the next step are skipped.

FSP returns from TempRamExit() API.
Bootloader finds FSP-S and calls FspSiliconInit() API.

FSP returns from FspSiliconInit() API.
= If the FspSiliconInit() API returns the status code
FSP_STATUS_VARIABLE_REQUEST:

= The bootloader shall call the FspMultiPhaseSiInit() API with the
EnumMultiPhaseGetVariableRequestinfo parameter to get the details of
the requested non-volatile data access request.

= Bootloader shall perform the access request and return the results to the
FSP by calling the FspMultiPhaseSilnit() API with the
EnumMultiPhaseCompleteVariableRequest parameter.

= The call to the FspMultiPhaseSilnit() API with the
EnumMultiPhaseCompleteVariableRequest parameter could return

FSP_STATUS_VARIABLE_REQUEST again. In this scenario, the previous
calling sequence of EnumMultiPhaseGetVariableRequestInfo followed by
EnumMultiPhaseCompleteVariableRequest will be repeated until
EnumMultiPhaseCompleteVariableRequest returns a status code other
than FSP_STATUS_VARIABLE_REQUEST. Execution of the FspSiliconInit()
API shall not be considered complete until a status code other than
FSP_STATUS_VARIABLE_REQUEST is returned.

Bootloader calls the FspMultiPhaseSiInit() API with the
EnumMultiPhaseGetNumberOfPhases parameter to discover the number of silicon
initialization phases supported by the bootloader.

If the number of phases returned previously is greater than zero, the Bootloader
must call the FspMultiPhaseSilnit() API with the EnumMultiPhaseExecutePhase parameter »
times, where n is the number of phases returned previously. Bootloader may
perform board specific code in between each phase as needed.
= The number of phases, what is done during each phase, and anything
the bootloader may need to do in between phases shall be described in
the Integration Guide.

= If the FspMultiPhaseSilnit() API returns the status code
FSP_STATUS VARIABLE REQUEST:

= The bootloader shall call the FspMultiPhaseSiInit() API with the
EnumMultiPhaseGetVariableRequestinfo parameter to get the details of
the requested non-volatile data access request.

* Bootloader shall perform the access request and return the results to
the FSP by calling the FspMultiPhaseSiInit() API with the
EnumMultiPhaseCompleteVariableRequest parameter.

35

Boot Flow

7.2

36

Note:

intel

= The call to the FspMultiPhaseSiInit() API with the
EnumMultiPhaseCompleteVariableRequest parameter could return
FSP_STATUS VARIABLE REQUEST again. In this scenario, the
previous calling sequence of EnumMultiPhaseGetVariableRequestInfo
followed by EnumMultiPhaseCompleteVariableRequest will be repeated
until EnumMultiPhaseCompleteVariableRequest returns a status code
other than Fsp_STATUS VARIABLE REQUEST. Execution of the
EnumMultiPhaseExecutePhase shall not be considered complete until a
status code other than FSp STATUS VARIABLE REQUEST is
returned.

e If the FSP includes the FSP-I component, bootloader finds FSP-I and calls

FspSmmlInit() APL.
= FSP-I copies its SMM code into SMRAM.

= FSP programs the SMBASE register value for all the threads and
programs the SMRR.

= FSP can enable and handle SMI sources as required.
= FSP dispatches bootloader provided SMM drivers.
= FSP closes and locks SMRAM.

= FSP returns to bootloader.

e Bootloader continues and device enumeration.
e Bootloader calls NotifyPhase() API with AfterPciEnumeration parameter.

e Bootloader calls NotifyPhase() API with ReadyToBoot parameter before transferring
control to OS loader.

e When booting to a non-UEFI OS, Bootloader calls NotifyPhase() API with
e EndOfFirmware parameter immediately after ReadyToBoot.

¢ When booting to a UEFI OS, Bootloader calls NotifyPhase() with EndOfFirmware
parameter during ExitBootServices.

If FSP returns the reset required status in any of the APIs’, then bootloader
performs the reset. Refer to the Integration Guide for more details on Reset Types.

Dispatch Mode Boot Flow

Dispatch mode is an optional boot flow intended to enable FSP to integrate well in
to UEFI bootloader implementations. Implementation of this boot flow
necessitates that the underlying FSP implementation uses the Pre-EFI Initialization
(PEI) environment defined in the PI Specification. It is possible to implement an FSP
without using PEI, so bootloaders must check that dispatch mode is available using
the FSP_INFO_HEADER,see Section 5.1.1 for further details. The Integration Guide will
also specify if an FSP implements dispatch mode. Refer Section 10.0 for a full
description of dispatch mode.

736809

ﬂ t I
In e ® Boot Flow

7.2.1

High Level Overview

Figure 5. Dispatch Mode Boot Flow

7.2.2

736809

SecMain Locate PeiCore and PeiCore
reportFSP-M FV

Dispatch BFV PEIM and
initialize PCD Database

MemoryDiscovered Dispatch FSP-M and
Callbacks rest FEM

: Dispatch FSP-S and
Dispatch PostMem PEIM
spatch Postilem PEI ‘(restpostiiem h DxeCore
PEIM

X64 NotifyPhase
Drivers

Dispatch DXE Drivers

oS andprocess FSPS FV

Blue blocks are from the FSP binary and green blocks are from the bootloader.
Blocks with mixed colors indicate that both bootloader and FSP modules are
dispatched during that phase of the boot flow.

Dispatch mode is intended to implement a boot flow that is as close to a standard
UEFI boot flow as possible. In dispatch mode, FSP exposes Firmware Volumes (FV)
directly to the bootloader. The PEIM in these FV are executed directly in the
context of the PEI environment provided by the boot loader. FSP-T, FSP-M, and
FSP-S could contain one or multiple FVs. The exact FVs layout will be described in
the Integration Guide. In dispatch mode, the PPI database, PCD database, and
HOB list are shared between the boot loader and the FSP.

In dispatch mode, the NotifyPhase() API is not used. Instead, FSP-S contains DXE
drivers that implement the native callbacks on equivalent events for each of the
NotifyPhase() invocations.

Boot Flow Description

This boot flow assumes that the bootloader is a typical UEFI firmware
implementationconforming to the PI Specification. Therefore, the bootloader will
follow the standardfour phase PI boot flow progressing from SEC phase, to PEI
phase, to DXE phase, to BDS phase.
e Bootloader provided SEC phase starts executing from Reset Vector.

= Switches the mode to 32-bit mode.

= If 64-bit mode support is indicated by
FSP_INFO_HEADER.ImageAttribute[2], switch to x64 long mode and
execute the remaining steps in this mode.

= Initializes the early platform as needed.

37

Boot Flow I ntel®

= Finds FSP-T and calls the TempRamInit() API1. SEC also has the
option to initialize the temporary memory directly, in which
case this step andstep 2 are skipped.

e FSP initializes temporary memory and returns from TempRamInit() API.

e SEC initializes the stack in temporary memory.

e SEC finds FSP-M and adds an instance of EFI_PEI_CORE_FV_LOCATION_PPI
e containing the address of FSP-M to the PpilList passed into PEI core.

e SEC calls the entry point for the PEI core inside FSP-M.
= Boot loader passes the FSP-M PEI core a EFI_SEC_PEI_HAND_OFF data
structure with the BootFirmwareVolumeBase and BootFirmwareVolumeSize
members pointing to a FV provided by theplatform.
= The bootloader provides the Boot Firmware Volume (BFV).

Consequently, in FSP dispatch mode PEI core is not in the BFV
unlike most UEFI firmware implementations.

e PEI core dispatches the PEIM in the BFV provided by the bootloader.
e Bootloader installs FSPM_ARCH_CONFIG_PPI.

e One of the PEIM provided by the bootloader installs a
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI for each FV contained in FSP-M.

= The bootloader must not install the
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI(s) for FSP-M until the
bootloader is ready for FSP-M to execute.

= If FSP-M requires any DynamicEx PCD values, the bootloader must ensure

those PCD contain valid data before installing the
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI(s) for FSP-M.

e PEI core will continue to dispatch PEIM. During the course of dispatch, PEIM
included with FSP-M will be executed.
= Some of the PEIM contained in FSP-M may require configuration datato
be provided by the bootloader. If this is the case, the configuration data
may be stored in either DynamicEx PCD or PPI.
= If the configuration data is stored in PCD, then it is assumed
that the PCD contains valid data before FSP-M begins execution.

= If the configuration data is stored in PPI, then the needed PPI
will either be in the PEIM’s DEPEX, or the PEIM will register a
callback for the needed PPI and not attempt to access the PPI
until the callback is invoked by PEI core.

e FSP-M installs FSP_TEMP_RAM_EXIT_PPI.
e After dispatching the PEIM in FSP-M, memory will be initialized. Accordingly,FSP-
M will call (*PeiServices)->InstallPeiMemory/().
= PEI core shadows to main memory.

= PEI core invokes TemporaryRamDone() from
EFI_PEI_TEMPORARY_RAM_DONE_PPI. The implementation of
EFI_PEI_TEMPORARY_RAM_DONE_PPI is provided by the bootloader.

= The bootloader implementation of EFI_PEI_TEMPORARY_RAM_DONE_PPI
calls TempRamExit() from FSP_TEMP_RAM_EXIT_PPI.

= For platforms that use the SEC implementation in UefiCpuPkg,
SEC core implements EFI_PEI_TEMPORARY_RAM_DONE_PPI. The

38 736809

intel

736809

Boot Flow

TemporaryRamDone() implementation in SEC core will call
SecPlatformDisableTemporaryMemory(). This function would then locate
FSP_TEMP_RAM_EXIT_PPI and call TempRamEXxit().

= If the bootloader did not call TempRamInit() in step 1.d) thenthe
bootloader would not call TempRamEXxit().

PEI core follows up with an installation of the
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI. Refer to Volume 1 of the
PI Specification for details.

e Post memory PEIM provided by the bootloader are now executed.

e One of the PEIM provided by the bootloader installs a

EFI_PEI_FIRMWARE_VOLUME_INFO_PPI for each FV contained in FSP-S.

The bootloader must not install the
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI(s) for FSP-S until the
bootloader is ready for FSP-S to execute.

If FSP-S requires any DynamicEx PCD values, the bootloader must
ensure those PCD contain valid data before installing the
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI(s) for FSP-S.

e PEI core will continue to dispatch PEIM. During the course of dispatch, PEIM
included with FSP-S will be executed.

Some of the PEIM contained in FSP-S may require configuration datato
be provided by the bootloader. If this is the case, the configuration data
may be stored in either DynamicEx PCD or PPI.

= If the configuration data is stored in PCD, then it is assumed that the
PCD contain valid data before FSP-S begins execution.

= If the configuration data is stored in PPI, then the needed PPI will
either be in the PEIM’s DEPEX, or the PEIM will register a callback for
the needed PPI and not attempt to access the PPI until the callback is
invoked by PEI core.

e If the FSP includes the FSP-I component and the bootloader chooses to useFSP
SMM Model 2 (FSP owns SMRAM), bootloader finds FSP-I and calls FspSmmInit()

API.

FSP-I copies its SMM code into SMRAM.

FSP programs the SMBASE register value for all the threads and
programs the SMRR.

FSP can enable and handle SMI sources as required.
FSP dispatches bootloader provided SMM drivers.
FSP closes and locks SMRAM.

FSP returns to bootloader.

e If (1) the FSP includes the FSP-I component, (2) the bootloader chooses to use
FSP SMM Model 3 (Bootloader provides the MM Foundation), and (3) the
bootloader chooses to initialize the MM Foundation in post-memory PEI:

Bootloader copies its SMM code into SMRAM.

Bootloader programs the SMBASE register value for all the threads and
programs the SMRR.

Bootloader enables and handles SMI sources as required.
Bootloader dispatches bootloader provided SMM drivers.
Bootloader dispatches FSP provided SMM drivers

39

Boot Flow

intel

= Bootloader closes and locks SMRAM.
= Bootloader returns to PEI.

e End of PEI is reached, and DXE begins execution.

e Any DXE drivers included in FSP-S are dispatched. These drivers may create
events to be notified at different points in the boot flow. FSP shall use a subset of
the events defined by the PI Specification, Refer Section 10.3 for the full list ofevents
the FSP may use.

e If (1) the FSP includes the FSP-I component, (2) the bootloader chooses to use
FSP SMM Model 3 (Bootloader provides the MM Foundation), and (3) the
bootloader chooses to initialize the MM Foundation in DXE:

= Bootloader copies its SMM code into SMRAM.

= Bootloader programs the SMBASE register value for all the threads and
programs the SMRR.

= Bootloader enables and handles SMI sources as required.
= Bootloader dispatches bootloader provided SMM drivers.
= Bootloader dispatches FSP provided SMM drivers

= Bootloader closes and locks SMRAM.

= Bootloader returns to DXE.

e DXE signals EFI_END_OF_DXE_EVENT_GROUP_GUID and transitions to BDSphase.

Note: The PI Specification does not require that Step 19 occurs beforeStep 21, however
most implementations appear to use this order.

7.2.3

40

e BDS starts the PCI bus driver, which enumerates PCI devices. After enumeration, the PCI
bus driver installs the EFI_PCI_ENUMERATION_PROTOCOL. DXE signals any
applicable events.

e BDS signals EFI_EVENT_GROUP_READY_TO_BOOT immediately before loading the
OS boot loader.

e BDS executes the OS boot loader. The OS boot loader loads the OS kernel into memory.

e The OS boot loader calls ExitBootServices(), DXE signals this event before shutting down
the UEFI Boot Services.

Alternate Boot Flow Description

In some scenarios, the bootloader may wish to use a customized version of the PEI
Foundation. For example, many software debugger implementations need to be
linked with PEI core directly. For this reason, as an alternative to using the PEI
core included with FSP-M, the bootloader may instead elect to use its own
implementation of PEI core. In this case, the bootloader provided SEC will not
produce the EFI_PEI_CORE_FV_LOCATION_PPI, and instead of calling the entry point
for the PEI core inside FSP-M it shall call the entry point for the PEI core inside the
BFV. Note that this will result in two copies of PEI core being present in the final
image, one in the BFV and one in the FSP-M. If firmware storage space is under
pressure, one may elect topost process FSP-M using Intel® FMMT to remove the PEI
core included with FSP.

736809

intel

Boot Flow

This is generally considered to be a debug feature, and is discouraged for use in a
production environment as it deviates from the boot flow that receives the most
validation. It is also inefficient due to the duplicate copy of PEI core it introduces.

736809

Bootloader provided SEC phase starts executing from Reset Vector.
= Switches the mode to 32-bit mode.

= If 64-bit mode support is indicated by
FSP_INFO_HEADER.ImageAttribute[2], switch to x64 long
mode and execute the remaining steps in this mode.

= Initializes the early platform as needed.

= Finds FSP-T and calls the TempRamInit() AP1. SEC also has the option
to initialize the temporary memory directly, in which case this step and
step 2are skipped.

FSP initializes temporary memory and returns from TempRamInit() API.
SEC initializes the stack in temporary memory.

SEC calls the entry point for the PEI core inside the Boot Firmware Volume
(BFV).

PEI core dispatches the PEIM in the BFV provided by the bootloader.

Boot loader installs FSPM_ARCH_CONFIG_PPI.

One of the PEIM provided by the bootloader installs a
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI for each FV contained in FSP-M.

= The bootloader must not install the
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI(s) for FSP-M until the
bootloader is ready for FSP-M to execute.

= If FSP-M requires any DynamicEx PCD values, the bootloader must
ensurethose PCD contain valid data before installing the
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI(s) for FSP-M.

PEI core will encounter a second PEI core in FSP-M. Because it is not a PEIM, the
dispatcher will skip it. PEI core will proceed to dispatch the PEIM in FSP-M.

The boot flow proceeds the same as step 9 in the primary boot flow from here
forwards.

88

41

System Management Mode I n te I ®

8.0

System Management Mode

8.1

42

System Management Mode (SMM) is a special-purpose operating mode provided
for handling system-wide functions including certain system hardware control
operationsduring system runtime. Such operations are required to address various
situations fromsimple use cases like writing to the flash part to complex
proprietary algorithms like initializing the memory controller for a memory online
operation.

SMM provides a mechanism to run trusted firmware code during runtime to address
these use cases and is intended for use only by system firmware.

The processor executes SMM code in a separate address space (SMRAM typically
neartop of memory also known as TSEG) that can be made inaccessible from the
other operating modes providing the necessary protection for trusted firmware code.
Other SMM protections are out of scope for this document. Please refer to relevant
platformspecific documentation for details.

In addition to FSP-T/M/S, an FSP binary may optionally include an FSP-I
component.The FSP-I component is intended to provide SMM mode and other late
silicon functionality that is executed when the system is in SMM. For example,
services relatedruntime reliability/availability/serviceability like ECC error handling,
error isolation to a specific DIMM module, etc. are required during runtime. These
operations require that the system is in SMM and are typically platform dependent
and the system firmwarebeing the platform specific component is expected to
provide these services.

The FSP-I component includes three sub-components as below

“Standalone SmmFoundation” along with drivers providing MM Services
necessary todispatch and support the SMM mode drivers.

“Standalone SmmlIpl” that opens the SMRAM, loads SmmFoundation in SMRAM
andcloses the SMRAM after the load process is complete.

“Standalone SmmbDrivers” that handle specific SMI sources. The standalone
SmmDrivers conform to the Platform Initialization (PI) Management Mode Core
Interface Specification.

The FSP-I component is designed to allow various usage models as explained below.

Model 1 - No SMM

Certain platforms are designed for workloads that may require real time and
predictable response time. SMM by its nature is transparent to the operating
system and may cause jitter which cannot be tolerated by such platforms. Workloads
requiringfunctional safety is another example of platforms that may decide to disable
SMM.

System firmware for such platforms may decide to disable SMM and not use FSP-I.

If anFSP binary provides the FSP-I component, usage of FSP-I can be mandatory
for certain processors and chipsets. The Integration Guide will document if FSP-I is

736809

I n te I ® System Management Mode

8.2

8.3

736809

mandatory for specific FSP implementations. If an FSP binary provides the FSP-I
component, then

FSP-I shall support model 2 (FSP owns SMRAM) at a minimum. If the FSP binary
supports dispatch mode, then model 3 (Bootloader provides the MM Foundation)
mustalso be supported in addition to model 2.

Model 2 - FSP Owns SMRAM

This model is applicable for both (1) bootloaders implementing PI specification
(Dispatch Mode) as well as (2) bootloaders that don’t implement PI specification
(APIMode).

In this model, the FSP-I component manages the SMRAM independently without
any bootloader involvement. Bootloader can provide SMM drivers for extensibility.
The bootloader does this by providing a Firmware Volume (FV) to FSP-I via the
BootloaderSmmFvBaseAddress and BootloaderSmmFvLength UPDs. FSP-I will
createan EFI_HOB_FIRMWARE_VOLUME HOB for this bootloader provided FV and
insert it into the HOB list provided to the MM Foundation. In some cases, FSP-I
may require thebootloader to provide services in SMM. In this scenario, FSP-I will
consume those services through MM protocol(s) installed by bootloader SMM
drivers. Any required SMM services will be described in the Integration Guide.

Model 3 — Bootloader Provides MM Foundation
(Dispatch Mode Only)

This model is applicable for bootloaders that implement the PI specification
(DispatchMode) only. In this mode, the bootloader provides the MM Foundation.
Any Firmware Volumes (FVs) contained in the FSP-I component are registered with
the bootloader provided MM Foundation and any Standalone MM drivers included in
those FVs are dispatched.

In Model 3, the bootloader provided MM Foundation can optionally support
TraditionalMM drivers in addition to Standalone MM drivers if desired. This
Traditional MM support would only be used by bootloader SMM drivers; FSP-I shall
only contain Standalone MM drivers.

In some cases, FSP-I may require the bootloader to provide services in SMM. In
this scenario, FSP-I will consume those services through MM protocol(s) installed
by bootloader SMM drivers. Any required SMM services will be described in the
IntegrationGuide.

FSP-I may require specific SMI sources to be enabled for proper operation. If this

is thecase, those SMI sources and any APIs used by the FSP to register handlers
for those SMI sources will be documented in the Integration Guide.

43

' t I
System Management Mode In e ®

8.4

8.4.1

High Level Flow

API Mode

A high-level boot flow involving FSP-I API mode is provided below. As the API mode
isutilized by bootloaders not implementing the Platform Initialization (PI)
specification, execution details have been abstracted as necessary.

Early initialization

Memory initialization including programming chipset registers reservingSMRAM
memory

FspSiliconInit API is called by bootloader
Bootloader calls FspSmmInit entry point
FSP SMM module copies the SMM functionality code to the SMRAM

FSP SMM module programs the SMBASE register value for all the threads and
programs the SMRR

FSP SMM module enables SMI sources as required
FSP SMM module closes and locks SMRAM
FSP SMM module returns to bootloader

10. Bootloader continues execution

When an SMI occurs, FSP SMM module services it, clears the SMI status bits, sets
End ofSMI status, and returns from SMM to normal mode of operation.

Figure 6. SMM Drivers

44

Manage R
(GUID1) ;
N Ly H Cg:ld ng —— E?/:'r:t
Root B andler Driver | sources
smI
— SMi —_ Event
SMM Entry Handler Sources
(CPU) (Driver) Manage
——(TUJEDZ)
v Manage(GUID3)
L»' SMI Handler |
Manage(NULL) T ST
i SMI Handler I
Handler
A
SMM Exit SMI
(CPU) —> Handler ——b[SMI Handler |

736809

In e ® System Management Mode

8.4.2

736809

Dispatch Mode

In model 2 (FSP owns SMRAM), the bootloader will include an FSP-I wrapper PEIM
thatwill invoke the FspSmmlnit entry point during post-memory PEI: after memory
initialization is complete but before DXE IPL.

In model 3 (bootloader provides the MM Foundation), the bootloader will register
anyFirmware Volumes (FVs) contained in FSP-I with the MM Foundation, causing
SMM drivers contained in FSP-I to be dispatched along with bootloader provided
SMM drivers. This can happen either in post-memory PEI or early DXE (before
BDS).

8§

45

ﬂ t I
FSP API Mode Interface I n e ®

9.0

FSP API Mode Interface

9.1

9.2

9.3

46

Entry-Point Invocation Environment

There are some requirements regarding the operating environment for FSP
execution. The bootloader is responsible to set up this operating environment
before calling the FSP API. These conditions have to be met before calling any
entry point (otherwise, thebehavior is not determined). These conditions include:

e Interrupts should be turned off.
e The FSP API should be called only by the system BSP, unless otherwise noted.

e Sufficient stack space should be available for the FSP API function to execute.
Consult the Integration Guide for platform specific stack space requirements.

Specially for x86 32bit API mode:
e The system is in flat 32-bit mode.

e Both the code and data selectors should have full 4GB access range. Specially
for x64 64bit API mode:

e The system is in 64-bit long mode with paging enabled.

e The full address space required by the FSP and bootloader execution shall be
identity mapped (virtual address equals physical address), although the
attributes of certain regions may not have all read, write, and execute attributes
or be unmarked for purposes of platform protection. The mappings to other
regions are undefined and may vary from implementation to implementation.
Please refer to Integration Guide for page table address space range required by
FSP execution.

e Selectors are set to flat and are otherwise not used.

Other requirements needed by individual FSP API will be covered in the respective
sections.

Data Structure Convention

All data structure definitions should be packed using compiler provided directives
suchas #pragma pack (1) to avoid alignment mismatch between the FSP and the
bootloader.

Entry-Point Calling Convention

e All FSP APIs defined in the FSP_INFO_HEADER can be either 32-bit or 64-bit
interface depending on FSP_INFO_HEADER.ImageAttribute BIT2 (64-bit
support).

When FSP_INFO_HEADER.ImageAttribute[2] is O, it indicates the FSP APIs
providedby current FSP component only support 32-bit interfaces. Accordingly,

736809

I n te I ® FSP API Mode Interface

9.4

9.5

736809

when FSP_INFO_HEADER.ImageAttribute[2] is 1, it indicates the FSP APIs
provided by current FSP component only support 64-bit interfaces.

e The FSP API 32-bit interface is similar to the default C_cdecl convention. Like the
default C_cdecl convention, with the FSP API interface:
- All parameters are pushed onto the stack in right-to-left order before the API
iscalled.

e The FSP API 64-bit interface is similar to the EFIAPI calling convention defined by
UEFI specification, with the FSP API interface:
— The first 4 parameters are passed from left to right in RCX, RDX, R8 and R9
registers. The arguments five and above are passed onto the stack.
- The 32 bytes shadow space is allocated on stack by caller before the API call.
— A caller must always call with the stack 16-byte aligned.

e The calling function needs to clean the stack up after the API returns.

e The return value is returned in the EAX/RAX register. All the other registers
including floating point registers are preserved, except as noted in the individual
API descriptions below or in Integration Guide.

Return Status Code

All FSP API return a status code to indicate the API execution result. These return
statuscodes are defined in Section 13.2 Appendix A - EFI_STATUS.

Sometimes for an initialization to take effect, a reset may be required. The FSP API
mayreturn a status code indicating that a reset is required as documented in
13.2.2 OEM Status code.

When an FSP API returns one of the FSP_STATUS_RESET_REQUIRED codes, the
bootloader can perform any required housekeeping tasks and issue the reset.

When an FSP API returns FSP_STATUS_VARIABLE_REQUEST, the bootloader shall
perform an FSP variable access request. See Section 9.6 for details.

FSP Events

FSP may optionally include the capability of generating events messages to aid in
the debugging of firmware issues. These events fall under three categories: Error,
Progress,and Debug. The event reporting mechanism follows the status code
services described in Section 6 and 7 of the PI Specification v1.7 Volume 3.

The bootloader may provide an event handler to the FSP through the
FSPM_ARCH_UPD.FspEventHandlerand FSPS_ARCH_UPD.FspEventHandler

UPDs. Providing these event handlers is entirely optional. If the bootloader does
notwish to handle FSP events, it may set these UPDs to NULL. FSP will only call
FSPM_ARCH_UPD.FspEventHandler during FSP-M and

FSPS_ARCH UPD.FspEventHandler during FSP-S.

Due to the nature of early boot stages, FSP-T is mostly assembly code.

Accordingly, FSP-T uses a simpler interface that only provides debug log messages
using FSPT_ARCH_UPD.FspDebugHandler. Due to the need for a stack to be

47

E t I
FSP API Mode Interface I n e ®

9.5.1

established tocall this handler, FSP-T can only call FspDebugHandler() after
temporary memory is initialized. This may delay the output of debug log messages
until later in the FSP-T flow.

The event handlers provided by the bootloader should not use more than 4KB of
stackspace.

A similar feature is provided for dispatch mode, Refer Section 10.4.12.

PI Specification Architecturally Defined Status Codes

The PI Specification provides a rich set of status code classes and sub-classes,
which may be used by the FSP. The bootloader may also parse these PI
Specification definedstatus code events if desired.

If a bootloader chooses to implement the MIPI Sys-T specification, it is
recommendedthat PI Specification architecturally defined status codes returned by
the FSP be translated into human readable string descriptions and then output in
either MIPI SYST STRING GENERIC format or if the bootloader chooses to support
MIPI SYST TYPE CATALOG in catalog format. See Volume 3, Chapter 6 of the PI
Specification for these descriptive strings. The bootloader should also provide a
MIPI SYST SEVERITY * value that is appropriate. Below is an example (but not
required) mapping:

Table 5. EFI_STATUS_CODE_TYPE to MIPI_SYST_SEVERITY Mapping

9.5.2

48

Status Code Type Status Code Severity MIPI Sys-T Severity
EFI_DEBUG_CODE N/A MIPI_SYST_SEVERITY_DEBUG
EFI_PROGRESS_CODE N/A MIPI_SYST_SEVERITY_INFO
EFI_ERROR_CODE EFI_ERROR_MINOR I\N/IéPI—SYST—S EVERITY_WARNI
EFI_ERROR_CODE EFI_ERROR_MAIJOR MIPI_SYST_SEVERITY_ERROR
EFI_ERROR_CODE EFI_ERROR_UNRECOVERED MIPI_SYST_SEVERITY_FATAL
EFI_ERROR_CODE EFI_ERROR_UNCONTAINED MIPI_SYST_SEVERITY_FATAL

Debug Log Messages

The FSP may use this event mechanism to provide debug log messages to the
bootloader. When FSP-M or FSP-S provide debug log messages this way, the Type
parameter’s EFI_STATUS_CODE_TYPE_MASK will be set to EFI_DEBUG_CODE and the
Data parameter shall contain a EFI_STATUS_CODE_STRING_DATA payload. Please see
Section 6.6.2 of the PI Specification v1.7 Volume 3 for details on
EFI_STATUS_CODE_STRING_DATA. The FSP shall only pass a EFI_STRING_TYPE of
EfiStringAscii for the purposes of debug log messages. The Instance parameter
shall contain the ErrorLevel, Refer Section 13.9 for details. The bootloader may
parse these debug log events if desired.

736809

ﬂ t I
I n e ® FSP API Mode Interface

9.5.3

9.5.4

9.5.5

736809

If a bootloader chooses to implement the MIPI Sys-T specification, it is
recommended that debug log messages provided in this way be output in

MIPI SYST STRING GENERIC format. The bootloader sets the

MIPI SYST SEVERITY *value for each message and can use the ErrorLevel values
provided by the FSP to aid indeciding that value.

It should be noted that the strings for these log messages increase the binary size
ofthe FSP considerably. Accordingly, FSP binaries intended for production use are
unlikely includes debug log messages.

POST Progress Codes

The FSP may use this event mechanism to provide POST codes to the bootloader.
IfFSP-M or FSP-S provide POST codes this way, the Type parameter’s
EFI_STATUS_CODE_TYPE_MASK will be set to EFI_PROGRESS_CODE and the Value
parameter will have the upper 16-bits (EFI_STATUS_CODE_CLASS_MASK and
EFI_STATUS_CODE_SUBCLASS_MASK) will be set to FSP_POST CODE. The lower 16-bits
(EFI_STATUS_CODE_OPERATION_MASK) will contain the POST code. The bootloader
may parse these POST code events if desired.

MIPI Sys-T Catalog Debug Log Messages

The FSP may use this event mechanism to provide MIPI Sys-T catalog style debug
messages. If FSP-M or FSP-S provide catalog debug messages this way, the Type
parameter’s EFI_STATUS_CODE_TYPE_MASK will be set to EFI_DEBUG_CODE and the
Value parameter will have the upper 16-bits (EFI_STATUS_CODE_CLASS_MASK and
EFI_STATUS_CODE_SUBCLASS_MASK) will be set to FSP_CATALOG_MESSAGE. The
Instance parameter shall contain the ErrorLevel, please see Section 13.9 for details. The
MIPI Sys-T message’s payload data will be provided via the Data parameter and
will always be in MIPI_SYST_CATALOG_ID64_P64format, please see Section 9.1.4
of the MIPISys-T v1.0 Specification. The bootloader sets the
MIPI_SYST_SEVERITY_*value for each message and can use the ErrorLevel values
provided by the FSP to aid in deciding that value.

It should be noted that generating catalog style debug messages requires
conversion of DebugLib style format strings to C99 style format strings. There is
not a 1:1 mapping between these, and runtime data conversion is needed to
generate a MIPI Sys-T message payload. The inclusion of these format strings and
the code to parse and translate the variable argument list into a message payload
increases the binary size of the FSP considerably and can have a substantial impact
on boot performance.

Accordingly, FSP binaries intended for production use are unlikely to include catalog
debug log messages.

Related Definitions

#define FSP_EVENT CODE 0xF5000000
#define FSP_POST CODE (FSP_EVENT CODE | 0x00F80000)
#define FSP_CATALOG MESSAGE (FSP_EVENT CODE | 0x00F90000)

49

FSP API Mode Interface

9.5.6

9.5.6.1

9.5.6.2

50

Refer Section 13.10-13.11 Appendix A — Data Structures for the definitions of

EFI_STATUS_CODE_TYPE, EFI_STATUS_CODE_VALUE, and
EFI_STATUS_CODE_DATA.

FspEventHandler

Handler for FSP events, provided by the bootloader.

Prototype

typedef

EFI_STATUS

(EFIAPI *FSPiEVENTiHANDLER) (

IN EFI_STZ—\TUS_CODE_TYPE Type,
IN EFI_STATUS CODE VALUE Value,
IN UINT32 Instance,

IN OPTIONAL EFI GUID *CallerId,

IN OPTIONAL EFI STATUS CODE DATA *Data
) 7

Parameters

intel.

Type

Indicates the type of event being reported. See Section 13.10
Appendix A - Data Structures for the definition of
EFI_STATUS_CODE_TYPE.

Value

Describes the current status of a hardware or software entity.
This includes information about the class and subclass that is
used to classify the entity as well as an operation.

For progress events, the operation is the current activity. For
error events, it is the exception. For debug events, it is not
defined at this time.

See Section 13.10 Appendix A - Data Structures for thedefinition of
EFI_STATUS_CODE_VALUE.

Instance

The enumeration of a hardware or software entity within the
system. A system may contain multiple entities that match a
class/subclass pairing. The instance differentiates between
them.

An instance of 0 indicates that instance information is
unavailable, not meaningful, or not relevant. Valid instance
numbers start with 1.

Callerld

This parameter can be used to identify the sub-module within
the FSP generating the event. This parameter may be NULL.

Data

This optional parameter may be used to pass additional data.
The contents can have event-specific data.

For example, the FSP provides a
EFI_STATUS_CODE_STRING_DATA instance to this parameter
when sending debug messages.

This parameter is NULL when no additional data is provided.

See Section 13.11 Appendix A - Data Structures for thedefinition of
EFI_STATUS_CODE_STRING_DATA.

736809

ﬁ t I
I n e ® FSP API Mode Interface

9.5.6.3 Return Values

The return status will be passed back through the EAX/RAX register.

Table 6. Return Values - FspEventHandler()

EFI_SUCCESS The event was handled successfully.
EFI_INVALID_PARAMETER Input parameters are invalid.
EFI_DEVICE_ERROR The event handler failed.

9.5.7 FspDebugHandler

Handler for FSP-T debug log messages provided by the bootloader.

9.5.7.1 Prototype

typedef
UINT32

(EFIAPI *FSP DEBUG HANDLER) (
IN CHARS8* DebugMessage,

IN UINT32 MessagelLength
) ;

9.5.7.2 Parameters

DebugMessage A pointer to the debug message to be written to the log.

MessagelLength Number of bytes to written to the debug log.

9.5.7.3 Return Values

The return value will be passed back through the EAX/RAX register. The return
valueindicates the number of bytes actually written to the debug log. If the return
value is less than Messagelength, an error occurred.

9.6 FSP Variable Services

The FSP variable services enable the FSP to read and write non-volatile data. The
method and implementation of non-volatile data storage can vary depending on
chipset and platform design. Therefore, the FSP performs non-volatile data access
indirectly through the bootloader. The bootloader exposes non-volatile data to the
FSPusing an associative array abstract data type. The key-value pairs stored in this
associative array shall have a key composed of a string (referred to as the variable
name) and a GUID. The GUID is used to establish a namespace, so that in the case
where bootloader data and FSP data is stored in a shared space, name collisions are a
non-issue. The value of each key-value pair is an opaque byte array. These key-
value pairs are referred to as variables. The FSP can read and write an arbitrary
number of these key-value pairs (aka variables) during the FspMemorylInit() and
FspSiliconInit() AP1.The FSP accesses this associative array through a set of four
variable services provided by the bootloader:

736809 51

FSP API Mode Interface I n te I ®

Table 7. List of FSP Variable Services

9.6.1

9.6.2

52

GetVariable Retrieves a variable's value using its name and GUID.

This service is called multiple times to retrieve the name
GetNextVariableName and GUID of all variables currently available in the
associative array.

Stores a new value to the variable with the given name

SetVariable andGUID.

This service informs the FSP of how much non-volatile
storage space is allocated for the storage of variables,
how much is remaining, and what the maximum

QueryVariableInfo allowable size isfor each variable.

The minimum amount of storage space required by the
FSPwill be mentioned in the Integration Guide.

Variable Store Contents

The associative array that the bootloader uses to provide non-volatile data storage
tothe FSP can be initially empty or can contain data for the bootloader’s private use.
The FSP shall not assume that any of variables used by the FSP exist. In the case
where pre-existing variables do not exist, the FSP shall gracefully enter a “first
boot” flow that creates any variables that the FSP needs and initializes them with
appropriate data.

This will likely increase the FSP’s execution time as these non-volatile data must be
regenerated from scratch.

If the platform is resuming from S3, then the FSP can require that non-volatile
data from the initial S5 resume does exist; if it does not then the FSP can request
a reset,converting the S3 resume into an S5 resume.

The minimum amount of storage space required by the FSP will be mentioned in the
Integration Guide.

API Mode Variable Sequence

Because access to non-volatile data can sometimes be critical to successfully
completing the boot sequence, access to variables is not done through an optional
function pointer like FSP events. Instead, the FSP halts execution indicates to the
bootloader that a variable access request is pending and must be completed before
theboot flow can continue.

736809

ﬁ t I
I n e ® FSP API Mode Interface

Figure 7. FspMemorylInit() Variable Services Invocation Sequence

Call FspMemorylnit()

Call
YESPM FspMultiPhaseMeminit()
GetVariableRequestinfa

SP_STATUS_WARIADLE REQUEST
returned 7

Call
FspMultiPhaseMeminit()
CompleteVariableRequest

YE! ERROR

Call
FspMultiPhaseMeminit()
ExecutePhase

Call
FspMultiPhaseMaminit()
NO GetNumberOfPhases

PhasesExecuted ==
NumberOfPhases ?

YES

Continue to
FspTempRamExit/
FepSiliconinit()

The FspMultiPhaseMemInit() API is used to transfer information about the variable request
back to the bootloader and to inform the FSP of when the variable access is
complete. If FspMemorylInit() returns the status code FSP_STATUS VARIABLE REQUEST,
then the FspMultiPhaseMemInit() API shall be called by the bootloader with the
EnumMultiPhaseGetVariableRequestInfo action given.The FSP will populate a
FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS structure given by the
bootloader and return (see Section 9.11.) The bootloader parses the given data and
performs the variable access. Once the access is complete, the bootloader calls the
FspMultiPhaseMemlInit() API with the EnumMultiPhaseCompleteVariableRequest action to
indicate to the FSP that the I/O is done and that the FSP can continue execution.
FSP_STATUS VARIABLE REQUEST canalso be returned by FspMultiPhaseMemInit() when
either the EnumMultiPhaseCompleteVariableRequest or EnumMultiPhaseExecutePhase actions
are given. The bootloader shall be prepared to handle variable access requests in
in these scenarios as well.

The variable services invocation flow above applies for
FspSiliconInit()/FspMultiPhaseSilnit() as well.

53

. t I
FSP API Mode Interface I n e ®

Figure 8. FspSiliconInit() Variable Services Invocation Sequence

9.6.3

9.6.3.1

9.6.3.1.1

54

Call FspSilicaninit()

SPSTATUS VARIABLE REGUEST YES Call FspMultiPhaseSilnit()
retumed 7 GetVariableRequestinfo

NG Call FspMultiPhaseSilnit()
A CompleteVariableRequest

@ ecn(Ervon
Call FspMultiPhaseSilnit()

ExecutePhase NO

¥

Call FspMultiPhaseSilnit))
GetNumberOiPhases

NO

PhasesExecuted »=
NumberOfPhases ?

Continue to

FspNotifyPhase()

Variable Service Descriptions

When FSP_STATUS_VARIABLE_REQUEST is returned, the bootloader shall invoke
FspMultiPhaseMem/SiInit() with the EnumMultiPhaseGetVariableRequestiInfo action given.
The VariableRequest member of the
FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS structure returned by this
API indicates which variable service should be invoked.

GetVariable
This service retrieves a variable's value using its name and GUID.
When the VariableRequest member of the

FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS structure contains
EnumFspVariableRequestGetVariable, the FSP is requesting this service.

Parameters

The members of FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS are usedin
the following manner when the GetVariable service is requested:

VariableRequest Shall be set to EnumFspVariableRequestGetVariable by theFSP.

A pointer to an FSP provided buffer containing a null-

VariableName terminated string that is the variable's name.

736809

intel

FSP API Mode Interface

VariableNameSize

Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

VariableGuid

A pointer to an FSP provided buffer containing an
EFI_GUIDthat is the variable's GUID. The combination of
VariableGuidand VariableName must be unique.

Attributes

If non-NULL, a pointer to an FSP provided buffer that the
bootloader shall set this buffer to the variable's attributes
before invoking EnumMultiPhaseCompleteVariableRequest. If
NULL, the bootloader does not return the variable’s
attributes.

DataSize

On entry, points to an FSP provided buffer that indicates
the size in bytes of the FSP provided buffer pointed to by
the Datamember. The bootloader shall set DataSize to the
size of the data written into the Data buffer before
invoking EnumMultiPhaseCompleteVariableRequest.

Data

Points to an FSP provided buffer which will hold the
returned variable value. May be NULL with a zero
DataSize in order to determine the size of the buffer
needed. If non-NULL and the buffer size (indicated by
DataSize) is large enough to hold the variable’s value, the
bootloader shall copy the variable’s valueto this buffer
before invoking EnumMultiPhaseCompleteVariableRequest.

MaximumVariableStor
ageSize

Unused; bootloader shall ignore this value and the FSP shall
setitto NULL.

RemainingVariableSt
orageSize

Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

MaximumVariableSize

Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

9.6.3.1.2 Description

Reads the specified variable from non-volatile storage. If the Data buffer is too
small tohold the contents of the variable, the error EFI_BUFFER_TOO_SMALL is
returned andDataSize is set to the required buffer size to obtain the data.

9.6.3.1.3 Return Values

Once the variable is read, the bootloader calls the FspMultiPhaseMemInit() API with the

EnumMultiPhaseCompleteVariableRequest action to indicate to the FSP that the variable
read is complete. When invoking EnumMultiPhaseCompleteVariableRequest,the bootloader
shall provide an FSP_MULTI_PHASE_COMPLETE_VARIABLE_REQUEST_PARAMS

structure. The

VariableRequestStatus member of this structure will be set to one of the following

values:

Table 8. Return Values - GetVariable Service

EFI_SUCCESS

The variable was read successfully.

EFI_NOT_FOUND

The variable was not found.

736809

55

FSP API Mode Interface

9.6.3.2

9.6.3.2.1

56

intel

EFI_BUFFER_TOO_SMALL

updated with the size required for the specified variable.

EFI_INVALID_PARAMETER

VariableName, VariableGuid, DataSize or Data is NULL.

EFI_DEVICE_ERROR

The variable could not be retrieved because of a device
error.

GetNextVariableName

This service is called multiple times to retrieve the name and GUID of all variables

currently available.

When the VariableRequest member of the
FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS structure contains
EnumFspVariableRequestGetNextVariableName, the FSP is requesting this service.

Parameters

The members of FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS are usedin
the following manner when the GetNextVariableName service is requested:

VariableRequest

Shall be set to
EnumFspVariableRequestGetNextVariableName

by the FSP.

VariableName

A pointer to an FSP provided buffer containing a null-
terminated string that is the current variable's name.

If the buffer size (indicated by VariableNameSize) is large
enough to hold the next variable’s name, the bootloader
shall copy the next variable’s name to this buffer before
invoking EnumMultiPhaseCompleteVariableRequest.

VariableNameSize

A pointer to an FSP provided buffer containing the size of
the buffer pointed to by VariableName. The bootloader
shall copy the size of the buffer needed to contain the
next variable’s name to this buffer before invoking
EnumMultiPhaseCompleteVariableRequest.

VariableGuid

A pointer to an FSP provided buffer containing an
EFI_GUIDthat is the current variable's GUID. The
bootloader shall copythe next variable’s GUID to this
buffer before invoking
EnumMultiPhaseCompleteVariableRequest.

Unused; bootloader shall ignore this value and the FSP

Attributes shallset it to NULL.

DataSize Unused; bootloader shall ignore this value and the FSP
shallset it to NULL.

Data Unused; bootloader shall ignore this value and the FSP

shallset it to NULL.

MaximumVariableStor
ageSize

Unused; bootloader shall ignore this value and the FSP
shallset it to NULL.

RemainingVariableSt
orageSize

Unused; bootloader shall ignore this value and the FSP
shallset it to NULL.

736809

The DataSize is too small for the resulting data. DataSize is

ﬂ t I
I n e ® FSP API Mode Interface

9.6.3.2.2

9.6.3.2.3

Unused; bootloader shall ignore this value and the FSP

MaximumVariableSize shallset it to NULL.

Description

This service is called multiple times to retrieve the VariableName and VariableGuid of
all variables currently available in the system. On each call, the previous results
are passed into the interface, and, on return, the interface returns the data for the
next variable. To get started, VariableName should initially contain L"\0" and the
bufferpointed to by VariableNameSize should contain sizeof (CHAR16). When the
entirevariable list has been returned, EFI_NOT_FOUND is returned.

Return Values

Once the next variable name is read, the bootloader calls the FspMultiPhaseMemInit()API
with the EnumMultiPhaseCompleteVariableRequest action to indicate to the FSP that
reading the next variable name is complete. When invoking
EnumMultiPhaseCompleteVariableRequest, the bootloader shall provide an
FSP_MULTI_PHASE_COMPLETE_VARIABLE_REQUEST_PARAMS structure. The

VariableRequestStatus member of this structure will be set to one of the following
values:

Table 9. Return Values — GetNextVariableName Service

9.6.3.3

9.6.3.3.1

736809

EFI_SUCCESS The next variable name was read successfully.

EFI_NOT_FOUND All variables have been enumerated.

The VariableNameSize is too small for the resulting data.
EFI_BUFFER_TOO_SMALL VariableNameSize is updated with the size required for the
specified variable.

EFI_INVALID_PARAMETER VariableName, VariableGuid, or VariableNameSize is NULL.

The variable name could not be retrieved because of a

EFI_DEVICE_ERROR .
device error.

SetVariable
This service stores a new value to the variable with the given name and GUID.
When the VariableRequest member of the

FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS structure contains
EnumFspVariableRequestSetVariable, the FSP is requesting this service.

Parameters

The members of FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS are usedin
the following manner when the SetVariable service is requested:

Shall be set to EnumFspVariableRequestSetVariable by the

VariableRequest FSP.

57

E t I
FSP API Mode Interface I n e ®

9.6.3.3.2

9.6.3.3.3

A pointer to an FSP provided buffer containing a null-
terminated string that is the name of the variable. Each
VariableName VariableName is unique for each VariableGuid. VariableName
must contain 1 or more characters. If VariableName is an
empty string, then EFI_INVALID_PARAMETER is returned.

Unused; bootloader shall ignore this value and the FSP shall

VariableNameSize set it to NULL.

A pointer to an FSP provided buffer containing an EFI_GUID
that is the variable's GUID.

VariableGuid

A pointer to an FSP provided buffer containing the attributes

Attributes bitmask for the variable.

A pointer to an FSP provided buffer containing the size in
bytes of the Data buffer. Unless the
EFI_VARIABLE_APPEND_WRITE attribute is set, a size of
DataSize zero causes the variable to be deleted. When the
EFI_VARIABLE_APPEND_WRITE attribute is set, then a
SetVariable() call with a DataSize of zero will not cause any
change to the variable value.

A pointer to an FSP provided buffer containing the new data

Data for the variable.

MaximumVariableStor Unused; bootloader shall ignore this value and the FSP shall
ageSize set it to NULL.

RemainingVariableSt Unused; bootloader shall ignore this value and the FSP shall
orageSize set it to NULL.

Unused; bootloader shall ignore this value and the FSP shall

MaximumVariableSize set it to NULL.

Description

This service stores a new value to the variable with the given name and GUID. If a
variable with the given name and GUID does not exist and DataSize is not zero,
then anew variable is created. If DataSize is set to zero, the
EFI_VARIABLE_APPEND_WRITEattribute is not set, and an existing variable with
the given name and GUID exists, thenthat variable is deleted.

Return Values

Once the variable is written, the bootloader calls the FspMultiPhaseMemInit() API with the
EnumMultiPhaseCompleteVariableRequest action to indicate to the FSP that the variable
write is complete. When invoking EnumMultiPhaseCompleteVariableRequest, the
bootloader shall provide an
FSP_MULTI_PHASE_COMPLETE_VARIABLE_REQUEST_PARAMS structure. The
VariableRequestStatus member of this structure will be set to one of the following
values:

Table 10. Return Values - SetVariable Service

58

The bootloader has successfully stored the variable and its

EFI_SUCCESS data as defined by the Attributes.

736809

intel

9.6.3.4

9.6.3.4.1

736809

FSP API Mode Interface

EFI_INVALID_PARAMETER

An invalid combination of attribute bits, name, and GUID
wassupplied, or the DataSize exceeds the maximum
allowed.

EFI_INVALID_PARAMETER

VariableName is an empty string.

EFI_OUT_OF_RESOURCES

Not enough storage is available to hold the variable and its
data.

EFI_DEVICE_ERROR

The variable could not be stored because of a hardware
error.

EFI_WRITE_PROTECTED

The variable is read-only.

EFI_WRITE_PROTECTED

The variable cannot be deleted.

EFI_SECURITY_VIOLATION

The variable could not be written due to
EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS, or
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_AC
CESS, or
EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS

being set. The FSP is forbidden from writing to authenticated
variables. This feature is only relevant for UEFI Secure
Boot and the FSP does not require the bootloader to
implement UEFI Secure Boot.

EFI_NOT_FOUND

The variable trying to be updated or deleted was not found.

QueryVariableInfo

This service informs the FSP of how much nonvolatile storage space is
allocated for thestorage of variables, how much is remaining, and what
the maximum allowable size is for each variable.

When the VariableRequest member of the
FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS structure contains
EnumFspVariableRequestQueryVariableInfo, the FSP is requesting this service.

Parameters

The members of FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS are usedin
the following manner when the QueryVariablelnfo service is requested:

VariableRequest

Shall be set to EnumFspVariableRequestQueryVariableInfo by the FSP.

VariableName

Unused; bootloader shall ignore this value and the FSP shallset it
to NULL.

VariableNameSize

Unused; bootloader shall ignore this value and the FSP shallset it
to NULL.

VariableGuid

Unused; bootloader shall ignore this value and the FSP shallset it
to NULL.

A pointer to an FSP provided buffer containing the Attributes

Attributes bitmask that specifies the type of variables on which to return
information.
. Unused; bootloader shall ignore this value and the FSP shallset it
DataSize

to NULL.

59

FSP API Mode Interface I n te ®

9.6.3.4.2

9.6.3.4.3

Table 11.

9.7

60

Unused; bootloader shall ignore this value and the FSP shallset it

Data to NULL.

A pointer to an FSP provided buffer which the bootloader shall
MaximumVariableStor | set to the maximum size of the storage space available for
ageSize variables associated with the Attributes specified before
invoking EnumMultiPhaseCompleteVariableRequest.

A pointer to an FSP provided buffer which the bootloader shall
RemainingVariableSt set to the remaining size of the storage space available for
orageSize variables associated with the Attributes specified before
invoking EnumMultiPhaseCompleteVariableRequest.

A pointer to an FSP provided buffer which the bootloader shall
set to the maximum size of an individual variable associated
with the attributes specified before invoking
EnumMultiPhaseCompleteVariableRequest.

MaximumVariableSize

Description

This service informs the FSP of how much non-volatile storage space is allocated
forthe storage of variables, how much is remaining, and what the maximum
allowable sizeis for each variable.

The minimum amount of storage space required by the FSP will be mentioned in the
Integration Guide.

Return Values

Once the storage utilization data is ready, the bootloader calls the
FspMultiPhaseMemInit() API with the EnumMultiPhaseCompleteVariableRequest actionto
indicate to the FSP that these data are available. When invoking

EnumMultiPhaseCompleteVariableRequest, the bootloader shall provide an
FSP_MULTI_PHASE_COMPLETE_VARIABLE_REQUEST_PARAMS structure. The
VariableRequestStatus member of this structure will be set to one of the following
values:

Return Values - QueryVariableInfo Service

The usage of non-volatile storage was determined

EFI_SUCCESS
successfully.

EFI_INVALID_PARAMETER An invalid combination of Attribute bits was supplied

The given Attribute bitmask is not supported on this
platform, and the MaximumVariableStorageSize,
RemainingVariableStorageSize, MaximumVariableSize are
undefined.

EFI_UNSUPPORTED

TempRamlInit API

This FSP API is called after coming out of reset and typically performs the following
functions - loads the microcode update, enables code caching for a region specified
by the bootloader and sets up a temporary memory area to be used prior to main
memorybeing initialized.

736809

I n te I ® FSP API Mode Interface

9.7.1

9.7.2

9.7.3

736809

The TempRamInit() API should be called using the same entry point calling
conventiondescribed in the previous section. However, platform limitations, such
as the unavailability of a stack, may require steps as mentioned below:

A hardcoded stack must be set up with the following values:
1. The return address where the TempRamInit() API returns control.
2. A pointer to the input parameter structure for TempRamInit() API when this

API isin 32-bit mode. When this API is in 64-bit mode, the pointer to the input
parameterstructure will be passed by RCX register instead of stack.

The ESP/RSP register must be initialized to point to this hardcoded stack.

Since the stack may not be writeable, this API cannot be called using the “call”
instruction, but needs to be jumped to directly.

The TempRamInit() API preserves the following general purpose registers EBX/RBX,
EDI/RDI, ESI/RSI, EBP/RBP and the following floating point registers MM0O, MM1. In
addition, for 64-bit FSP API mode, the preserved list will be extended to include
general purpose registers from R12 to R15 and following floating point registers
fromXMM6 to XMM15.The bootloader can use these registers to save data across
the TempRamInit() API call. Refer to Integration Guide for other register usage.

Calling this API may be optional. Refer to the Integration Guide for any
prerequisitesbefore directly calling FspMemorylInit() API.

If the bootloader uses this API, then it should be called only once after the system
comes out the reset, and it must be called before any other FSP API.

Prototype

typedef

EFI_STATUS

(EFIAPI *FSP TEMP RAM INIT) (
IN VOID *FsptUpdDataPtr
) ;

Parameters

Pointer to the FSPT _UPD data structure. If NULL, FSPwill
FsptUpdDataPtr use the defaults from FSP-T component. Refer tothe
Integration Guide for the structure definition.

Return Values

If this function is successful, the FSP initializes the ECX/RCX and EDX/RDX
registers to point to a temporary but writeable memory range available to the
bootloader. Register ECX/RCX points to the start of this temporary memory range
and EDX/RDX points to the end of the range [ECX/RCX, EDX/RDX], where
ECX/RCX is inclusive and EDX/RDX isexclusive in the range. The bootloader is free
to use the whole range described.

61

E t I
FSP API Mode Interface I n e ®

Typically, the bootloader can reload the ESP/RSP register to point to the end of
thisreturned range so that it can be used as a standard stack.

Table 12. Return Values - TempRamlInit() API

EFI_SUCCESS Temporary RAM was initialized successfully.
EFI_INVALID_PARAMETER Input parameters are invalid.
EFI_UNSUPPORTED The FSP calling conditions were not met.
EFI_DEVICE_ERROR Temp RAM initialization failed.

9.7.4 Description

After the bootloader completes its initial steps, it finds the address of the
FSP_INFO_HEADER and then from the FSP_INFO_HEADER finds the offset of the
TempRamlInit() APL. It then converts the offset to an absolute address by adding the
base of the FSP component and invokes the TempRamInit() API.

The temporary memory range returned by this API is intended to be primarily used
bythe bootloader as a stack. After this stack is available, the bootloader can switch
to using C functions. This temporary stack should be used to do only the minimal
initialization that needs to be done before memory can be initialized by the next call
into the FSP.

Refer to the Integration Guide for details on FSPT_UPD parameters.

9.8 FspMemorylnit API

This FSP API initializes the system memory. This FSP API accepts a pointer to a
datastructure that will be platform-dependent and defined for each FSP binary.

FspMemorylInit() API initializes the memory subsystem, initializes the pointer to
the HobListPtr, and returns to the bootloader from where it was called. Since the
systemmemory has been initialized in this API, the bootloader must migrate its
stack and datafrom temporary memory to system memory after this API.

9.8.1 Prototype

typedef

EFI_STATUS

(EFIAPI *FSP_MEMORY INIT) (
IN VOID *FspmUpdDataPtr,

OUT VOID **HobListPtr
) 7

62 736809

I n te I ® FSP API Mode Interface

9.8.2

9.8.3

Table 13.

9.8.4

736809

Parameters

Pointer to the FSPM_UPD data structure. If NULL, FSP will
FspmUpdDataPtr use the default from FSP-M component. Refer to the
Integration Guide for structure definition.

Pointer to receive the address of the HOB list as defined

HobListPtr inthe Section 13.7 - Appendix A - Data Structures

Return Values

The FspMemorylInit() API will preserve all the general-purpose registers except
EAX/RAX. The return status will be passed back through the EAX/RAX register.

Return Values - FspMemoryInit() API

EFI_SUCCESS FSP execution environment was initialized successfully.
EFI_INVALID_PARAMETER Input parameters are invalid.

EFI_UNSUPPORTED The FSP calling conditions were not met.
EFI_DEVICE_ERROR FSP memory initialization failed.
EFI_OUT_OF_RESOURCES Stack range requested by FSP is not met.

A reset is required. These status codes will not be

*
FSP_STATUS_RESET_REQUIRED_ returned during S3. See Section 13.2.2 for details.

A FSP variable access is required. See Section 9.6 for

FSP_STATUS_VARIABLE_REQUEST .
details.

Description

When FspMemorylInit() API is called, the FSP requires a stack available for its use.
Beforecalling the FspMemorylInit() API, the bootloader should setup a stack of
required size as mentioned in Integration Guide and initialize the
FSPM_ARCH UPD.StackBase and FSPM_ARCH UPD.StackSize parameters. FSP
consumes this stack region only inside this API.

A set of parameters that the FSP may need to initialize memory under special
circumstances, such as during an S3 resume or during fast boot mode, are
returned by the FSP to the bootloader during a normal boot. The bootloader is
expected to store these parameters in a non-volatile memory such as SPI flash
and return a pointer to this structure through FSPM_ARCH_UPD.NvsBufferPtr when
it is requesting the FSPto initialize the silicon under these special circumstances.
Refer to Section 11.2 FSP_NON VOLATILE STORAGE HOB2 and Section 11.3
FSP_NON_VOLATILE_ STORAGE HOB for the details on how to get the returned NVS
data from FSP.

This API should be called only once before system memory is initialized. This API will
produce a HOB list and update the HobListPtr output parameter. The HOB list will
contain a number of Memory Resource Descriptor HOB which the bootloader can use
to understand the system memory map. The bootloader should not expect a
completeHOB list after the FSP returns from this API. It is recommended for the

63

E t I
FSP API Mode Interface I n e ®

bootloader to save this HobListPtr returned from this API and parse the full HOB
list after the FspSiliconInit() API.

When this API returns, the bootloader data and stack are still in temporary
memory. It is the responsibility of the bootloader to

e Migrate any data from temporary memory to system memory

e Setup a new bootloader stack in system memory

If an initialization step requires a reset to take effect, the FspMemoryInit() API will
returnone of the FSP_STATUS RESET REQUIRED statuses as described in Section
9.4. ThisAPI will not request a reset during S3 resume flow.

9.9 TempRamEXxit API

This FSP API is called after FspMemorylInit() AP1. This FSP API tears down the
temporary memory set up by TempRamiInit() API. This FSP API accepts a pointer to
a data structurethat will be platform dependent and defined for each FSP binary.

TempRamExit() API provides bootloader an opportunity to get control after system
memory is available and before the temporary memory is torn down.

This API is an optional API, refer to Integration Guide for prerequisites before
directlycalling FspSiliconInit() API.

9.9.1 Prototype

typedef
EFI STATUS
(EFIAPI *FSP_TEMP_RAM_EXIT) (
IN VOID *TempRamExitParamPtr
) ;
9.9.2 Parameters

Pointer to the TempRamExit parameters structure. This
TempRamExitParamPtr structure is normally defined in the Integration Guide. If it isnot
defined in the Integration Guide, pass NULL.

9.9.3 Return Values

The TempRameExit() API will preserve all the general-purpose registers except EAX/RAX.
The return status will be passed back through the EAX/RAX register.

Table 14. Return Values - TempRamEXxit() API

EFI_SUCCESS FSP execution environment was initialized successfully.
EFI_INVALID_PARAMETER Input parameters are invalid.
EFI_UNSUPPORTED The FSP calling conditions were not met.

64 736809

intel

9.9.4

9.10

9.10.1

9.10.2

9.10.3

736809

FSP API Mode Interface

‘ EFI_DEVICE_ERROR

Temporary memory exit.

Description

This API should be called only once after the FspMemoryInit() API and before

FspSiliconInit() API.

This API tears down
the cache to normal

the temporary memory area set up in the cache and returns
mode of operation. After the cache is returned to normal

mode of operation, any data that was in the temporary memory is destroyed. It is
therefore expected that the bootloader migrates any bootloader specific data that it
might havehad in the temporary memory area and also set up a stack in the
system memory before calling TempRameExit() API.

After the TempRamEXxit() API returns, the bootloader is expected to set up the BSP
MTRRs to enable caching. The bootloader can collect the system memory map

information by parsi
andenable caching.

ng the HOB data structures and use this to set up the MTRR

FspSiliconInit API

This FSP API initializes the processor and the chipset including the IO controllers in

thechipset to enable

normal operation of these devices.

This API should be called only once after the system memory has been initialized,
datafrom temporary memory migrated to system memory and cache
configuration has been initialized.

Prototype
typedef
EFI STATUS
(EFIAPI *FSP SILICON INIT) (
IN VOID *FspsUpdDataPtr
) ;
Parameters
Pointer to the FSPS_UPD data structure. If NULL, FSP will
FspsUpdDataPtr use the default parameters. Refer to the Integration Guide for
structure definition.

Return Values

The FspSiliconInit API will preserve all the general-purpose registers except
EAX/RAX.The return status will be passed back through the EAX/RAX register.

65

FSP API Mode Interface I n te I ®

Table 15. Return Values - FspSiliconInit() API

9.10.4

9.11

66

FSP execution environment was initialized

EFI_SUCCESS
successfully.

EFI_INVALID_PARAMETER Input parameters are invalid.
EFI_UNSUPPORTED The FSP calling conditions were not met.
EFI_DEVICE_ERROR FSP silicon initialization failed.

A reset is required. These status codes will not be

*
FSP_STATUS_RESET_REQUIRED_ returned during S3.

A FSP variable access is required. See Section 9.6

FSP_STATUS_VARIABLE_REQUEST K
for details.

Description

This API should be called only once after the FspMemoryInit() API (if the bootloader
isnot using TempRamExit() API) or the TempRamEXxit() APL.

This FSP API accepts a pointer to a data structure that will be platform dependent
anddefined for each FSP binary. This will be documented in the Integration Guide.

This API adds HOBs to the HobListPtr to pass more information to the bootloader. To
obtain the additional information, the bootloader must parse the HOB list again
after the FSP returns from this API.

If an initialization step requires a reset to take effect, the FspSiliconInit() API will
returnan FSP_STATUS_RESET_REQUIRED as described in Section 9.4. This API will
not request a reset during S3 resume flow.

FspMultiPhaseMem/SilInit API

This FSP API provides multi-phase memory and silicon initialization, which brings
greater modularity to the existing FspMemorylInit() and FspSiliconInit() API. Increased
modularity is achieved by adding an extra API to FSP-M and FSP-S. This allows the
bootloader to add board specific initialization steps throughout the MemoryInit and
SiliconInit flows as needed. The FspMemorylInit() API is always called before
FspMultiPhaseMemlInit(); it is the first phase of memory initialization. Similarly, the
FspSiliconInit() API is always called before FspMultiPhaseSiInit(); it is the first phase of
silicon initialization. After the first phase, subsequent phases are invoked by calling
theFspMultiPhaseMem/Silnit() API.

The FspMultiPhaseMem!Init() API may only be called after the FspMemorylInit() API and
before the FspSiliconInit() API; or in the case that FSP-T is being used, before the
TempRamExit() APL. The FspMultiPhaseSiInit() API may only be called after the
FspSiliconInit() API and before NotifyPhase() API; or in the case that FSP-I is being used,
before the FspSmmInit() API. The multi-phase APIs may not be called at any other
time.

736809

. t I
I n e ® FSP API Mode Interface

9.11.1

9.11.2

9.11.3

736809

Prototype

typedef
EFI_STATUS
(EFIAPI *FSP MULTI PHASE INIT) (
IN FSP MULTI PHASE PARAMS *MultiPhaselInitParamPtr

)7

Parameters

Pointer to the FSP_MULTI_PHASE_PARAMS
data structure.

MultiPhaselInitParamPtr

Related Definitions

typedef enum {

EnumMultiPhaseGetNumberOfPhases = 0x0,
EnumMultiPhaseExecutePhase = 0x1,
EnumMultiPhaseGetVariableRequestInfo = 0x2,
EnumMultiPhaseCompleteVariableRequest = 0x3

} FSP_MULTI PHASE ACTION;

typedef struct {

IN FSP_MULTI_PHASE_ACTION MultiPhaseAction;
IN UINT32 PhaselIndex;

IN OUT VOID *MultiPhaseParamPtr;
} FSP_MULTI PHASE PARAMS;
typedef struct {

UINT32 NumberOfPhases;

UINT32 PhasesExecuted;

} FSP _MULTI PHASE GET NUMBER OF PHASES PARAMS;

typedef enum {

EnumFspVariableRequestGetVariable = 0x0,
EnumFspVariableRequestGetNextVariableName = 0x1,
EnumFspVariableRequestSetVariable = 0x2,

EnumFspVariableRequestQueryVariableInfo = 0x3
} FSP_VARIABLE REQUEST TYPE;

typedef struct {

IN FSP_VARIABLE REQUEST TYPE VariableRequest;

IN OUT CHAR1G6 *VariableName;

IN OUT UINTG64 *VariableNameSize;
IN OUT EFI GUID *VariableGuid;

IN OUT UINT32 *Attributes;

IN OUT UINTG64 *DataSize;

IN OUT VOID *Data;

67

E t I
FSP API Mode Interface I n e ®

68

OUT UINT64 *MaximumVariableStorageSize;
OUT UINT64 *RemainingVariableStorageSize;
ouT UINT64 *MaximumVariableSize;

} FSP_MULTI PHASE VARIABLE REQUEST INFO PARAMS;
typedef struct {

EFI STATUS VariableRequestStatus;
} FSP_MULTI PHASE COMPLETE VARIABLE REQUEST PARAMS;

EnumMultiPhaseGetNumberOfPhases

This action returns the number of MemoryInit or SiliconInit phases that the FSP
supports. This indicates the maximum number of times the FspMultiPhaseMem/Silnit()API
may be called by the bootloader with the EnumMultiPhaseExecutePhase action given.

When this action is called, the bootloader must set Phaselndex to zero and provide
aninstance of FSP_MULTI_PHASE_GET_NUMBER_OF_PHASES_PARAMS to the
MultiPhaseParamPtr. The NumberOfPhases value inside this instance will be used to return
the number of phases to the bootloader. The PhasesExecuted value inside this
instance informs the bootloader of how many of those phases have already been
executed thus far. If the bootloader has not yet executed any phases, then the
PhasesExecuted integer will be set to 0x0.

The EnumMultiPhaseGetNumberOfPhases action can be invoked by the bootloader asmany
times as desired. It only retrieves the current status; it does not modify it.

EnumMultiPhaseExecutePhase

This action executes the memory or silicon initialization phase provided by the
Phaselndex parameter. The MultiPhaseParamPtr shall be NULL. Note that Phaselndex isa
one-based index, not a zero-based index. On the first call, Phaselndex shall be
0x1; setting Phaselndex to 0x0 will result in EFI INVALID PARAMETER being
returned.

EnumMultiPhaseGetVariableRequestInfo

This action provides information to the bootloader about a pending non-volatile
I/O request being made by the FSP. When FSpP STATUS VARIABLE REQUEST is
returned, the bootloader shall invoke FspMultiPhaseMem/Silnit() with the
EnumMultiPhaseGetVariableRequestInfo action given.

When this action is called, the bootloader must set PhaselIndex to zero and provide
aninstance of FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS to the
MultiPhaseParamPtr. The FSP will copy data detailing its pending non-volatile I/O
request into this bootloader provided buffer. The bootloader will then use this data
to

service the FSP’s access request. Please see Section 9.6 for a detailed description of
thiscalling sequence.

EnumMultiPhaseCompleteVariableRequest

This action informs the FSP that the variable access request is complete.

736809

I n te I ® FSP API Mode Interface

9.11.4

When this action is called, the bootloader must set Phaselndex to zero and provide
aninstance of FSP_MULTI_PHASE_COMPLETE_VARIABLE_REQUEST_PARAMS to the
MultiPhaseParamPtr. The VariableRequestStatus value inside this instance shall be setto
indicate to the FSP whether the variable access request was successful or not
according to the return values provided in Section 9.6.3.

In the case where the bootloader must return data to the FSP, the bootloader
must write any relevant data into the buffer(s) provided by the FSP via
FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS before invoking this action.
This action will allow the FSP will continue execution where it left off. Please see
Section 9.6 for a detailed description of this calling sequence.

Return Values

The FspMultiPhaseMem/Silnit API will preserve all the general-purpose registers
except EAX/RAX. The return status will be passed back through the EAX/RAX
register.

Table 16. Return Values - FspMultiPhaseSiInit() API

9.11.5

736809

FSP execution environment was initialized

EFI_SUCCESS
successfully.

EFI_INVALID_PARAMETER Input parameters are invalid.
EFI_UNSUPPORTED The FSP calling conditions were not met.
EFI_DEVICE_ERROR FSP silicon initialization failed.

A reset is required. These status codes will not be
returned during S3. This status code can only be
FSP_STATUS_RESET_REQUIRED_* givenwhen either the
EnumMultiPhaseCompleteVariableRequest or
EnumMultiPhaseExecutePhase actions are given.

A FSP variable access is required. See Section 9.6
fordetails. This status code can only be given when
eitherthe EnumMultiPhaseCompleteVariableRequest or
EnumMultiPhaseExecutePhase actions are given.

FSP_STATUS_VARIABLE_REQUEST

Description

This API may only be called after the FspSiliconInit() API and before NotifyPhase() API,and
may not be called at any other time.

An FSP binary may optionally implement multi-phase silicon initialization. When
usingmulti-phase silicon initialization, the FspSiliconInit() API is always called first; it
is the first phase of silicon initialization. After the first phase, subsequent phases are
invoked by calling the FspMultiPhaseSilInit() API. When single-phase silicon
initialization is used,only the FspSiliconInit() API is called.

If the FspMultiPhaseSilnitEntryOffset field in FSP_INFO_HEADER is non-zero, the FSP
includes support for multi-phase SiliconlInit, see Section 5.1.1 for further details.
To enable multi-phase, the bootloader must set

FSPS_ARCH UPD.EnableMultiPhaseSiliconInit to a non-zero value.

69

ﬂ t I
FSP API Mode Interface I n e ®

9.12

9.12.1

9.12.2

9.12.3

70

If FSPS_ARCH_UPD.EnableMultiPhaseSiliconInit is set to a non-zero value, then
the bootloader must invoke the FspMultiPhaseSiInit() API with the
EnumMultiPhaseExecutePhase parameter n times, where n == NumberOfPhases returned by
EnumMultiPhaseGetNumberOfPhases. The bootloader must invoke the FspMultiPhaseSiInit()
API with the EnumMultiPhaseExecutePhase parameter in the correct sequence; Phaselndex
must be set to 1 on the first call, 2 on the second call, and so on. The bootloader
must complete the multi-phase sequence by invoking theFspMultiPhaseSiInit() API
with Phaselndex == NumberOfPhases before invoking the NotifyPhase() API with the
AfterPciEnumeration parameter.

If FSPS_ARCH_UPD.EnableMultiPhaseSiliconInit is set to a zero or if the
FspMu/t/PhaseS/In/tEntryOffset field in FSP_INFO_HEADER is zero, then the bootloader
must not invoke the FspMultiPhaseSiInit() API at all.

The breakdown of which silicon initialization steps are implemented in which phase
may vary for different processor and the chipset designs and will be detailed in the
Integration Guide.

This API may add HOBs to the HobListPtr to pass more information to the
bootloader.To obtain the additional information, the bootloader must parse the
HOB list again after the FSP returns from this API.

If an initialization step requires a reset to take effect, the FspMultiPhaseSiInit() API will
return an FSP_STATUS_RESET REQUIRED as described in Section 9.4. This API will not
request a reset during S3 resume flow.

FspSmmlInit API

This FSP API initializes SMM and provides any OS runtime silicon services;
including Reliability, Availability, and Serviceability (RAS) features implemented by
the CPU.

Prototype

typedef

EFI_STATUS

(EFIAPI *FSP_SMM INIT) (

IN VOID *FspiUpdDataPtr
) ;

Parameters

FspiUpdDataPtr Pointer to instance of FSPI_UPD structure.

Return Values

The FspSmmiInit() API will preserve all the general-purpose registers except RAX.
Thereturn status will be passed back through the RAX register.

736809

' t I
I n e ® FSP API Mode Interface

Table 17. Return Values - FspSmmInit() API

9.12.4

9.13

9.13.1

9.13.2

9.13.3

736809

EFI_SUCCESS FSP execution environment was initialized successfully.

EFI_INVALID_PARAMETER Input parameters are invalid.

EFI_UNSUPPORTED The API calling conditions were not met.
Description

This API should only be called once after the FspSiliconInit() API. It may only be
calledon the boot strap processor (BSP).

This FSP API accepts a pointer to a data structure that will be platform dependent
anddefined for each FSP binary. This will be documented in the Integration Guide.

NotifyPhase API

This FSP API is used to notify the FSP about the different phases in the boot
process. This allows the FSP to take appropriate actions as needed during different
initializationphases. The phases will be platform dependent and will be documented
with the FSP release. The current FSP specification supports three notify phases:

e Post PCI enumeration
e Ready to Boot

e End of Firmware

Prototype

typedef

EFI_STATUS

(EFIAPI *FSP NOTIFY PHASE) (

IN NOTIFY PHASE PARAMS *NotifyPhaseParamPtr
)

Parameters

NotifyPhaseParamPtr Address pointer to the NOTIFY_PHASE_PARAMS

Related Definitions

typedef enum {

EnumInitPhaseAfterPciEnumeration = 0x20,
EnumInitPhaseReadyToBoot = 0x40,
EnumInitPhaseEndOfFirmware = 0xFO

} FSP_INIT PHASE;
typedef struct {

71

E t I
FSP API Mode Interface I n e ®

FSP_INIT PHASE Phase;
} NOTIFY PHASE PARAMS;

EnumlInitPhaseAfterPciEnumeration

This stage is notified when the bootloader completes the PCI enumeration and the
resource allocation for the PCI devices is complete.

EnumInitPhaseReadyToBoot
This stage is notified just before the bootloader hand-off to the OS loader.
EnumInitPhaseEndOfFirmware

This stage is notified just before the firmware/Preboot environment transfers
management of all system resources to the OS or next level execution
environment.

When booting to non-UEFI OS, this stage is notified immediately after the
EnumInitPhaseReadyToBoot. When booting to UEFI OS this stage is notified at
ExitBootServices callback from OS.

9.13.4 Return Values

The NotifyPhase() API will preserve all the general purpose registers except EAX/RAX.
The return status will be passed back through the EAX/RAX register.

Table 18. Return Values - NotifyPhase() API

EFI_SUCCESS The notification was handled successfully.
EFI_UNSUPPORTED The notification was not called in the proper order.
EFI_INVALID_PARAMETER The notification code is invalid.

A reset is required. These status codes will not be

*
FSP_STATUS_RESET_REQUIRED_ returned during S3.

9.13.5 Description

EnumlInitPhaseAfterPciEnumeration

FSP will use this notification to do some specific initialization for processor and
chipsetthat requires PCI resource assignments to have been completed.

This API must be called before executing 3™ party code, including PCI Option
ROM, forsecure design reasons.

On S3 resume path this API must be called before the bootloader hand-off to the
OSresume vector.

EnumInitPhaseReadyToBoot
FSP will perform required configuration by the BWG / BIOS Specification when it is

notified that the bootloader is ready to transfer control to the OS loader.

72 736809

I n te I ® FSP API Mode Interface

736809

On S3 resume path this API must be called after EnumInitPhaseAfterPciEnumeration
notification and before the bootloader hand-off to the OS resume vector.
EnumInitPhaseEndOfFirmware

FSP can use this notification to perform some handoff of the system resources
beforetransferring control to the OS.

When booting to non-UEFI OS this stage is notified immediately after the
EnumInitPhaseReadyToBoot. When booting to UEFI OS this stage is notified at
ExitBootServices callback from OS.

On the S3 resume path this API must be called after EnumInitPhaseReadyToBoot

notification and before the bootloader hand-off to the OS resume vector.

After this phase, the whole FSP flow is considered to be complete and the results of
any further FSP API calls are undefined.

If an initialization step requires a reset to take effect, the NotifyPhase() API will
return anFsSP_STATUS RESET REQUIRED as described in Section 9.4. This API will not
request areset during S3 resume flow.

88

73

. t I
FSP Dispatch Mode Interface I n e ®

10.0 FSP Dispatch Mode Interface

10.1

Dispatch mode is an optional boot flow intended to enable FSP to integrate well in
toUEFI bootloader implementations. The FSP_INFO_HEADER indicates if an FSP
implements dispatch mode, Refer Section 5.1.1 for further details.

Dispatch Mode Design

Figure 9. Dispatch Mode Design

74

PCD

Database) < ———

UEFI Boot FSP Binary
Loader

X64
NotifyPhase

drivers

Dispatch mode is intended to enable a boot flow that is as close to a standard
UEFI boot flow as possible. FSP dispatch mode fully conforms to the PI
Specification and assumes the boot loader will follow the standard four phase PI
boot flow progressing from SEC phase to PEI phase, to DXE phase, and to BDS
phase. It is recommended thatthe reader have knowledge of the contents of the PI
Specification before continuing.

In dispatch mode, FSP-T, FSP-M, FSP-S, and FSP-I (in FSP SMM model 3) are
containers that expose firmware volumes (FVs) directly to the bootloader. The
PEIMs in these FVs are executed directly in the context of the PEI environment
provided by the bootloader.FSP-T, FSP-M, FSP-S, and FSP-I could contain one or
multiple FVs. The exact number of FVs contained in FSP-T, FSP-M, FSP-S, and FSP-I
will be described in the Integration Guide. In dispatch mode, the PPI database,
PCD database, and HOB list are shared between the bootloader and the FSP.

UPDs are not needed to provide a mechanism to pass configuration data from the
bootloader to the FSP. Instead, configuration data is communicated to the FSP
using PCDs and PPIs. These mechanisms are native to bootloader implementations
conforming to the PI Specification and constitute a more natural method of
supplyingconfiguration data to the FSP. These PCDs and PPIs are platform specific.
The FSP Distribution Package will contain source code definitions of the
configuration data structures consumed by the FSP. The configuration data
structures will also bedescribed by the Integration Guide.

736809

I n te I ® FSP Dispatch Mode Interface

10.2

10.3

736809

The bootloader must provide the PCD database implementation. Any dynamic PCDs
consumed by the FSP must be included in the PCD database provided by the
bootloader. The FSP Distribution Package will contain a DSC file which defines all
PCDsused by the FSP. The recommended method of including these PCDs is to use
the !include directive in the bootloader’s top-level platform DSC file. Because the
FSP is a pre-compiled binary, all dynamic PCDs consumed by the FSP must be of
the DynamicEx type. Refer to MdeModulePkg/Universal/PCD/Pei/Pcd.inf for more details on
platform token numbers. In addition to the DSC file included in the FSP Distribution
Package, the Integration Guide will also list the PCDs (along with TokenSpace GUID and
TokenNumber) consumed by the FSP.

In dispatch mode, the NotifyPhase() API is not used. Instead, FSP-S contains DXE
drivers that implement the native callbacks on equivalent events for each of the
NotifyPhase() invocations. The inclusion of DXE drivers allows dispatch mode to
provide capabilities that would not be possible in API mode.

PEI Phase Requirements

PEIMs contained in FSP firmware volumes are intended to be executed within the
processor context and calling conventions defined by the PI Specification, Volume 1
foreither the IA-32 or x64 platforms. The exact target platform will be specified in
the Integration Guide.

PEIMs contained in the FSP shall use a subset of the API provided by the PEI
Foundation. Specifically, PEIMs contained in FSP firmware volumes should not use
thefollowing architecturally defined PPIs:

e EFI_PEI_READ_ONLY_VARIABLE2_PPI

If BIT3 (Variable Support) of the ImageAttribute field in the FSP_INFO_HEADER is set,
the FSP shall use the EDKII_PEI_VARIABLE_PPI to access NV storage. As
EFI_PEI_READ_ONLY_VARIABLE2_PPI only supports reads, it is considered legacy,
andshould not be used. If BIT3 is not set, variable access from PEIMs contained in
FSP firmware volumes is forbidden.

DXE and BDS Phase Requirements

DXE drivers contained in FSP firmware volumes are intended to be executed within
the processor context and calling conventions defined by the PI Specification,
Volume 2 forx64 platforms.

DXE drivers contained in the FSP shall use a subset of the API provided by the DXE
Foundation. Specifically, DXE drivers contained in FSP firmware volumes shall not
usethe following UEFI services:

e ExitBootServices()

e SetWatchdogTimer()

e SetTime()

e SetWakeupTime()

e UpdateCapsule()

e QueryCapsuleCapabilities()

75

FSP Dispatch Mode Interface I n e ®

10.4

10.4.1

10.4.2

76

If BIT3 (Variable Support) of the ImageAttribute field in the FSP_INFO_HEADER is notset,
then DXE drivers contained in FSP firmware volumes shall not use the following
UEFI services:

e GetVariable()

¢ GetNextVariableName()
e SetVariable()

e QueryVariableInfo()

The FSP may use the following PI Specification defined events during DXE phase:

1. EFI_END_OF_DXE_EVENT_GROUP_GUID - The PI Specification requires the
bootloader to signal this event prior to invoking any UEFI drivers or
applications that are not from the platform manufacturer or connecting
consoles.

2. EFI_PCI_ENUMERATION_PROTOCOL - The PI Specification requires the bootloader
to install this protocol after PCI enumeration is complete.

3. EFI_EVENT_GROUP_READY_TO_BOOT - The PI Specification requires the bootloader
to signal this event when it is about to load and execute a boot option.

Create an event to be notified when ExitBootServices() is invoked using
EVT_SIGNAL_EXIT_BOOT_SERVICES.

DXE drivers may use other events for platform specific use cases. Any additional
eventsbeyond those described above will be documented in the Integration Guide.

Dispatch Mode API

FSP dispatch mode fully conforms to the PI Specification. Accordingly, dispatch
modedoes not require many FSP specific API definitions since the PI Specification
already defines most API. This section therefore only describes FSP specific
extensions to the PI Specification. Most FSP API will be platform specific and
therefore documented in the Integration Guide.

TempRamlInit API

The PI Specification defines a code module format for PEI and DXE (PEIMs and DXE
drivers, respectively). However, the PI Specification does not define a module
format forSEC phase. Temporary RAM must be initialized during the SEC phase.
Therefore, in dispatch mode FSP-T uses the same API defined in Section 9.7 to
provide TempRamInit() to the bootloader SEC implementation.

EFI PEI Core Firmware Volume Location PPI

If the boot flow described in Section 7.2.2 is followed, the PEI Foundation does not
reside in the Boot Firmware Volume (BFV). In compliance with the PI Specification v1.7,
SEC must pass the EFI_PEI_CORE_FV_LOCATION_PPI as a part of the PPI list provided
to the PEI Foundation Entry Point. Refer Section 6.3.9 of the PI Specification v1.7
Volume 1 for more details on this PPI. If the alternate boot flow described in
Section 7.2.3 is followed, then the PEI Foundation resides in the BFV. Accordingly,
this PPI should not be produced.

736809

intel.

10.4.3

10.4.3.1

10.4.3.2

10.4.3.3

10.4.3.4

10.4.3.5

10.4.4

10.4.4.1

10.4.4.2

736809

FSP Temporary RAM Exit PPI

FSP_TEMP_RAM_EXIT_PPI

Summary

Tears down the temporary memory set up by TempRamInit() API.
GUID

#define FSP_TEMP RAM EXIT GUID \

{Oxbclcfbdb, 0x7e50, 0x42be, \
{Oxb4, 0x87, 0x22, OxeO0, Oxa9, O0x0Oc, 0xb0O, 0x52}}

Prototype
typedef struct {

FS P_TEMP_RAM_EXI T TempRamExit;
} FSP_TEMP RAM EXIT PPI;

Parameters

FSP Dispatch Mode Interface

TempRamEXxit
API.

Tears down the temporary memory set up by TempRamInit()

Description

This PPI provides the equivalent functionality as the TempRamEXxit() function
defined in Section 9.9 to bootloaders that use the FSP in dispatch mode. The

TempRamExit() function defined in this PPI tears down the temporary memory set up

by TempRamiInit()API. Bootloaders that use dispatch mode must not use the
TempRamExit() API defined in Section 9.9, they must use this PPI instead.

FSP_TEMP_RAM_EXIT_ PPI.TempRamExit ()

Summary

Tears down the temporary memory set up by TempRamInit() API.

Prototype
typedef
EFI_STATUS
(EFIAPI *FSP _TEMP RAM EXIT) (

IN VOID *TempRamExitParamPtr
) 7

77

ﬂ t I
FSP Dispatch Mode Interface I n e ®

10.4.4.3

10.4.4.4

10.4.4.5

Table 19.

10.4.5

10.4.5.1

78

Parameters

Pointer to the TempRamExit parameters structure. This
TempRamExitParamPtr structure is normally defined in the Integration Guide. Ifit is
not defined in the Integration Guide, pass NULL.

Description

This API is intended to be used by the bootloader’s implementation of
EFI_PEI_TEMPORARY_RAM_DONE_PPI. This API tears down the temporary memory
set up by the TempRamInit() API. This API accepts a pointer to a data structure that
willbe platform dependent and defined for each FSP binary.

The FSP_TEMP_RAM_EXIT_PPI->TempRamExit() API provides the bootloader an opportunity
to get control after system memory is available and before the temporarymemory is
torn down. Therefore, is the boot loader’s responsibility to call
FSP_TEMP_RAM_EXIT_PPI->TempRamExit() when ready.

This API is an optional API, refer to the Integration Guide for prerequisites before
installing the EFI_PEI_FIRMWARE_VOLUME_INFO_PPI instances to begin dispatch of
PEIMs in FSP-S firmware volume(s).

Implementation Note: The UefiCpuPkg in EDK2 provides a reference
implementationof SEC phase. If the boot loader elects to use this, at time of writing
the UefiCpuPkg implementation of SEC core produces the
EFI_PEI_TEMPORARY_RAM_DONE_PPI. TheTemporaryRamDone() implementation in
SEC core will call SecPlatformDisableTemporaryMemory(), this function is implemented by
the boot loader. The boot loader implementation of this function would then locate
FSP_TEMP_RAM_EXIT_PPI and call TempRamExit() when ready.

Return Values

Return Values - TempRamEXxit() PPI

EFI_SUCCESS FSP execution environment was initialized
successfully.

EFI_INVALID_PARAMETER Input parameters are invalid.

EFI_UNSUPPORTED The FSP calling conditions were not met.

EFI_DEVICE_ERROR Temporary memory exit.

FSP-M Architectural Configuration PPI

FSPM_ARCH_CONFIG_PPI

Summary

Architectural configuration data for FSP-M.

736809

ﬂ t I
I n e ® FSP Dispatch Mode Interface

10.4.5.2 GUID
#define FSPM ARCH CONFIG GUID \

{0x824d5a3a, 0xaf92, 0x4cOc, \
{0x9f, 0x19, 0x19, 0x52, 0x6d, Oxca, Ox4a, Oxbb}}

10.4.5.3 Prototype

typedef struct {

UINTS Revision;

UINTS Reserved[3]

VOID *NvsBufferPtr;
UINT32 BootLoaderTolumSize;
UINTS Reservedl [4];

} FSPM ARCH CONFIG PPI;

10.4.5.4 Parameters

Revision of the structure is 1 for this version of the

Revision e s
specification.

This value is deprecated starting with v2.4 of this
specification and will be removed in an upcoming
version of this specification. If BIT3 (Variable
Support) in the ImageAttribute field of the
FSP_INFO_HEADER is set, then this value is unused
and must be set to NULL. In this case, the FSP shall
use the FSP variable services described inSection
10.4.6 instead.

Pointer to the non-volatile storage (NVS) data buffer. If
it isNULL it indicates the NVS data is not available.
Refer to Section 11.2 and 11.3 for more details.

NvsBufferPtr

Size of memory to be reserved by FSP below "top of
BootloaderTolumSize low usable memory" for bootloader usage. Refer to
Section 11.4for more details.

10.4.5.5 Description

This PPI contains architectural configuration data that is needed by PEIMs in FSP-M
and/or FSP-S. It is the responsibility of the bootloader to install this PPI. The
bootloader must be able to provide these data within the pre-memory PEI
timeframe. In adherence with the weak ordering requirement for PEIMs, any PEIM
contained in FSPthat uses this PPI shall either include this PPI in its DEPEX or shall
register a callback using (*PeiServices)->NotifyPpi () and refrain from accessing these
data until the callback is invoked by the PEI Foundation.

As a performance optimization, it is recommended (but not required) that the boot
loader install this PPI before installing EFI_PEI_FIRMWARE_VOLUME_INFO_PPI
instances for the firmware volume(s) contained in FSP-M. This will reduce the
numberof times the PEI Dispatcher will need to loop in order to complete PEI phase.

736809 79

' t I
FSP Dispatch Mode Interface I n e ®

10.4.6 EDK II PEI Variable PPI

EDKII_PEI_VARIABLE_PPI

10.4.6.1 Summary

The EDKII PEI Variable PPI provides access to the FSP Variable Services.
10.4.6.2 GUID

#define EDKII PEI VARIABLE PPI GUID \

{Oxe7b2cd04, Ox4bl4d, Ox44c2, \
{0xb7, 0x48, Oxce, Oxaf, 0x2b, 0x66, Ox4a, O0xb0}}

10.4.6.3 Prototype

typedef struct {

EDKII PEI GET VARIABLE GetVariable;

EDKII PEI GET NEXT VARIABLE NAME GetNextVariableName;
EDKII PEI SET VARIABLE SetVariable;

EDKII PEI QUERY VARIABLE INFO QueryVariableInfo;

} EDKII PEI VARIABLE PPI;

10.4.6.4 Parameters

GetVariable Retrieves a variable's value using its name and GUID.

This service is called multiple times to retrieve the name

GetNextVariableName and GUID of all variables currently available.

Stores a new value to the variable with the given name

SetVariable andGUID.

This service informs the FSP of how much nonvolatile
storage space is allocated for the storage of variables,
how much is remaining, and what the maximum allowable
size isfor each variable.

QueryVariableInfo

10.4.6.5 Description
The EDKII PEI Variable PPI provides access to the FSP variable services described
in Section 9.6. The bootloader is required to publish this PPI in dispatch mode. In
dispatchmode, the FSP calls this PPI directly instead of using the Multi-Phase

invocation sequence described in Section 9.6.1. Generally this PPI provides access
to the UEFI variable services, but other implementations are possible.

10.4.7 EDKII_PEI_VARIABLE_PPI.GetVariable ()

10.4.7.1 Summary

This service retrieves a variable's value using its name and GUID.

80 736809

' t I
I n e ® FSP Dispatch Mode Interface

10.4.7.2 Prototype

typedef

EFI_STATUS

(EFIAPI *EDKII PEI GET VARIABLE) (

IN CONST EDKII PEI VARIABLE PPI *This,

IN CONST CHAR1G6 *VariableName,

IN CONST EFI GUID *VariableGuid,

ouT UINT32 *Attributes, OPTIONAL
IN OUT UINTN *DataSize,

ouT VOID *Data OPTIONAL

) 7

10.4.7.3 Parameters

This A pointer to this instance of the EDKII_PEI_VARIABLE_PPI.

A pointer to a null-terminated string that is the variable's
name.

VariableName

A pointer to an EFI_GUID that is the variable's GUID. The

VariableGuid combination of VariableGuid and VariableName must be unique.

Attributes If non-NULL, on return, contains the variable's attributes.

On entry, points to the size in bytes of the Data buffer. On

DataSize return, points to the size of the data returned in Data.

Points to the buffer which will hold the returned variable
Data value.May be NULL with a zero DataSize in order to
determine the size of the buffer needed.

10.4.7.4 Description

Reads the specified variable from non-volatile storage. If the Data buffer is too
small tohold the contents of the variable, the error EFI_BUFFER_TOO_SMALL is
returned andDataSize is set to the required buffer size to obtain the data.

10.4.7.5 Return Values

Table 20. Return Values - GetVariable()

EFI_SUCCESS The variable was read successfully.

EFI_NOT_FOUND The variable was not found.

The DataSize is too small for the resulting data. DataSize is

EFI_BUFFER_TOO_SMALL updated with the size required for the specified variable.

EFI_INVALID_PARAMETER VariableName, VariableGuid, DataSize or Data is NULL.

The variable could not be retrieved because of a device

EFI_DEVICE_ERROR
error.

736809 81

. t I
FSP Dispatch Mode Interface I n e ®

10.4.8

10.4.8.1

10.4.8.2

10.4.8.3

10.4.8.4

82

EDKII_PEI_VARIABLE_PPI.GetNextVariableName ()

Summary

This service is called multiple times to retrieve the name and GUID of all variables
currently available.

Prototype
typedef
EFI_STATUS
(EFIAPI *EDKI I PE I_GET_NEXT_VZ—\RIABLE_NAME) (
IN CONST EDKII PEI VARIABLE PPI *This,
IN OouT UINTN *VariableNameSize,
IN ouT CHARL1G6 *VariableName,
IN OUT EFI GUID *VariableGuid
)i
Parameters
This A pointer to this instance of the EDKII_PEI_VARIABLE_PPI.

On entry, points to the size of the buffer pointed to by
VariableNameSize VariableName. On return, the size of the buffer needed to
contain the next variable’s name.

A pointer to a buffer containing a null-terminated string that
isthe variable's name. On entry, the buffer contains the
current variable name. On return, the buffer contains the
VariableName next variable’s name.

If the buffer size (indicated by VariableNameSize) is large enough
to hold the next variable’s name, the bootloader shallcopy
the next variable’s name to this buffer.

A pointer to a buffer containing an EFI_GUID that is the
VariableGuid currentvariable's GUID. On return, the bootloader shall copy
the next variable’s GUID to this buffer.

Description
Return the next variable name and GUID.

This function is called multiple times to retrieve the VariableName and VariableGuid
ofall variables currently available in the system. On each call, the previous results
are passed into the interface, and, on return, the interface returns the data for the
next variable. To get started, VariableName should initially contain L."\0" and the
buffer pointed to by VariableNameSize should contain sizeof (CHAR16). When the
entire variable list has been returned, EFI_NOT_FOUND is returned.

736809

intel.

10.4.8.5 Return Values

FSP Dispatch Mode Interface

Table 21. Return Values - GetNextVariableName()

EFI_SUCCESS

The next variable name was read successfully.

EFI_NOT_FOUND

All variables have been enumerated.

EFI_BUFFER_TOO_SMALL

The VariableNameSize is too small for the resulting data.
VariableNameSize is updated with the size required for the
specified variable.

EFI_INVALID_PARAMETER

VariableName, VariableGuid, or VariableNameSize is NULL.

EFI_DEVICE_ERROR

The variable name could not be retrieved because of a
deviceerror.

10.4.9 EDKII_PEI_VARIABLE_PPI.SetVariable ()

10.4.9.1 Summary

Stores a new value to the variable with the given name and GUID.

10.4.9.2 Prototype

typedef
EFI STATUS

(EFIAPI *EDKII PEI SET VARIABLE) (
EDKII PEI VARIABLE PPI *This,

IN CONST
IN

IN

IN

IN

IN

)7

10.4.9.3 Parameters

CHAR16 *VariableName,
EFI GUID *VariableGuid,
UINT32 Attributes,
UINTN DataSize,

VOID *Data

This

A pointer to this instance of the EDKII_PEI_VARIABLE_PPI.

VariableName

A Null-terminated string that is the name of the variable.
EachVariableName is unique for each VariableGuid. VariableName
must contain 1 or more characters. If VariableName is an
empty string, then EFI_INVALID_PARAMETER is returned.

VariableGuid

A pointer to an EFI_GUID that is the variable's GUID.

Attributes

Attributes bitmask for the variable.

736809

83

FSP Dispatch Mode Interface

intel

The size in bytes of the Data buffer. Unless the
EFI_VARIABLE_APPEND_WRITE attribute is set, a size of zero
causes the variable to be deleted. When the

DataSize EFI_VARIABLE_APPEND_WRITE attribute is set, then a
SetVariable() call with a DataSize of zero will not cause any
change to the variable value.

Data The contents for the variable.

10.4.9.4 Description

Stores a new value to the variable with the given name and GUID. If a variable with
thegiven name and GUID does not exist and DataSize is not zero, then a new
variable is created. If DataSize is set to zero, the EFI_VARIABLE_APPEND_WRITE
attribute is notset, and an existing variable with the given name and GUID exists,

then that variable isdeleted.

10.4.9.5 Return Values

Table 22. Return Values - SetVariable()

EFI_SUCCESS

The bootloader has successfully stored the variable and its
data as defined by the Attributes.

EFI_INVALID_PARAMETER

An invalid combination of attribute bits, name, and GUID
wassupplied, or the DataSize exceeds the maximum
allowed.

EFI_INVALID_PARAMETER

VariableName is an empty string.

EFI_OUT_OF_RESOURCES

Not enough storage is available to hold the variable and its
data.

EFI_DEVICE_ERROR

The variable could not be stored because of a hardware
error.

EFI_WRITE_PROTECTED

The variable is read-only.

EFI_WRITE_PROTECTED

The variable cannot be deleted.

EFI_SECURITY_VIOLATION

The variable could not be written due to
EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS, or
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_AC
CESS, or
EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS

being set. The FSP is forbidden from writing to authenticated
variables. This feature is only relevant for UEFI Secure
Boot and the FSP does not require the bootloader to
implement UEFI Secure Boot.

EFI_NOT_FOUND

The variable trying to be updated or deleted was not found.

84

736809

intel.

FSP Dispatch Mode Interface

10.4.10 EDKII_PEI_VARIABLE_PPI.QueryVariableInfo ()

10.4.10.1 Summary

This service informs the FSP of how much nonvolatile storage space is allocated for
thestorage of variables, how much is remaining, and what the maximum allowable

size is for each variable.

10.4.10.2 Prototype

typedef
EFI_STATUS

(EFIAPI *EDKII PEI QUERY VARIABLE INFO) (
IN CONST EDKII PEI VARIABLE PPI *This,

IN UINT32
ouT UINT64
ouT UINT64
ouUT UINT64
) ;

10.4.10.3 Parameters

*Attributes,
*MaximumVariableStorageSize,
*RemainingVariableStorageSize,
*MaximumVariableSize

This

A pointer to this instance of the EDKII_PEI_VARIABLE_PPI.

Attributes

Attributes bitmask to specify the type of variables on which
toreturn information.

MaximumVariableStor
ageSize

Returns the maximum size of the storage space available
forvariables associated with the Attributes specified.

RemainingVariableSt
orageSize

Returns the remaining size of the storage space available
forvariables associated with the Attributes specified.

MaximumVariableSize

Returns the maximum size of an individual variable
associatedwith the Attributes specified.

10.4.10.4 Description

This service informs the FSP of how much non-volatile storage space is allocated
forthe storage of variables, how much is remaining, and what the maximum
allowable sizeis for each variable.

The minimum amount of storage space required by the FSP will be mentioned in the

Integration Guide.

10.4.10.5 Return Values

Table 23. Return Values - QueryVariableInfo()

EFI_SUCCESS

The usage of non-volatile storage was determined
successfully.

EFI_INVALID_PARAMETER

An invalid combination of Attribute bits was supplied

736809

85

FSP Dispatch Mode Interface

10.4.11

10.4.11.1

10.4.11.2

10.4.11.3

10.4.11.4

10.4.11.5

86

intel.

EFI_UNSUPPORTED

The given Attribute bitmask is not supported on this platform,
and the MaximumVariableStorageSize, RemainingVariableStorageSize,
MaximumVariableSize areundefined.

FSP Error Information

FSP_ERROR_INFO

Summary

Notifies the bootloader of a fatal error occurring during the execution of the FSP.

GUID

#define STATUS CODE DATA TYPE FSP_ERROR GUID \

{0x611le6a88,
{0x93, Oxff,

Prototype

typedef struct {

0x4301, \

0x73, 0x04, Oxb4, 0x3d, 0Oxa6c}}

EFI _STATUS CODE DATA DataHeader;

EFI_GUID
EFI_STATUS

} FSP_ERROR_INFO;

Parameters

ErrorType;
Status;

The data header identifying the data. DataHeader.HeaderSize shall be
sizeof(EFI_STATUS_CODE_DATA).

DataHeader | pataHeader.Size shall be sizeof (FSP_ERROR_INFO) - HeaderSize.
Finally, DataHeader.Type shall be
STATUS_CODE_DATA_TYPE_FSP_ERROR_GUID.

A GUID identifying the nature of the fatal error. ThisGUID is platform
ErrorType specific. A listing of all possible GUIDs shall be provided by the
Integration Guide.

Status

A code describing the error encountered. Please see
Section 13.2 for a listing of possible error codes.

Description

In the case of a fatal error occurring during the execution of the FSP, it may not be
possible for the FSP to continue. If a fatal error that prevents the successful
completionof the FSP occurs, the FSP may use FSP_ERROR_INFO to report this
error to the bootloader. During PEI phase, (*PeiServices)-> ReportStatusCode () shall be used
to transmit this error notification to the bootloader. During DXE phase,
EFI_STATUS_CODE_PROTOCOL.ReportStatusCode () shall be used to transmit this
error notification to the bootloader. The bootloader must ensure that
ReportStatusCode () services are available before FSP-M begins execution. When

736809

I n te I ® FSP Dispatch Mode Interface

10.4.12

736809

the FSP calls ReportStatusCode (), the Type parameter’s
EFI_STATUS_CODE_TYPE_MASKmust be EFI_ERROR_CODE with the
EFI_STATUS_CODE_SEVERITY_MASK >= EFI_ERROR_UNRECOVERED. The Value and
Instance parameters must be 0. The Callerld parameter should be a GUID that
identifies the PEIM or DXE driver which was executing at the time of the error.

The bootloader must register a listener for this status code. This listener should
check if DataHeader.Type == STATUS_CODE_DATA TYPE FSP_ERROR_GUID to
detect an FSP_ERROR_INFO notification. If an FSP_ERROR_INFO notification is
encountered, the bootloader should assume that normal operation is no longer
possible. In debug scenarios, this notification should be considered an ASSERT. In
a production environment the most simple and least effective method of handling
this error is a CPU dead loop, which effectively causes a bricked system. A more
robust and recommendedsolution would be to initiate a firmware recovery. If the
bootloader does not handle this notification, the PEIM or DXE driver that called
ReportStatusCode () will immediately return back to the dispatcher with an
EFI_STATUS return code matching the status field in FSP_ERROR_INFO.
Continuing to dispatch FSP PEIMs or DXE Drivers after this will result in undefined
behavior. The bootloader should initiate recovery flows instead of continuing with
normal dispatch.

FSP Debug Messages

FSP may optionally include the capability of generating log messages to aid in the
debugging of firmware issues. When technically feasible, these log messages will

be broadcast to the bootloader from the FSP by calling (*PeiServices)-> ReportStatusCode
() in PEI phase or EFI_STATUS_CODE_PROTOCOL.ReportStatusCode () in DXE phase.

The format of messages provided through ReportStatusCode() shall match those
usedfor FSP Events, please see Section 9.5 for details. All the message types
(Debug Messages, POST codes, etc.) described in Section 9.5 are also applicable to
Dispatch Mode.

It should be noted that the strings for these log messages increase the binary size
ofthe FSP considerably. Accordingly, FSP binaries intended for production use are
unlikely includes debug log messages.

88§

87

FSP Output

11.0

intel

FSP Output

11.1

11.2

88

The FSP builds a series of data structures called the Hand Off Blocks (HOBs).
These data structures conform to the HOB format as described in the Platform
Initialization(PI) Specification - Volume 3: Shared Architectural Elements specification as
referenced in Section 1.3 Related Documentation. The user of the FSP binary is strongly
encouraged to go through the specification mentioned above to understand the
HOB details and create a simple infrastructure to parse the HOB list, because the
same infrastructure can be reused with different FSP across different platforms.

The bootloader developer must decide on how to consume the information passed
through the HOB produced by the FSP. The PI Specification defines a number of
HOBand most of this information may not be relevant to a particular bootloader.
For example, to generate system memory map, bootloader needs to parse the
resource descriptor HOBs produced by FSP-M.

In addition to the PI Specification defined HOB, the FSP produces a number of FSP
architecturally defined GUID types HOB. The following sections describe the GUID
andstructure of these FSPs defined HOB.

Additional platform-specific HOB may be defined in the Integration Guide.

FSP_RESERVED_MEMORY_RESOURCE_HOB

The FSP optionally reserves some memory for its internal use and a descriptor for
this memory region used by the FSP is passed back through a HOB. This is a
generic resource HOB, but the owner field of the HOB identifies the owner as FSP.
This FSP reserved memory region must be preserved by the bootloader and must
be reportedas reserved memory to the OS.

This HOB follows the EFI_HOB_RESOURCE_DESCRIPTOR format with the owner GUID
defined as below.

#define FSP_RESERVED MEMORY RESOURCE HOB GUID \
{ 0x69a79759, 0x1373, 0x4367, { Oxa6, 0Oxc4d4, Oxc7, 0xf5,0x9%e,
Oxfd, 0x98, Oxoce }}

This HOB is valid after FspMemoryInit() API.

FSP_NON_VOLATILE_STORAGE_HOB2

This HOB has been replaced by FSP variable services and is considered
deprecated. IfBIT3 (Variable Support) of the ImageAttribute field in the
FSP_INFO_HEADER is set, then the FSP will not produce this HOB, nor will it use the
NvsBufferPtr field in FSPM_ARCH2_UPD, FSPM_ARCH_UPD, or
FSP_ARCH_CONFIG_PPI. Bootloaders should provide FSP variable services and only
search for this HOB if BIT3 is not set.

736809

ﬂ t I
In e ® FSP Output

736809

The Non-Volatile Storage (NVS) HOB version 2 provides a mechanism for FSP to
request the bootloader to save the platform configuration data into non-volatile
storage so that it can be reused in special cases, such as S3 resume or fast boot.

One of the limitations of the HOB format is the 16-bit length field limits the amount
ofdata that can be stored in a single HOB to approximately 64KB. Version 2 of this
HOB allows >64KB of NVS data to be stored by specifying a pointer to the NVS
data.

This HOB follows the EFI_HOB_GUID_TYPE format with the name GUID and
contentdefined as below:

#define FSP_NON VOLATILE STORAGE HOB2 GUID \
{ 0x48606788f, 0Ox6ba8, 0x47d8, { 0x83, 0Ox6, Oxac, O0xf7,
0x7f, 0x55, 0x10, Ox46 }}

typedef struct {

EFI HOB GUID TYPE GuidHob;
EFI_PHYSICAL_ADDRESS NvsDataPtr;
UINT64 NvsDataLength;

} FSP_NON VOLATILE STORAGE HOBZ;

GuidHob The GUID HOB header identifying the data. GuidHob.Name
shall be FSP_NON_VOLATILE STORAGE_ HOB2_GUID.

NvsDataPtr Pointer to the non-volatile storage (NVS) data buffer. If it
is NULL it indicates the NVS data was not produced,
bootloader should continue to pass the existing NVS data to
FSP during next boot.

NvsDatalLength The total number of bytes in the non-volatile storage
(NVS)data buffer.

The bootloader needs to parse the HOB list to see if such a GUID HOB exists after
memory is initialized. The HOB(s) shall be populated after FSP-M is complete. If it
exists, the bootloader should extract the NVS data from the buffer specified by
FSP_NON_VOLATILE_STORAGE_HOB2.NvsDataPtr and then save it into a platform-
specific NVS device, such as flash, EEPROM, etc. On subsequent boots, the
bootloadershould load the data block back from the NVS device to temporary
memory and populate the buffer pointer into FSPM_ARCH_UPD.NvsBufferPtr
field before calling FspMemoryInit() in API mode or
FSPM_ARCH_CONFIG_PPI.NvsBufferPtr before installing FSPM_ARCH_CONFIG_PPI in
dispatch mode. If the NVS device is memory mapped, the bootloader can initialize the
buffer pointer directly to the buffer.

In API mode, the NVS data buffer shall be contained within the FSP reserved
memory region defined by FSP_RESERVED MEMORY RESOURCE_HOB. In dispatch
mode, the NVS data buffer will be contained in a memory region reserved via a
Memory AllocationHOB (EFI_HOB_MEMORY ALLOCATION) with

EFI_HOB_MEMORY_ALLOCATION.AllocDescriptor.MemoryType set to
EfiBootServicesData.

If FSP_INFO_HEADER.SpecVersion >= 0x23, then the FSP should produce
FSP_NON_VOLATILE_STORAGE_HOB2 instead of

89

FSP Output

11.3

90

intel

FSP_NON_VOLATILE_STORAGE_HOB. Bootloaders should practice defensive
programming and not explicitly check the valueof FSP_INFO_HEADER.SpecVersion
to determine which type of HOB to search for. Instead, bootloaders should first search
for FSP_NON_VOLATILE_STORAGE_HOB2, andonly search for
FSP_NON_VOLATILE_STORAGE_HOB if the former is not found in the HOB list.

This HOB must be parsed after FspMemoryInit() in API mode or when a PPI
notification for EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI with the
EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH type is invoked in dispatch mode
(EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK type will be invoked too early.)

If this HOB is not produced in S3 or fast boot, bootloader should continue to pass
the existing NVS data to FSP during next boot.

FSP_NON_VOLATILE_STORAGE_HOB

This HOB has been replaced by FSP variable services and is considered
deprecated. IfBIT3 (Variable Support) of the ImageAttribute field in the
FSP_INFO_HEADER is set, then the FSP will not produce this HOB, nor will it use
the NvsBufferPtr field in FSPM_ARCH2_UPD, FSPM_ARCH_UPD, or
FSP_ARCH_CONFIG_PPI. Moreover, this HOB was replaced by
FSP_NON_VOLATILE_ STORAGE HOB2 before FSP variable services were added. If a
bootloader wishes to retain backwards compatibility back to FSP v2.0, the
bootloader should provide FSP variable services, then search for
FSP_NON_VOLATILE_ STORAGE_HOB2, and only search for
FSP_NON_VOLATILE_STORAGE_ HOB if the former is not found in the HOB list.

The Non-Volatile Storage (NVS) HOB provides a mechanism for FSP to request the
bootloader to save the platform configuration data into non-volatile storage so that
itcan be reused in special cases, such as S3 resume or fast boot.

This HOB follows the EFI_HOB_GUID_ TYPE format with the name GUID defined as
below:

#define FSP_NON VOLATILE STORAGE HOB GUID \
{ 0x721lacf02, 0x4d77, 0x4c2a, { 0xb3, Oxdc, 0x27, O0xb,
0x7b, 0xa9, 0Oxed, 0xb0 }}

The bootloader needs to parse the HOB list to see if such a GUID HOB exists after
memory is initialized. The HOB shall be populated either after returning from

FspMemoryInit() in API mode or after all notification call backs for
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI are completed in dispatch mode. If it
exists, the bootloader should extract the data portion from the HOB structure and
then save it into a platform-specific NVS device, such as flash, EEPROM, etc. On
the followingboot flow the bootloader should load the data block back from the
NVS device to temporary memory and populate the buffer pointer into
FSPM_ARCH_UPD.NvsBufferPtr field before calling FspMemoryInit() in API mode or
FSPM_ARCH_CONFIG_PPI.NvsBufferPtr before installing FSPM_ARCH_CONFIG_PPI in
dispatch mode. If the NVS device is memory mapped, the bootloader can initialize
thebuffer pointer directly to the buffer.

This HOB must be parsed after FspMemoryinit() in API mode or when a PPI
notification for EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI with the

736809

In e ® FSP Output

11.4

11.5

736809

EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH type is invoked in dispatch mode
(EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK type will be invoked too early.)

If this HOB is not produced in S3 or fast boot, bootloader should continue to pass
the existing NVS data to FSP during next boot.

FSP_BOOTLOADER_TOLUM_HOB

The FSP can reserve some memory below "top of low usable memory" for bootloader
usage. The size of this region is determined by
FSPM_ARCH_UPD.BootLoaderTolumSize when in API mode or
FSPM_ARCH_CONFIG_PPI.BootLoaderTolumSize when in dispatch mode. The FSP
reserved memory region will be placed below this region.

This HOB will only be published when the BootLoaderTolumSize is valid and non-
zero.

This HOB follows the EFI_HOB_RESOURCE_DESCRIPTOR format with the owner GUID
defined as below:

#define FSP_BOOTLOADER TOLUM HOB GUID \

{ O0x73ff4f56, Oxaa8e, 0x4451, { Oxb3, 0xl6, 0x36, 0x35,
0x36,

0x67, Oxad, 0x44 }}

This HOB is valid after FspMemoryInit() in API mode or when a PPI
notification for EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI with
EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH priority is invoked in
dispatch mode (EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK priority is
too early.)

EFI_PEI_GRAPHICS_INFO_HOB

If BITO (Graphics Support) of the ImageAttribute field in the FSP_INFO_HEADER is set,
the FSP includes graphics initialization capabilities. To complete the initialization of
thegraphics system, FSP may need some platform specific configuration data which
wouldbe documented in the Integration Guide.

When graphics capability is included in FSP and enabled as documented in
IntegrationGuide, FSP produces a EFI_PEI_GRAPHICS_INFO_HOB as described in the
PI Specification as referenced in Section 1.3 Related Documents, which provides
information about the graphics mode and framebuffer.

#define EFI PEI GRAPHICS INFO HOB GUID \
{ 0x39f62cce, 0x06825, 0x4669, { Oxbb, 0x56, 0x54, O0xla,
Oxba, 0x75, 0x3a, 0x07 }}

It is to be noted that the FrameBufferAddress address in
EFI_PEI_GRAPHICS_INFO_HOB will reflect the value assigned by the FSP. A bootloader
consuming this HOB should be aware that a generic PCI enumeration logic could
reprogram the temporary resources assigned by the FSP and it is the responsibility

91

FSP Output

11.6

11.7

92

intel

ofthe bootloader to update its internal data structures with the new framebuffer
address after the enumeration is complete.

In API mode, if FSPS_ARCH_UPD.EnableMultiPhaseSiliconInit == 0 then this HOB is
valid after FspSiliconInit(). If FSPS_ARCH_UPD.EnableMultiPhaseSiliconInit != 0,
then this HOB is valid after completing the multi-phase SiliconInit sequence by
invoking the FspMultiPhaseSiInit() API with PhaseIndex == (NumberOfPhases - 1).

In dispatch mode, this HOB is valid after EFI_PEI_END_OF_PEI_PHASE_PPI is
installed.

EFI_PEI_GRAPHICS_DEVICE_INFO_HOB

If BITO (Graphics Support) of the ImageAttribute field in the FSP_INFO_HEADER is set,
the FSP includes graphics initialization capabilities. To complete the initialization of
thegraphics system, FSP may need some platform specific configuration data which
wouldbe documented in the Integration Guide.

When graphics capability is included in FSP and enabled as documented in
IntegrationGuide, FSP produces a EFI_PEI_GRAPHICS_DEVICE_INFO_HOB as
described in the PISpecification as referenced in Section 1.3 Related Documents, which
provides information about the graphics hardware which produces the framebuffer
supplied by EFI_PEI_GRAPHICS_INFO_HOB.

#define EFI_PEI GRAPHICS DEVICE INFO HOB GUID \
{ Oxeb5cb2ac9, 0xd35d, 0x4430, { 0x93, Oxo6e, O0xld, O0xe3,
0x32,0x47, 0x8d, 0Oxe7 }}

Together, EFI_PEI_GRAPHICS_INFO_HOB and
EFI_PEI_GRAPHICS_DEVICE_INFO_HOB provide sufficient information to implement a
basic graphics driver.

In API mode, if FSPS_ARCH_UPD.EnableMultiPhaseSiliconInit == 0 then this HOB is
valid after FspSiliconInit(). If FSPS_ARCH_UPD.EnableMultiPhaseSiliconInit != 0,

then this HOB is valid after completing the multi-phase SiliconInit sequence by
invoking the FspMultiPhaseSiInit() API with PhaseIndex == (NumberOfPhases - 1).

In dispatch mode, this HOB is valid after EFI_PEI_END_OF_PEI_PHASE_PPI is
installed.

FSP_ERROR_INFO_HOB

In the case of an error occurring during the execution of the FSP, the FSP may
optionally produce an FSP_ERROR_INFO_HOB which describes the error in more
detail. This HOB is only produced in API mode. In dispatch mode, ReportStatusCode
() isused as described in Section 10.4.6.

#define FSP_ERROR_INFO HOB GUID \
{0x611e6a88, Oxadb7, 0x4301, \
{0x93, Oxff, Oxed, 0x73, 0x04, Oxb4, 0x3d, O0xa6}}

736809

. t I
In e ® FSP Output

11.8

736809

typedef struct {

EFI HOB GUID TYPE GuidHob;
EFI_STATUS CODE TYPE Type;

EFI_ STATUS CODE VALUE Value;
UINT32 Instance;
EFI GUID CallerId;
EFI GUID ErrorType;
UINT32 Status;

} FSP_ERROR_INFO HOB;

GuidHob The GUID HOB header identifying the data.GuidHob. Name
shall be FSP_ERROR_INFO_HOB_GUID.

Type A ReportStatusCode() type identifier. The Type's
EFI_STATUS_CODE_TYPE_MASK must be
EFI_ERROR_CODE with the
EFI_STATUS_CODE_SEVERITY_MASK >=

EFI_ERROR_UNRECOVERED. See Section 6 of the PI
Specification v1.7 Volume 3.

Value A ReportStatusCode() Value. Used to determine status
code class and sub-class, see Section 6 of thePI
Specification v1.7 Volume 3. This field shall be setto zero

(0).

Instance A ReportStatusCode() Instance number. See Section6 of
the PI Specification v1.7 Volume 3. This field shall be set
to zero (0).

Callerld An optional GUID which may be used to identify which

internal component of the FSP was executing at the time
of the error. If the FSP does not implement this CallerId
shall be zero (0).

ErrorType A GUID identifying the nature of the fatal error. ThisGUID
is platform specific. A listing of all possible GUIDs shall be
provided by the Integration Guide.

Status A code describing the error encountered. Refer
Section 13.2 for a listing of possible error codes.

If an FSP_ERROR_INFO_HOB is found, the bootloader should assume that
normal operation is no longer possible. In debug scenarios, this notification should
be considered an ASSERT. In a production environment the most simple and least
effective method of handling this error is a CPU dead loop, which effectively causes a
bricked system. A more robust and recommended solution would be to initiate a
firmware recovery. If a FSP_ERROR_INFO_HOB is produced after an FSP API call, the
bootloader should not call any of the subsequent FSP APIs (if any) and should instead
initiate recovery flows.

FSP_SMM_BOOTLOADER_FV_CONTEXT_HOB

In the scenario where FSP owns SMRAM (FSP SMM Model 2), the bootloader can
choose to provide a firmware volume containing any desired platform specific SMM
drivers. In this case, the bootloader may need to communicate platform specific

93

FSP Output

94

intel.

configuration data to these SMM drivers. The FSP SMM bootloader FV context HOB
provides a mechanism for the bootloader to provide these data.

This HOB follows the EFI_HOB_GUID _TYPE format with the name GUID defined as
below:

#define FSP_SMM BOOTLOADER FV_CONTEXT HOB GUID \
{ Oxf9fldbb9, Oxlbe5, 0x4c3d, { 0xb8, 0x17, Oxe6, 0xds,
Oxd, Oxb5, 0x24, 0x3 }}

The contents of this HOB will be the data provided by
FSPI_ARCH_UPD.BootloaderSmmFvContextData and
FSPI_ARCH_UPD.BootloaderSmmFvContextDatalLength.

This HOB will be present in the MM foundation’s HOB list. The start of the HOB list is
found in the MmConfigurationTable array of the EFI_MM SYSTEM TABLE provided to
entry point of all bootloader SMM drivers. Please see the PI Specification for details.

88§

736809

' t I
I n e ® Other Host Bootloader Considerations

12.0 Other Host Bootloader Considerations

12.1

12.2

12.3

736809

ACPI

ACPI is an independent component of the bootloader and is not provided by the FSP
inAPI mode. In dispatch mode, DXE drivers included with the FSP may optionally
use the EFI_ACPI_TABLE_PROTOCOL to install ACPI tables.

Bus Enumeration

FSP will initialize the processor and the chipset to a state in which all bus topologies
can be discovered by the host bootloader. However, it is the responsibility of the
bootloader to enumerate the bus topology.

Security

FSP will follow the BWG / BIOS Specification to lock the necessary silicon specific
registers. However, platform features like measured boot, verified, and
authenticatedboot are responsibilities of the bootloader.

88

95

. t I
Other Host Bootloader Considerations I n e ®

Appendix A Data Structures

A.1

A.2

96

The declarations/definitions provided here were derived from the EDK2 source
available for download at https://github.com/tianocore/edk2

BOOT_MODE

PiBootMode.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiBootMode.h
#define BOOT WITH FULL CONFIGURATION 0x00
#define BOOT WITH MINIMAL CONFIGURATION 0x01
#define BOOT ASSUMING NO CONFIGURATION CHANGES 0x02
#define BOOT ON_ S4 RESUME 0x05
#define BOOT ON S3 RESUME 0x11
#define BOOT ON FLASH UPDATE 0x12
#define BOOT IN RECOVERY MODE 0x20
EFI_STATUS

UefiBaseType.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Base.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiBaseTyp
e.h

For x86 32-bit FSP API interface:

#define MAX_BIT 0x80000000

For x64 64-bit FSP API interface:

#define MAX_BIT 0x8000000000000000ULL

The following FSP return status are defined.

#define ENCODE ERROR (StatusCode) \

((EFI_STATUS) (MAX BIT | (StatusCode)))
#define EFI_ SUCCESS 0
#define EFI INVALID PARAMETER ENCODE ERROR (2)
#define EFI_UNSUPPORTED ENCODE_ERROR(3)
#define EFI_NOT READY ENCODE_ERROR (6)
#define EFI_DEVICE_ERROR ENCODE_ERROR(7)
#define EFI_OUT OF RESOURCES ENCODE_ERROR (9)
#define EFI VOLUME CORRUPTED ENCODE_ERROR(IO)
#define EFI NOT FOUND ENCODE_ERROR(14)

736809

https://github.com/tianocore/edk2
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiBootMode.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Base.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiBaseType.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiBaseType.h

. t I
I n e ® Other Host Bootloader Considerations

A.3

736809

#define EFI_TIMEOUT ENCODE ERROR (18)
#define EFI_ABORTED ENCODE ERROR (21)
#define EFI INCOMPATIBLE VERSION ENCODE ERROR (25)
#define EFI SECURITY VIOLATION ENCODE ERROR (26)
#define EFI CRC ERROR ENCODE ERROR (27)
#define EFI COMPROMISED DATA ENCODE ERROR (33)
typedef UINT64 EFI PHYSICAL ADDRESS;

OEM Status Code

The range of status code that has the highest bit clear and the next to highest bit
setare reserved for use by OEMs.

The FSP will use the following status to indicate that an API is requesting that a
reset isrequired.
#define ENCODE RESET REQUEST (ResetType) \

((EFI_STATUS) ((MAX BIT >> 1) | (ResetType)))

#define FSP STATUS RESET REQUIRED COLD ENCODE RESET REQUEST (1)
#define FSP_STATUS RESET REQUIRED WARM ENCODE RESET REQUEST (2)
#define FSP_STATUS RESET REQUIRED 3 ENCODE_RESET REQUEST (3)
#define FSP_STATUS RESET REQUIRED 4 ENCODE_RESET REQUEST (4)
#define FSP_STATUS RESET REQUIRED 5 ENCODE_RESET REQUEST (5)
#define FSP_STATUS RESET REQUIRED 6 ENCODE_RESET REQUEST (6)
#define FSP_STATUS RESET REQUIRED 7 ENCODE_RESET REQUEST (7)
#define FSP_STATUS RESET REQUIRED 8 ENCODE_RESET REQUEST (8)
#define FSP_STATUS VARIABLE REQUEST ENCODE RESET REQUEST (10)

EFI_PEI_GRAPHICS_INFO_ HOB

GraphicsInfoHob.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/Graphicsinf
oHo b.h

typedef struct {

EFI PHYSICAL ADDRESS FrameBufferBase;

UINT32 FrameBufferSize;
EFI_GRAPHICS OUTPUT MODE INFORMATION GraphicsMode;
} EFI_PEI GRAPHICS INFO HOB;

97

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/GraphicsInfoHob.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/GraphicsInfoHob.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/GraphicsInfoHob.h

. t I
Other Host Bootloader Considerations I n e ®

A.4

A.5

A.6

98

EFI_PEI_GRAPHICS_DEVICE_INFO_HOB

GraphicsInfoHob.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/Graphicsinf
oHo b.h

typedef struct {

UINT16 VendorId;

UINT16 DevicelId;

UINT16 SubsystemVendorId;
UINT16 SubsystemId;

UINTS8 RevisionId;

UINTS BarIndex;

} EFI_PEI GRAPHICS DEVICE INFO HOB;

EFI_GUID

Base.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Base.h

typedef struct {
UINT32 Datal;
UINT16 DataZ2;
UINT16 Data3;
UINT8 Data4d[8];
} GUID;

UefiBaseType.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiBaseTyp
e.h

typedef GUID EFI GUID;

EFI_MEMORY_TYPE

UefiMultiPhase.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiMultiPha
se.h

/11

/// Enumeration of memory types.
/1

736809

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/GraphicsInfoHob.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/GraphicsInfoHob.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/GraphicsInfoHob.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Base.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiBaseType.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiBaseType.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiMultiPhase.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiMultiPhase.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiMultiPhase.h

. t: I
I n e ® Other Host Bootloader Considerations

typedef enum {
EfiReservedMemoryType,
EfiLoaderCode,
EfiloaderData,
EfiBootServicesCode,
EfiBootServicesData,
EfiRuntimeServicesCode,
EfiRuntimeServicesData,
EfiConventionalMemory,
EfiUnusableMemory,
EfiACPIReclaimMemory,
EfiACPIMemoryNVS,
EfiMemoryMappedIO,
EfiMemoryMappedIOPortSpace,
EfiPalCode,
EfiPersistentMemory,
EfiMaxMemoryType

} EFI_MEMORY TYPE;

A.7 Hand Off Block (HOB)

PiHob.h

https://qgithub.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiHob.h

typedef UINT32 EFI RESOURCE TYPE;
typedef UINT32 EFI RESOURCE ATTRIBUTE TYPE;

//

// Value of ResourceType in EFI_HOB RESOURCE DESCRIPTOR.

//

#define EFI_RESOURCE SYSTEM MEMORY 0x00000000
#define EFI_RESOURCE MEMORY MAPPED IO 0x00000001
#define EFI_RESOURCE IO 0x00000002
#define EFI_RESOURCE FIRMWARE DEVICE 0x00000003
#define EFI_RESOURCE MEMORY MAPPED IO PORT 0x00000004
#define EFI_RESOURCE MEMORY RESERVED 0x00000005
#define EFI_RESOURCE IO RESERVED 0x00000006
#define EFI_RESOURCE MAX MEMORY TYPE 0x00000007
//

// These types can be ORed together as needed.
// The first three enumerations describe settings

//

#define EFI RESOURCE ATTRIBUTE PRESENT 0x00000001
#define EFI RESOURCE ATTRIBUTE INITIALIZED 0x00000002
#define EFI RESOURCE ATTRIBUTE TESTED 0x00000004

736809 99

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiHob.h

. t: I
Other Host Bootloader Considerations I n e ®

//

// The rest of the settings describe capabilities

//

#define EFI_RESOURCE ATTRIBUTE SINGLE BIT ECC 0x00000008
#define EFI RESOURCE ATTRIBUTE MULTIPLE BIT ECC 0x00000010
#define EFI_RESOURCE ATTRIBUTE ECC_RESERVED 1 0x00000020
#define EFI_RESOURCE ATTRIBUTE ECC_ RESERVED 2 0x00000040
#define EFI RESOURCE ATTRIBUTE READ PROTECTED 0x00000080

#define EFI RESOURCE ATTRIBUTE WRITE PROTECTED 0x00000100
#define EFI RESOURCE ATTRIBUTE EXECUTION PROTECTED 0x00000200
#define EFI RESOURCE ATTRIBUTE UNCACHEABLE 0x00000400
#define EFI_RESOURCE ATTRIBUTE WRITE COMBINEABLE 0x00000800
#define EFI RESOURCE ATTRIBUTE WRITE THROUGH CACHEABLE 0x00001000
#define EFI RESOURCE ATTRIBUTE WRITE BACK CACHEABLE 0x00002000

#define EFI_RESOURCE ATTRIBUTE 16 BIT IO 0x00004000
#define EFI_RESOURCE ATTRIBUTE 32 BIT IO 0x00008000
#define EFI_RESOURCE ATTRIBUTE 64 BIT IO 0x00010000

#define EFI_RESOURCE ATTRIBUTE UNCACHED EXPORTED 0x00020000
#define EFI_RESOURCE ATTRIBUTE READ ONLY PROTECTED 0x00040000
#define EFI_RESOURCE ATTRIBUTE READ PROTECTABLE 0x00100000
#define EFI_RESOURCE ATTRIBUTE WRITE PROTECTABLE 0x00200000
#define EFI_RESOURCE ATTRIBUTE EXECUTION PROTECTABLE 0x00400000
#define EFI_RESOURCE ATTRIBUTE READ ONLY PROTECTABLE 0x00800000
#define EFI_RESOURCE ATTRIBUTE PERSISTABLE 0x01000000

#define EFI_RESOURCE ATTRIBUTE MORE RELIABLE 0x02000000
//

// HobType of EFI HOB GENERIC HEADER.

//

#define EFI HOB TYPE MEMORY ALLOCATION 0x0002

#define EFI_HOB TYPE RESOURCE DESCRIPTOR 0x0003

#define EFI_HOB TYPE GUID EXTENSION 0x0004

#define EFI_HOB TYPE UNUSED OXFFFE

#define EFI_HOB TYPE END OF HOB LIST 0xFFFF

/17

/// Describes the format and size of the data inside the HOB.
/// All HOBs must contain this generic HOB header.

/]

typedef struct {

UINT16 HobType;

UINT16 HobLength;

UINT32 Reserved;

} EFI_HOB GENERIC HEADER;

/17

100 736809

. t: I
I n e ® Other Host Bootloader Considerations

736809

/// Describes various attributes of logical memory
allocation.

/17

typedef struct {

EFI GUID Name;

EFI PHYSICAL ADDRESS MemoryBaseAddress;
UINT64 MemoryLength;
EFI_MEMORY TYPE MemoryType;

UINTS Reserved[4];

} EFI_HOB MEMORY ALLOCATION HEADER;

/17

/// Describes all memory ranges used during the HOB producer
/// phase that exist outside the HOBR list. This HOB type

/// describes how memory is used, not the physical attributes
/// of memory.

/1]
typedef struct {
EFI HOB GENERIC HEADER Header;

EFI_HOB MEMORY ALLOCATION HEADER AllocDescriptor;
} EFI_HOB MEMORY ALLOCATION;

/17

/// Describes the resource properties of all fixed,

/// nonrelocatable resource ranges found on the processor
/// host bus during the HOB producer phase.

/7

typedef struct {

EFI_HOB GENERIC HEADER Header;

EFI GUID Owner;

EFI RESOURCE TYPE ResourceType;

EFI RESOURCE ATTRIBUTE TYPE ResourceAttribute;
EFI PHYSICAL ADDRESS PhysicalStart;
UINTG4 ResourcelLength;

} EFI _HOB RESOURCE DESCRIPTOR;

/77

/// Allows writers of executable content in the HOB producer
/// phase to maintain and manage HOBs with specific GUID.
/1]

typedef struct {

EFI_HOB GENERIC HEADER Header;

EFI GUID Name;

} EFI_HOB GUID TYPE;

101

. t I
Other Host Bootloader Considerations I n e ®

///

/// Union of all the possible HOB Types.
///

typedef union {

EFI_HOB GENERIC HEADER *Header;

EFI HOB MEMORY ALLOCATION *MemoryAllocation;

EFI HOB RESOURCE DESCRIPTOR *ResourceDescriptor;
EFI HOB GUID TYPE *Guid;

UINTS8 *Raw;

} EFI_PEI HOB POINTERS;

A.8 Firmware Volume and Firmware Filesystem

Refer to PiFirmwareVolume.h and PiFirmwareFile.h from EDK2 project fororiginal
source.

PiFirmwareVolume.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiFirmwareVolume.h

/17

/// EFI _FV _FILE ATTRIBUTES

/17

typedef UINT32 EFI FV FILE ATTRIBUTES;

///

/// type of EFI FVB attribute

///

typedef UINT32 EFI_FVB ATTRIBUTES 2;

typedef struct {

UINT32 NumBlocks;

UINT32 Length;

} EFI_FV_BLOCK MAP ENTRY;

///

/// Describes the features and layout of the firmware volume.
///

typedef struct {

UINTS ZeroVector[1l6];

EFI _GUID FileSystemGuid;

UINT64 FvLength;

UINT32 Signature;
EFI_FVB ATTRIBUTES 2 Attributes;
UINT16 HeaderLength;
UINT16 Checksum;

UINT16 ExtHeaderOffset;

102 736809

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiFirmwareVolume.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiFirmwareVolume.h

. t: I
I n e ® Other Host Bootloader Considerations

UINTS Reserved[1l];
UINTS Revision;
EFI_FV_BLOCK MAP ENTRY BlockMap[l];
} EF I FIRMWARE VOLUME HEADER;

#define EFI FVH SIGNATURE SIGNATURE 32 (' ', 'F', 'V', 'H'")

/7

/// Firmware Volume Header Revision definition

/17

#define EFI FVH REVISION 0x02

/17

/// Extension header pointed by ExtHeaderOffset of volume header.
/17

typedef struct {

EFI GUID FvName;

UINT32 ExtHeaderSize;

} EFI_FIRMWARE VOLUME EXT HEADER;

/77

/// Entry struture for describing FV extension header
/77

typedef struct {

UINT1l6 ExtEntrySize;

UINT16 ExtEntryType;

} EFI_FIRMWARE VOLUME EXT ENTRY;

#define EFI_FV _EXT TYPE OEM TYPE 0x01

/17

/// This extension header provides a mapping between a GUID
/// and an OEM file type.

/17

typedef struct {

EFI_FIRMWARE VOLUME EXT ENTRY Hdr;

UINT32 TypeMask;

} EFI_FIRMWARE VOLUME EXT ENTRY OEM TYPE;

#define EFI_FV_EXT TYPE GUID TYPE 0x0002

/77

/// This extension header EFI_FIRMWARE VOLUME EXT ENTRY GUID TYPE
/// provides a vendor specific GUID FormatType type which

/// includes a length and a successive series of data bytes.

/17

typedef struct {

EFI FIRMWARE VOLUME EXT ENTRY Hdr;

736809 103

. t: I
Other Host Bootloader Considerations I n e ®

EFI GUID FormatType;
} EFI_FIRMWARE VOLUME EXT ENTRY GUID TYPE;

PiFirmwarefFile.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiFirmwareFile.h

/77
/// Used to verify the integrity of the file.
/77
typedef union {
struct {
UINT8 Header;
UINT8 File;
} Checksum;
UINT16 Checksumlé6;
} EFI_FFS INTEGRITY CHECK;

/17

/// FFS FIXED CHECKSUM is the checksum value used when the
/// FFS_ATTRIB CHECKSUM attribute bit is clear.

/17

#define FFS_FIXED CHECKSUM OxAA

typedef UINT8 EFI_FV FILETYPE;
typedef UINT8 EFI FFS FILE ATTRIBUTES;
typedef UINT8 EFI_FFS FILE STATE;

///

/// File Types Definitions

/77

#define EFI_FV_FILETYPE_FREEFORM 0x02
/77

/// FFS File Attributes.

///

#define FFS_ATTRIB LARGE FILE 0x01
#define FFS ATTRIB FIXED 0x04
#define FFS ATTRIB DATA ALIGNMENT 0x38
#define FFS ATTRIB CHECKSUM 0x40
///

/// FFS File State Bits.

/]

#define EFI_FILE_HEADER_CONSTRUCTION 0x01
#define EFI FILE HEADER VALID 0x02
#define EFI_FILE DATA VALID 0x04
#define EFI_FILE MARKED FOR UPDATE 0x08

104 736809

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiFirmwareFile.h

intel

736809

#define EFI_FILE DELETED

#define EFI_FILE HEADER INVALID

/17

Other Host Bootloader Considerations

0x10
0x20

/// Each file begins with the header that describe the
/// contents and state of the files.

/77
typedef struct {

EFI GUID

EFI FFS INTEGRITY CHECK
EFI FV FILETYPE

EFI FFS FILE ATTRIBUTES
UINTS8

EFI_FFS _FILE STATE

} EFI_FFS FILE HEADER;

typedef struct {
EFI_GUID
EFI_FFS_INTEGRITY CHECK
EFI FV FILETYPE

EFI FFS FILE ATTRIBUTES
UINTS8

EFI FFS FILE STATE
UINT32

} EFI_FFS FILE HEADERZ2;

Name;
IntegrityCheck;
Type;
Attributes;
Sizel[3];

State;

Name;
IntegrityCheck;
Type;

Attributes;
Sizel[3];

State;
ExtendedSize;

#define IS FFS FILE2 (FfsFileHeaderPtr) \

(((((EFI_FFS FILE HEADER *)

>Attributes)

(UINTN) FfsFileHeaderPtr) -

& FFS ATTRIB LARGE FILE) == FFS ATTRIB LARGE FILE)

#define FFS FILE SIZE (FfsFileHeaderPtr) \

((UINT32) (*((UINT32 *)
FfsFileHeaderPtr)->Size)

#define FFS FILE2 SIZE (FfsFileHeaderPtr) \

(((EFI_FFS FILE HEADER2 *)
>ExtendedSize)

((EFI_FFS_FILE_HEADER *) (UINTN)
& OxO0ffffff))
(UINTN) FfsFileHeaderPtr) -

typedef UINT8 EFI SECTION TYPE;

#define EFI SECTION RAW

///

/// Common section header.
///

typedef struct {

UINTS Size[3];
EFI_SECTION TYPE Type;

} EFI_COMMON SECTION HEADER;

0x19

105

Other Host Bootloader Considerations

A.9

106

typedef
UINTS8

UINT32

/17

/// The leaf section which contains an array of zero

struct {

Sizel[3];

EFI SECTION TYPE Type;
ExtendedSize;

} EFI_COMMON SECTION HEADER2;

/// bytes.

/17

intel.

Oor more

typedef EFI COMMON SECTION HEADER EFI RAW SECTION;
typedef EFI COMMON SECTION HEADERZ2 EFI RAW SECTIONZ;

#define IS SECTION2 (SectionHeaderPtr) \

((UINT32)

(* ((UINT32 *)
SectionHeaderPtr)->Size)

#define SECTION SIZE (SectionHeaderPtr) \

((UINT32)

(* ((UINT32 *)
SectionHeaderPtr)->Size)

#define SECTION2 SIZE (SectionHeaderPtr) \

(((EFI_COMMON SECTION HEADERZ *)

>ExtendedSize)

Debug Error Level

((EFI_COMMON_SECTION_HEADER *) (UINTN)
& OxOOffffff) == OxO0ffffff)
((EFI_COMMON_SECTION_HEADER *) (UINTN)
& OxO0ffffff))
(UINTN) SectionHeaderPtr) -

Refer to DebugLib.h from the EDK2 project for the original source.

Debuglib.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Library/DebuglLib.h

//

// Declare bits for
Errorlevelparameter

//

#define
#define
#define
#define
#define
#define
#define

DEBUG INIT
DEBUG_WARN
DEBUG_LOAD
DEBUG_FS

DEBUG_POOL
DEBUG_PAGE
DEBUG_INFO

PcdDebugPrintErrorLevel and the
of DebugPrint ()

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040

messagesf#define DEBUG DISPATCH
Dispatchers #define DEBUG VARIABLE 0x00000100 // Variable

//
//
//
//
//
//
//

Initialization
Warnings

Load events

EFI File system
Alloc & Free (pool)
Alloc & Free (page)
Informational debug

0x00000080 // PEI/DXE/SMM

736809

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Library/DebugLib.h

intel

A.10

736809

#define
#define
#define
#define

Other Host Bootloader Considerations

DEBUG_BM 0x00000400 // Boot Manager
DEBUG_BLKIO 0x00001000 // BlkIo Driver
DEBUG_NET 0x00004000 // Network Io Driver
DEBUG UNDI 0x00010000 // UNDI Driver #define

DEBUG LOADFILE 0x00020000 // LoadFile
DEBUG_EVENT 0x00080000 // Event messages
0x00100000 // Global Coherency Database

#define
#define
changes
#define
changes
#define
thatmay

#define

//

DEBUG_GCD

DEBUG CACHE 0x00200000 // Memory range cachability

DEBUG _VERBOSE 0x00400000 // Detailed debug messages

// significantly impact boot performance
DEBUG_ERROR 0x80000000 // Error

// Aliases of debug message mask bits

//

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

EFI_D INIT DEBUG INIT
EFI_D WARN DEBUG_WARN
EFI_D LOAD DEBUG_LOAD
EFI_D FS DEBUG_FS

EFI_D POOL DEBUG_ POOL
EFI_D PAGE DEBUG_ PAGE
EFI_D INFO DEBUG_INFO

EFI D DISPATCH DEBUG DISPATCH
EFI D VARIABLE DEBUG VARIABLE

EFI_D BM DEBUG_BM
EFI_D BLKIO DEBUG BLKIO
EFI_ D NET DEBUG NET
EFI_D UNDI DEBUG_UNDI

EFI D LOADFILE DEBUG LOADFILE
EFI_D EVENT DEBUG EVENT

EFI D VERBOSE DEBUG VERBOSE
EFI_D ERROR DEBUG_ERROR

Event Code Types

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiStatusCode.h

typedef

#define
#define
#define

#define
#define

UINT32 EFI_STATUS CODE TYPE;

EFI_STATUS CODE_TYPE MASK 0x000000FF
EFI_STATUS CODE_SEVERITY MASK O0xFF000000
EFI_STATUS CODE RESERVED MASK O0x00FFFF00

0x00000001
0x00000002

EFI_PROGRESS CODE
EFI_ERROR_CODE

107

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiStatusCode.h

Other Host Bootloader Considerations

A.11

108

#define EFI DEBUG CODE 000000003

#define EFI_ERROR MINOR
#define EFI_ERROR MAJOR
#define EFI_ERROR UNRECOVERED
#define EFI_ERROR UNCONTAINED

typedef UINT32 EFI_STATUS CODE_VALUE;

#define EFI STATUS CODE CLASS MASK
#define EFI STATUS CODE SUBCLASS MASK
#define EFI STATUS CODE OPERATION MASK
#define EFI_ SOFTWARE

intel.

0x40000000
0x80000000
0x90000000
0xA0000000

O0xFF000000
0x00FF0000
0x0000FFFF
0x03000000

EFI_STATUS_CODE_STRING_DATA

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/StatusCode

Dat aTypeld.h

#define EFI_STATUS CODE DATA TYPE STRING GUID \

{ 0x92D11080, 0x496F, 0x4D95,

{ 0xBE, 0x7E, 0x03, 0x74, 0x88, 0x38,
typedef struct {

UINT16 HeaderSize;

UINT16 Size;

EFI_GUID Type;
} EFI_STATUS CODE DATA;

typedef enum {
EfiStringAscii,
EfiStringUnicode,
EfiStringToken

} EFI_STRING TYPE;

typedef union {

CHARS *Ascii;

CHAR1G6 *Unicode;

EFI STATUS CODE STRING TOKEN Hiij;
} EFI _STATUS CODE STRING;

typedef struct {

EFI STATUS CODE DATA

EFI STRING TYPE StringType;
EFI_STATUS CODE_STRING String;

} EFI_STATUS CODE_ STRING DATA;

8§

0x0A 1}}

DataHeader;

736809

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/StatusCodeDataTypeId.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/StatusCodeDataTypeId.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/StatusCodeDataTypeId.h

intel

Other Host Bootloader Considerations

Appendix B Acronyms

ACPI Advanced Configuration and Power Interface
BCT Binary Configuration Tool

BIOS Basic Input Output System

BSP Boot Strap Processor

BSF Boot Setting File

BWG BIOS Writer’s Guide a.k.a. BIOS Specification a.k.a. IA FW Specification
FDF Flash Description File

FSP Firmware Support Package(s)

FSP API Firmware Support Package Interface(s)
FV Firmware Volume

GUI Graphical User Interface

GUID Globally Unique IDentifier(s)

HOB Hand Off Block(s)

PI Platform Initialization

PIC Position Independent Code

RAM Random Access Memory

ROM Read Only Memory

SMM System Management Mode

SOoC System-On-Chip(s)

TOLUM Top of low usable memory

TPM Trusted Platform Module

UEFI Unified Extensible Firmware Interface
UPD Updatable Product Data

736809

8§

109

	Intel® Firmware Support Package External Architecture Specification
	Notices and Disclaimers
	Contents
	Revision History
	1.0 Introduction
	1.1 Purpose
	1.2 Intended Audience
	1.3 Related Documents

	2.0 FSP Overview
	2.1 Design Philosophy
	2.2 Technical Overview
	2.2.1 Data Structure Descriptions

	3.0 FSP Integration
	3.1 FSP Distribution Package

	4.0 FSP Binary Format
	4.1 FSP Components
	4.1.1 FSP-T: Temporary RAM Initialization Phase
	4.1.2 FSP-M: Memory Initialization Phase
	4.1.3 FSP-S: Silicon Initialization Phase
	4.1.4 FSP-I: SMM Initialization Phase
	4.1.5 OEM Components (FSP-O)

	4.2 FSP Component Identification
	4.2.1 FSP Image ID and Revision
	4.2.2 FSP Component Layout

	5.0 FSP Information Tables
	5.1 FSP_INFO_HEADER
	5.2 FSP_INFO_EXTENDED_HEADER
	5.3 Locating FSP_INFO_HEADER
	5.4 FSP Description File
	5.5 FSP Patch Table (FSPP)
	5.5.1 Example

	6.0 FSP Configuration Data
	6.1 UPD Standard Fields
	6.1.1 FSP-T UPD Structure
	6.1.2 FSP-M UPD Structure
	6.1.3 FSP-S UPD Structure
	6.1.4 FSP-I UPD Structure

	7.0 Boot Flow
	7.1 API Mode Boot Flow
	7.1.1 Boot Flow Description

	7.2 Dispatch Mode Boot Flow
	7.2.1 High Level Overview
	7.2.2 Boot Flow Description
	7.2.3 Alternate Boot Flow Description

	8.0 System Management Mode
	8.1 Model 1 - No SMM
	8.2 Model 2 – FSP Owns SMRAM
	8.3 Model 3 – Bootloader Provides MM Foundation (Dispatch Mode Only)
	8.4 High Level Flow
	8.4.1 API Mode
	8.4.2 Dispatch Mode

	9.0 FSP API Mode Interface
	9.1 Entry-Point Invocation Environment
	9.2 Data Structure Convention
	9.3 Entry-Point Calling Convention
	9.4 Return Status Code
	9.5 FSP Events
	9.5.1 PI Specification Architecturally Defined Status Codes
	9.5.2 Debug Log Messages
	9.5.3 POST Progress Codes
	9.5.4 MIPI Sys-T Catalog Debug Log Messages
	9.5.5 Related Definitions
	9.5.6 FspEventHandler
	9.5.6.1 Prototype
	9.5.6.2 Parameters
	9.5.6.3 Return Values

	9.5.7 FspDebugHandler
	9.5.7.1 Prototype
	9.5.7.2 Parameters
	9.5.7.3 Return Values

	9.6 FSP Variable Services
	9.6.1 Variable Store Contents
	9.6.2 API Mode Variable Sequence
	9.6.3 Variable Service Descriptions
	9.6.3.1 GetVariable
	9.6.3.1.1 Parameters
	9.6.3.1.2 Description
	9.6.3.1.3 Return Values

	9.6.3.2 GetNextVariableName
	9.6.3.2.1 Parameters
	9.6.3.2.2 Description
	9.6.3.2.3 Return Values

	9.6.3.3 SetVariable
	9.6.3.3.1 Parameters
	9.6.3.3.2 Description
	9.6.3.3.3 Return Values

	9.6.3.4 QueryVariableInfo
	9.6.3.4.1 Parameters
	9.6.3.4.2 Description
	9.6.3.4.3 Return Values

	9.7 TempRamInit API
	9.7.1 Prototype
	9.7.2 Parameters
	9.7.3 Return Values
	9.7.4 Description

	9.8 FspMemoryInit API
	9.8.1 Prototype
	9.8.2 Parameters
	9.8.3 Return Values
	9.8.4 Description

	9.9 TempRamExit API
	9.9.1 Prototype
	9.9.2 Parameters
	9.9.3 Return Values
	9.9.4 Description

	9.10 FspSiliconInit API
	9.10.1 Prototype
	9.10.2 Parameters
	9.10.3 Return Values
	9.10.4 Description

	9.11 FspMultiPhaseMem/SiInit API
	9.11.1 Prototype
	9.11.2 Parameters
	9.11.3 Related Definitions
	EnumMultiPhaseGetNumberOfPhases
	EnumMultiPhaseExecutePhase
	EnumMultiPhaseGetVariableRequestInfo
	EnumMultiPhaseCompleteVariableRequest

	9.11.4 Return Values
	9.11.5 Description

	9.12 FspSmmInit API
	9.12.1 Prototype
	9.12.2 Parameters
	9.12.3 Return Values
	9.12.4 Description

	9.13 NotifyPhase API
	9.13.1 Prototype
	9.13.2 Parameters
	9.13.3 Related Definitions
	9.13.4 Return Values
	9.13.5 Description

	10.0 FSP Dispatch Mode Interface
	10.1 Dispatch Mode Design
	10.2 PEI Phase Requirements
	10.3 DXE and BDS Phase Requirements
	10.4 Dispatch Mode API
	10.4.1 TempRamInit API
	10.4.2 EFI PEI Core Firmware Volume Location PPI
	10.4.3 FSP Temporary RAM Exit PPI
	10.4.3.1 Summary
	10.4.3.2 GUID
	10.4.3.3 Prototype
	10.4.3.4 Parameters
	10.4.3.5 Description

	10.4.4 FSP_TEMP_RAM_EXIT_PPI.TempRamExit ()
	10.4.4.1 Summary
	10.4.4.2 Prototype
	10.4.4.3 Parameters
	10.4.4.4 Description
	10.4.4.5 Return Values

	10.4.5 FSP-M Architectural Configuration PPI
	10.4.5.1 Summary
	10.4.5.2 GUID
	10.4.5.3 Prototype
	10.4.5.4 Parameters
	10.4.5.5 Description

	10.4.6 EDK II PEI Variable PPI
	10.4.6.1 Summary
	10.4.6.2 GUID
	10.4.6.3 Prototype
	10.4.6.4 Parameters
	10.4.6.5 Description

	10.4.7 EDKII_PEI_VARIABLE_PPI.GetVariable ()
	10.4.7.1 Summary
	10.4.7.2 Prototype
	10.4.7.3 Parameters
	10.4.7.4 Description
	10.4.7.5 Return Values

	10.4.8 EDKII_PEI_VARIABLE_PPI.GetNextVariableName ()
	10.4.8.1 Summary
	10.4.8.2 Prototype
	10.4.8.3 Parameters
	10.4.8.4 Description
	10.4.8.5 Return Values

	10.4.9 EDKII_PEI_VARIABLE_PPI.SetVariable ()
	10.4.9.1 Summary
	10.4.9.2 Prototype
	10.4.9.3 Parameters
	10.4.9.4 Description
	10.4.9.5 Return Values

	10.4.10 EDKII_PEI_VARIABLE_PPI.QueryVariableInfo ()
	10.4.10.1 Summary
	10.4.10.2 Prototype
	10.4.10.3 Parameters
	10.4.10.4 Description
	10.4.10.5 Return Values

	10.4.11 FSP Error Information
	10.4.11.1 Summary
	10.4.11.2 GUID
	10.4.11.3 Prototype
	10.4.11.4 Parameters
	10.4.11.5 Description

	10.4.12 FSP Debug Messages

	11.0 FSP Output
	11.1 FSP_RESERVED_MEMORY_RESOURCE_HOB
	11.2 FSP_NON_VOLATILE_STORAGE_HOB2
	11.3 FSP_NON_VOLATILE_STORAGE_HOB
	11.4 FSP_BOOTLOADER_TOLUM_HOB
	11.5 EFI_PEI_GRAPHICS_INFO_HOB
	11.6 EFI_PEI_GRAPHICS_DEVICE_INFO_HOB
	11.7 FSP_ERROR_INFO_HOB
	11.8 FSP_SMM_BOOTLOADER_FV_CONTEXT_HOB

	12.0 Other Host Bootloader Considerations
	12.1 ACPI
	12.2 Bus Enumeration
	12.3 Security

	Appendix A Data Structures
	A.1 BOOT_MODE
	PiBootMode.h
	A.2 EFI_STATUS
	UefiBaseType.h
	OEM Status Code
	A.3 EFI_PEI_GRAPHICS_INFO_HOB
	GraphicsInfoHob.h
	A.4 EFI_PEI_GRAPHICS_DEVICE_INFO_HOB
	GraphicsInfoHob.h
	A.5 EFI_GUID
	Base.h
	A.6 EFI_MEMORY_TYPE
	UefiMultiPhase.h
	A.7 Hand Off Block (HOB)
	PiHob.h
	A.8 Firmware Volume and Firmware Filesystem
	PiFirmwareVolume.h
	PiFirmwareFile.h
	A.9 Debug Error Level
	DebugLib.h
	A.10 Event Code Types
	A.11 EFI_STATUS_CODE_STRING_DATA
	Appendix B Acronyms

