Product Brief

intel ai

Supercharge Applications with Al on an AI PC with OpenVINO™

SpenVING What toolkit is need to power AI applications?

OpenVINO[™] toolkit is an open-source software kit for optimizing and deploying AI workloads such as generative AI, computer vision, large language models to deliver cutting-edge applications for the AI PC.

What is the AI PC?

A PC with the latest Intel[®] Core[™] Ultra processor that brings fresh Al experiences in productivity, creativity, and security through a combination of the CPU, GPU, and the all-new NPU.

What workloads can be accelerated with AI?

Photo, Video & **Music Editing**

Content

Generation

Consumer & Commercial AI PC

Virus/Threa Detection

Collaboration

Effects

Personal AI Assistance

Revision #827780

Free Download > openvino.ai

Why Intel[®] Core[™] Ultra Processors?

CPU

GPU

NPU

The right balance of power and performance for Al

Fast Response Ideal for lightweight, single-inference, low-latency AI tasks

Performance Parallelism & Throughput Ideal for AI infused in Media/3D/Render pipeline

Dedicated Low-Power Al Engine Ideal for sustained Al and Al offload

How OpenVINO[™] accelerates AI applications

Open-Source

Allow for redistribution and commercial use with a permissive open-source Apache* 2.0 license

Performance Optimized

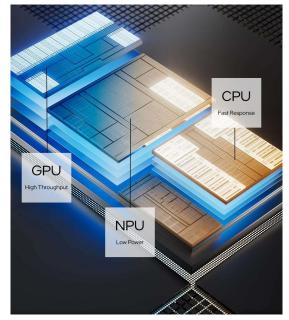
Realize unparalleled performance with a toolkit optimized for Intel hardware

AUTO Device Plug-in

The Automatic Device Selection mode, or AUTO for short, uses a "virtual" device, that selects the accelerator for inference automatically

O Detects available accelerator devices

Picks the one best suited for the task


Its easy with a single line of code specifying the device name to AUTO

AI, DL Inference

Use across domains to run Generative AI, Computer Vision, Natural Language Processing, Large Language Models and Recommender System inference

Cross-Platform Support

Enhance AI accessibility across Intel® CPU, GPU and NPU

compiled_model = core.compile_model (model=model, device_name="AUTO")

Product Brief | Supercharge Applications with AI on an AI PC with OpenVINO™

1 MODEL				3 DEPLOY
			Convert trained model from sup frameworks	<u> </u>
O PyTorch	TensorFlow	TensorFlowl ite	Read, load, infer	OpenVINO [™] Runtime Common Python, C and C++ APIs that abstracts low-level programming for each device below
PaddlePaddle		K Keras	IR Data OpenVINO format (interrepresentation file) (.pb	b, tflite, .onnx,) Accelerated Compute CORE
Model Zoos open Utilize open-source models from the industry's frameworks			Direct model conversion TensorFlow and PyTorcl For select models, you can skip deployment faster	h AIPC
			Model Compression with NNCF Neural Network Compression Framework provides quantization aware training, model	Framework aining, model XEON CORE ATOM IRIS* GPU
Intel Optimum Use OpenVINO as an extension in Hugging Face			pruning and sparsity along with optimization	Support for Arm* CPU
transform		nd gain model compression	Jupyter Notebooks Get sample code on the latest n your application into production	models to help get Select Altera FPGAs

Key Components

Model Conversion API & Tools

Imports trained models from various frameworks (TensorFlow*, PyTorch*, ONNX*, PaddlePaddle*, Keras*, and more) and converts them to a unified intermediate representation file. Two simple API calls, convert_model() and save_model() optimizes and converts models to FP32 or FP16. Also available is the easy to use OpenVINO Converter (OVC) command-line tool providing the same great results.

Why it's important: The OpenVINO Model Converter (OVC) provides the biggest performance boost by conversion to data types that match hardware types (FP32/FP16). Further optimize with NNCF for smaller data types (INT8/INT4).

If your selected model is in one of the <u>OpenVINO</u> <u>supported model formats</u>, you can use it directly, without the need to save as OpenVINO IR. Conversion is performed automatically before inference for maximum convenience.

OpenVINO[™] Model Server (OVMS)

A high-performance system for serving models. Implemented in C++ for scalability and optimized for deployment on Intel architectures, the model server uses the same architecture and API as TensorFlow Serving and KServe while applying OpenVINO for inference execution. Inference service is provided via gRPC or REST API, making deploying new algorithms and AI experiments easy.

Why it's important: Model Server hosts models and makes them accessible to software components over standard network protocols.

OpenVINO Runtime

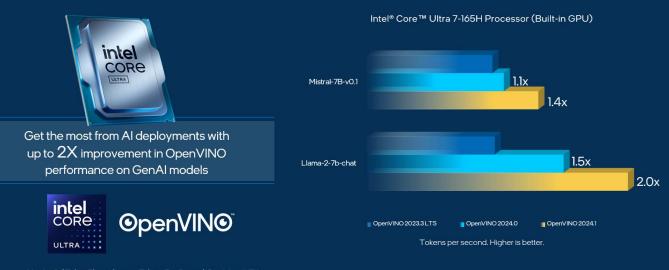
A simple and unified API for inference across multiple compute architectures. It allows heterogeneous execution of layers across hardware targets (CPU, GPU, NPU, and third party ARM* architecture CPUs). The API supports C, C++, Python*, and JavaScript* interfaces, dynamically loading plugins for each hardware type.

The OpenVINO Runtime is deployed inside applications to deliver AI inference acceleration using customer developed models for their applications use cases.

Why it's important: Delivers superior performance for each type without requiring users to implement and maintain multiple code pathways.

Neural Network Compression Framework (NNCF)

Model optimization is an optional offline step of improving the final model performance; from 32-bit, to 16-bit, 8-bit, and 4-bit quantization, pruning, and more.


- Post-training Quantization optimizes the inference of deep learning models by applying the post-training 8bit integer quantization that does not require model retraining or fine-tuning.
- Training-time Optimization, a suite of advanced methods for training-time model optimization supports methods like Quantization-aware Training, Structured and Unstructured Pruning, etc.
- Weight Compression, an easy-to-use method for Large Language Models' footprint reduction and inference acceleration.

Why it's important: The NNCF reduces neural network sizes for faster training cycles and more-compact models for deep learning inference.

Performance Benchmarks

Accelerate AI PC Development with Optimized GenAI Model Performance

Significant performance gains with every OpenVINO™ release (2023.3 LTS > 2024.0 > 2024.1)

Metric: 2nd Token Throughput as Tokens Per Second. Precision: INT4, Batch size: 1, Input: 1024 tokens, Output: 128 tokens, Beam search: 1

Maximize your Stable Diffusion performance on Intel[®] Core[™] Ultra Processors OpenVINO[™] release 2024.1 offers a significant performance boost over 2024.0

Metric: $2^{\rm rot}$ token throughput as Tokens Per Second. Input tokens: I024, Batch size: $l_{\rm r}$ Precision: INT8


System board	Intel Corporation Reef Ridge/Astral Peak CRB
CPU	Intel® Core Ultra 7-165H @ 1.4 GHz.
Sockets, physical cores/socket	1, 6P+8E+2e
Hyperthreading/turbo setting	Enabled/On
Memory	2x32 GB DDR5 5600MHz
os	Windows 11
Kernel	10.0.22631 Build 22631
Software	Intel® Distribution of OpenVINO [™] Toolkit 2024.0 / 2024.1
BIOS	MTLPEMI1.R00.3471.D56.2403181159
BIOS release date	3/18/2024
BIOS setting	Select optimized default settings, save, and exit
Microcode	1C
Test date	April 2024
Precision and batch size	Int8/Batch1
Power (TDP)/socket	28W
	ingth: 1024, steps: 20, image size: 512x512 pixel). 12-db: (input token lenath: 1024, output size: 128 beam: 1)

Revision #827780

ST CI SC H M O K S B B B M T P P

We ILL Product Brief | Supercharge Applications with AI on an AI PC with OpenVINO™

Success Stories

Resources	Resource Location	
OpenVINO™ toolkit webpage	https://openvino.ai	
OpenVINO™ toolkit Github*	https://github.com/openvinotoolkit	
OpenVINO™ toolkit downloads	https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/download.html	
AIPC. Transformational Technology	https://intel.com/aipc	
Intel [®] Core [™] Ultra [™] Processors Family	https://www.intel.com/content/www/us/en/products/details/processors/core-ultra.html	

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more on the Performance Index site.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure. Your costs and results may vary. Intel technologies may require enabled hardware, software or service activation. Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

intel