
1

Technical Paper | Apache Cassandra with Intel® In-Memory Analytics Accelerator

Apache	Cassandra*	with	Intel®	In-Memory	Analytics	Accelerator	

Apache Cassandra* with Intel® In-Memory Analytics Accelerator (Intel® IAA) achieves 22%
higher performance compared with the Zstandard (zstd) compression algorithm and 24% higher
storage capacity compared with the LZ4 compression algorithm.

Authors

Binuraj Ravindran
Principal Engineer

Shylaja Kokoori

Cloud Software Development Engineer

Kalyan Jee
Cloud Solution Architect

Nandhita Narendra Babu
Cloud Software Development Engineer

					
Sevanthi Suvarna Reddy

Cloud Software Development Engineer

					
Tony Ruiz

Cloud Software Development Engineer

In the realm of data-driven decision-making, organizations and businesses
increasingly rely on robust data-analytics frameworks to extract valuable insights
from vast datasets. Intel® IAA1,2 is one of the Intel® Analytics Engines in 4th
generation Intel® Xeon® Scalable processors3 and provides a range of benefits
including increased application performance, reduced costs, and improved power
efficiency for data-analytics workloads.
This paper highlights performance improvements and cost savings that Intel IAA can
provide when integrated with Apache Cassandra, an open source NoSQL distributed
database.
Cassandra with Intel IAA achieves a 22% higher throughput compared to zstd-based
software solutions for 80:20 read/write with 16 KB block sizes and maintains p99
latency (99th percentile of latency) in the same range or lower. Compared with a
zstd-based software solution at the same throughput, the cost-of-compute can be
reduced. The compression and decompression operations can be offloaded to Intel
IAA to save CPU cores.
In contrast to a LZ4-based software solution, Cassandra with Intel IAA demonstrates
the ability to increase the storage capacity by 24% while maintaining similar
throughput and p99 latency.

Data	Analytics	with	Intel	IAA		
Data analytics involves using a database to uncover valuable information that
addresses an organization's business requirements and requires extensive scanning
of large datasets, efficient data storage, and seamless data movement across
memory tiers to attain timely and cost-effective query results. Achieving these
outcomes demand faster data-scan (query processing) and compact data-storage.
The 4th generation Intel Xeon Scalable processor integrates multiple accelerators to
deliver enhanced performance across various established and emerging workloads.
Depending on the CPU model, the number of accelerators and instances may vary,
which offers cost-effective matching of diverse workloads at data centers.

Technical Paper | Apache Cassandra* Acceleration with Intel® In-Memory Analytics Accelerator

2

Figure 1 illustrates the various analytics engines in the Intel Xeon Scalable processor including Intel IAA, which can offload the
following operations from the CPU:
• Query and scan function
• Compression and decompression

The rest of the paper describes how Intel IAA can be integrated into databases like Cassandra to achieve performance
improvements and cost savings.

Cassandra	Architecture	
Cassandra is a row-oriented database, designed to handle large amounts of unstructured data, with high availability and fault-
tolerance. The storage engine in Cassandra is based on a log-structured merge-tree (LSM) model and enables faster writes.
Figure 2 illustrates the write and read path architecture in Cassandra.

When a client issues a write request, an incoming request is first appended to a commit log for durability and added to an in-
memory data structure, memtable. As memtables fill up, they are flushed to storage and persisted in files, called Sorted String
Tables (SSTables). SSTables typically store data compressed with a configurable block size (the current default is 16 KB). These
SSTables are immutable files and are regularly compacted to clean up redundant updates and deletions. The compaction process
involves decompressing data from multiple source files, compacting them, and recompressing them into new SSTables.

 Figure 1. Intel Accelerator Engines in 4th generation Intel Xeon Scalable processors

 Figure 2. Apache Cassandra high-level architecture

Technical Paper | Apache Cassandra* Acceleration with Intel® In-Memory Analytics Accelerator

3

For a read request, if the row cache in Cassandra is enabled, data is returned immediately from the cache. Otherwise, data from
the memtable and potentially multiple SSTables (if data updates are present) are retrieved, decompressed, and merged before
providing a response back to the client.

Through the ICompressor interface4 in Cassandra, Intel has added a new compressor class, QPLCompressor5 that allows offloading
of compression and decompression operations to Intel IAA. Clients can create tables in Cassandra using QPLCompressor for flush
and compaction similar to other software compressors like LZ4 and zstd.
	

QPLCompressor	for	the	Cassandra	Storage	Engine

QPLCompressor enables Cassandra to perform compress and decompress operations using Intel IAA. This is achieved using:

Intel® Query Processing Library (Intel® QPL)6
This is a low-level library and software API that supports the capabilities of Intel IAA. It provides extremely high throughput
compression and decompression combined with primitive analytic functions, and highly optimized software fallback for other
Intel CPUs. Intel QPL primarily targets applications such as big-data and in-memory analytic databases.

Java* Native Interface Binding for Intel® Query Processing Library (JNI binding for Intel® QPL)
This library allows Java* applications to communicate with Intel QPL for using Intel IAA hardware. It improves the application
performance by accelerating operations like compression, decompression, and analytics.

As illustrated in Figure 3, Intel QPL sits on top of the system drivers. Applications use Intel QPL to interface with Intel IAA and
offload analytics operations to the Intel IAA device. Source code for the new compressor implementation,5 JNI binding 8 and low-
level library6 are all available publicly. For databases that are developed in C++, unlike Cassandra, developers can call Intel QPL
APIs directly to offload compression and decompression operations.7

	

Figure 3. Intel QPL unlocks Intel IAA and applications.

Technical Paper | Apache Cassandra* Acceleration with Intel® In-Memory Analytics Accelerator

4

	

Performance	Capture	Methodology		
For performance measurements, Intel used NoSQLBench,9 a performance testing tool for NoSQL frameworks. NoSQLBench
includes many different parameters to customize the workload conditions and Cassandra options.

Settings for NoSQLBench
Benchmarks:
• 80:20 read/write
• The database is populated using a NoSQLBench cql-timeseries workload.
• The read/write workload exercises both compression and decompression paths

NoSQLBench Instances:
• Read/write:

o 8 instances
o Increase the client load (NoSQLBench thread count per instance) till the 99th latency percentile is 20 ms
o Block size 16 KB
o Data size 1.1 billion entries per database size varies between different compression types
o Row cache disabled; no uncompressed data is cached.

Compressor
• zstd, LZ4, Intel IAA

o zstd: v1.5.4. zstd is a reference to compare Intel IAA performance.
o LZ4: 1.8.0. LZ4 is provided to show another popular speed versus compression ratio tradeoff.
o Intel QPL for Intel IAA v1.3.1

The tests were run on a dual-socket 60-core system with Intel® Hyper-Threading Technology (Intel® HT Technology) enabled.
The NoSQLBench benchmarks were run on a separate client system and all eight Cassandra server instances were run on the
server with four Cassandra instances bound to one socket and the other four bound to the second socket on a two-socket
system. All four Intel IAA devices available on each socket were enabled with one SWQ (shared work queue) setup per device.
A client/server configuration is provided in Figure 4.
For additional hardware and software configurations, see Configuration 1.

Figure 4. Client/Server configuration

Technical Paper | Apache Cassandra* Acceleration with Intel® In-Memory Analytics Accelerator

5

	

Performance	Improvement	and	Storage	Size	Reduction	with	Intel	IAA	
Cassandra with Intel IAA can achieve higher throughput compared to zstd-based software compression for 80:20 read/write
scenario.
• Throughput improvement: 22%
• Compressed-data-size tradeoff: 9%

Figure 5 shows the relative improvement in throughput versus zstd across different compressor types. Compared to zstd, the
higher throughput with Intel IAA compression allows increased application performance or reduced cluster sizes. This leads to
improved resource use and cost savings.

The relative decrease in storage capacity enabled with Intel IAA is depicted in Figure 6. Compared to the LZ4 compressor,
Apache Cassandra with Intel IAA can achieve:
• Database size reduction: 24%
• Throughput improvement:7%

Reduction in data size for the similar throughput can significantly increase the storage capacity, especially for scenarios with
storage capacity bottlenecks.

There exists a tradeoff between speed and size for any compression algorithms. Intel IAA offers a good compromise between
zstd and LZ4, where a higher throughput can be achieved compared with zstd and a much smaller database size can be
obtained compared with LZ4, depending on whether speed or size is more important in the design.

When compression/decompression operations are offloaded to Intel IAA, less CPU resources are needed to achieve the same
performance. The freed-up CPU resources can be used either for reducing the overall cost of a Cassandra server instance or for
running other tasks.

 Figure 5. Relative throughout across compressors compared with zstd

Figure 6. Relative database size across compressors compared with LZ4

Technical Paper | Apache Cassandra* Acceleration with Intel® In-Memory Analytics Accelerator

6

	

Performance	Scaling		
The scenarios covered in the previous sections are for scenarios when all the CPUs in the socket were used. Figure 7 shows the
results from a performance scaling case study across the number of cores with zstd/LZ4 software compression and across
number of Intel IAA devices (one and four Intel IAA devices).

The horizontal dotted line represents the maximum throughput achieved with zstd. The vertical dotted line can be used to
estimate the number of CPU cores that can be saved by offloading compression/decompression operations to Intel IAA while
achieving the maximum zstd throughput. Intel IAA can reduce the number of CPUs needed to reach the same throughput as
zstd at a lower latency. In this example Cassandra with Intel IAA can achieve the same throughput as that of zstd-based
Cassandra with 47% reduction in CPU cores in a 100% read scenario and 38% reduction in CPU cores for an 80:20 read/write
scenario.
As the percentage of the time spent in compression/decompression operation is less in Cassandra, increasing the number of
Intel IAA devices beyond two may not increase the throughput much. However, there are ways to improve the throughput by
breaking down the larger block sizes to smaller ones, thus parallelizing the operations, which is under investigation.
This case study uses a scaled-down setup to eliminate the network overhead as in Configuration 1. Cassandra Server is running
on Socket 0 and NoSQLBench clients are running Socket 1 of a two-socket system. More details of the hardware and software
configurations are in Configuration 2. The idea is to showcase how the performance scales with the number of CPU cores and
the potential CPU savings with Intel IAA rather than a full deployment scenario. Full deployment scenario is covered in a
previous section using a much larger data size and with across the network configurations.

Software configuration details for this simplified case study are as follows:
• Benchmarks: Read-only and 80:20 read/write:

o The database is populated using a NoSQLBench cql-timeseries workload.
o Read-only test exercises for only decompression.
o Read/write workload exercises for both compression and decompression.

• NoSQLBench instances:
o Read only: Four instances; 200 threads per instance
o Read/Write: Four instances; 200 threads per instance plus background flush/compaction threads.

• Block size: 16 KB
• Data size: 10 million entries per database, 10 G uncompressed size per database
• Row cache disabled: No uncompressed data is cached.
• Compression: zstd, LZ4, Intel IAA.

o zstd: v1.5.4
o LZ4: 1.8.0
o Intel QPL for Intel IAA: v1.1.0

Figure 7. Performance scaling across CPU cores and Intel IAA devices

Technical Paper | Apache Cassandra* Acceleration with Intel® In-Memory Analytics Accelerator

7

	

Conclusion	
Intel Analytics Engines represent a significant leap in innovation within the 4th gen Intel Xeon Scalable processors.3 Among these
accelerators, the Intel In-Memory Analytics Accelerator (Intel IAA) is designed to deliver exceptional throughput and low-latency
compression/decompression capabilities alongside primitive analytical functions.
Intel IAA enhances the performance of a Cassandra NoSQL database, resulting in increased application speed, reduced costs, and
lower power. Compared with zstd-based software solutions, Cassandra with Intel IAA achieves a 22% higher throughput for 80:20
read/write with 16 KB block sizes, maintaining p99 latency (99th percentile of latency) in the same range or lower. The
compression and decompression operations are offloaded to Intel IAA, thereby saving CPU cores and power.
Furthermore, Cassandra with Intel IAA demonstrates the ability to increase the storage capacity by 24%, compared with LZ4-
based software solution at the same time maintaining similar throughput and p99 latency.
Additionally, widely used databases such as Cassandra, Kafka*, and OpenSearch* can take full advantage of the capabilities of the
qpl-java library. Due to the seamless interfaces provided by Intel QPL and qpl-java from Intel, these applications can offload
compression, decompression, and analytics operations to the Intel IAA device, thereby supercharging application performance
and improving overall power efficiency.

Technical Paper | Apache Cassandra* Acceleration with Intel® In-Memory Analytics Accelerator

8

	

References	
1. Intel Corporation, "Intel In-Memory Analytics Accelerator (Intel IAA) Architecture Specification," 2023. [Online]. Available:

https://www.intel.com/content/www/us/en/content-details/721858/intel-in-memory-analytics-accelerator-architecture-
specification.html.

2. Intel Corporation, "Intel In-Memory Analytics Accelerator (Intel IAA) User Guide," 2023. [Online]. Available:
https://cdrdv2.intel.com/v1/dl/getContent/780887.

3. Intel Corporation, “Drive More Data Value Through Acceleration," 2023. [Online]. Available
https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/analytics-accelerators-product-brief.html.

4. “Cassandra Documentation,” 2024. [Online]. Available:
https://cassandra.apache.org/doc/4.1/cassandra/operating/compression.html#advanced-use.

5. Intel Corporation, "Cassandra for Intel QPL Compressor," 2022. [Online]. Available: https://github.com/intel-
staging/cassandra/tree/QPLCompressor.

6. Intel Corporation, "Welcome to Intel QPL Documentation! — Intel QPL v1.1.0 Documentation.," 2023. [Online]. Available:
https://intel.github.io/qpl/.

7. Intel Corporation, "Intel® In-Memory Analytics Accelerator Plugin for RocksDB* Storage Engine (Intel® IAA Plugin for RocksDB* Storage
Engine)," 2023. [Online]. Available: https://cdrdv2-public.intel.com/788607/357191EN-Intel-IAA-Plugin-RocksDB.pdf

8. Intel Corporation, "Java Native Interface Binding for Intel Query Processing Library," 2022. [Online]. Available:
https://github.com/intel/qpl-java.

9. “No SQL Benchmark Tool,” 2023. [Online]. Available: https://docs.nosqlbench.io/.
10. TWiki @ Cern, “CostEst < Main < TWiki.” 2017. [Online]. Available: https://twiki.cern.ch/twiki/bin/view/Main/CostEst

Configurations	

	Configuration	1	
Server: 1-node, 2x Intel® Xeon Platinum 8490H CPU, 60 cores, Intel® HT Technology on, turbo on, non-uniform memory access (NUMA) 4, integrated accelerators
available [used 0]: Intel® Dynamic Load Balancer (Intel® DLB) 8 [0], Intel® Data Streaming Accelerator (Intel® DSA) 8 [0], Intel® In-Memory Analytics
Accelerator (Intel® IAA) 8 [8], Intel® Quick Assist Technology (Intel® QAT) 8 [0], total memory 512 GB (16x32 GB DDR5 4800 MT/s [4800 MT/s]), BIOS
EGSDCRB1.SYS.0102.D37.2305081420, microcode 0x2b0004d0, 1x Ethernet controller I225-LM, 4x Ethernet controller X710/X557-AT 10GBASE-T, 2x Ethernet
controller E810-C for QSFP, 1x 1.5T Intel® Solid State Drive (Intel® SSD) SC2BB01, 1x 447.1G Intel SSD SC2BW48, 1x 1.7T Intel SSD SC2KB01, 8x 1.5T Intel SSD
PF21Q016TB, Ubuntu* 22.04.3 LTS, 5.19.17-051917-generic, workload and version, compiler, libraries, other software, score=?UNITS.

Client: 1-node, 2x Intel Xeon Platinum 8380 CPU at 2.30 GHz, 40 cores, Intel HT Technology on, turbo on, NUMA 4, integrated accelerators available (used):
integrated accelerators available [used 0]: Intel® Dynamic Load Balancer (Intel® DLB) 0 [0], Intel® Data Streaming Accelerator (Intel® DSA) 0 [0], Intel® In-Memory
Analytics Accelerator (Intel® IAA) 0 [0], Intel® Quick Assist Technology (Intel® QAT) 0 [0], total memory 512 GB (16x32 GB DDR4 3200 MT/s [3200 MT/s]), BIOS
SE5C620.86B.01.01.0005.2202160810, microcode 0xd0003a5, 2x Ethernet Controller X710 for 10GBASE-T, 1x 223.6G KINGSTON SA400M8240G, 4x 3.5T Intel SSD
PF2KX038TZ, Ubuntu 22.04.2 LTS, 5.15.0-88-generic

Software configuration: Cassandra 4.1.1, OpenJDK version 11.0.20.1 2023-08-24, Intel QPL 1.3.1 , QPL-java 1.0.0 , NoSQLBench 4.15.102

Test by Intel as of 02/29/24.

Configuration	2	
1-node, 2 sockets 4th Intel® Xeon Scalable processor (60-cores, 4x Intel IAA devices) preproduction platform with 512 GB (16x32 GB DDR5-4800MT/s) total
memory, Intel HT Technology on, turbo on. BIOS: EGSDCRB1.86B.9409.P15.2301131123.OS: CentOS* Stream 8, Linux* kernel: 6.1.12

Software configuration: GCC* version 8.5.0 20210514 (Red Hat* 8.5.0-13), NoSQLBench version 4.15.101, OpenJDK version 11.0.18 2023-01-17 LTS, Intel QPL
1.1.0 synchronous API. Used loopback for network and dataset fits completely in memory. Server running on socket 0 and client on socket 1.

Testing by Intel as of March 23,2023.

Notices	&	Disclaimers	
Performance varies by use, configuration, and other factors. Learn more at https://www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration
details. No product or component can be secure. Intel technologies may require enabled hardware, software, or service activation.

Your costs and results may vary.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly available. These are not "commercial"
names and not intended to function as trademarks.

Intel, the Intel logo, Xeon, and Intel Optane are Intel Corporation's or its subsidiaries' trademarks.

Other names and brands may be claimed as the property of others.

 Copyright © 2024, Intel Corporation. All Rights Reserved.

https://www.intel.com/content/www/us/en/content-details/721858/intel-in-memory-analytics-accelerator-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/721858/intel-in-memory-analytics-accelerator-architecture-specification.html
https://cdrdv2.intel.com/v1/dl/getContent/780887
https://www.intel.com/content/www/us/en/products/docs/processors/xeon-accelerated/analytics-accelerators-product-brief.html
https://github.com/intel-staging/cassandra/tree/QPLCompressor
https://github.com/intel-staging/cassandra/tree/QPLCompressor
https://intel.github.io/qpl/
https://cdrdv2-public.intel.com/788607/357191EN-Intel-IAA-Plugin-RocksDB.pdf
https://github.com/intel/qpl-java
https://docs.nosqlbench.io/
https://twiki.cern.ch/twiki/bin/view/Main/CostEst
https://www.intel.com/PerformanceIndex

