
Introduction
In an era of fast technological innovation, artificial intelligence (AI) is becoming 
the transformative driver that can reshape our society and nearly every industry. 
AI is already the main driver of emerging technologies such as image recognition, 
robotics, and IoT, and generative AI has further expanded the possibilities and 
popularity of AI. AI has shown extraordinary abilities to train in vast amounts of 
data, generate new content, transform content, and make useful decisions. While 
most processing currently happens in the cloud, the rise of edge AI is already 
underway, as we see AI deployed across industries such as industrial automation, 
healthcare, autonomous vehicles, and retail. With security, low-latency real-time 
processing, low power, low cost, and small form factors all critical, alternatives to 
large-scale GPU deployment are needed at the edge.

Tiny machine learning (tinyML*)  is a new, exciting, and growing field that helps 
bring machine learning to low-power devices such as microcontrollers. It can be 
used in various sectors, including agriculture, industrial predictive maintenance, 
anomaly detection, smart homes, and personalized healthcare. It can also be used 
for computer vision, voice and speech recognition, gesture recognition, diagnostic 
assistance, and more.

With their inherent architectures, FPGAs naturally implement customized, optimal 
AI and machine learning (ML) workloads. With integrated Arm processors, Altera’s 
RISC-V solution, the Nios® V soft processors, thousands of digital signal processing 
(DSP) blocks, a variety of memory hierarchies, and support for multiple I/O 
standards, they are very well adapted to different AI/ML architectures, providing 
optimal performance and power efficiencies. 

Altera’s broad product portfolio is used in embedded, edge, network, and data 
center applications. Altera offers the FPGAs AI suite application software to help 
deploy medium and large deep learning AI models seamlessly on Altera® FPGAs 
and SoC FPGAs. Small models such as tinyML can also be deployed on power- and 
cost-optimized Altera® FPGAs and SoC FPGAs. 

Integrating tinyML with low-power microcontrollers such as Nios V and Arm 
processors on Altera FPGAs – by leveraging their flexibility and performance – 
enables tinyML to operate on a broad spectrum of devices, bringing intelligent 
compute to the edge. Users can execute complex AI tasks on smaller, less resource-
intensive FPGA devices, deploying a cost-effective and power-efficient solution. 
Users can also implement multiple Nios V processor instances running tinyML on 
Agilex™ FPGAs. No-cost tools and a unified debugging environment make 
developing and debugging solutions easy across all Altera SoC FPGAs. Additionally, 
by porting 32-bit tinyML applications onto the 64-bit Arm* Cortex-A architecture, 
Altera enables the seamless enhancement of computational efficiency and future-
proofing embedded ML solutions without any changes to the software.  

This white paper demonstrates deploying a tinyML model on Altera’s RISC-V 
solution, the Nios V/g general-purpose processor, and the Arm Hard Processor 
System on the Agilex 5 SoC FPGA. It also discusses the versatility of FPGAs in AI 
deployment, the deployment steps, and the future scope of work. 
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Versatile AI deployment refers to the ability to deploy AI/ML 
models across various platforms, environments, and 
applications with flexibility and efficiency. Altera SoC FPGAs 
naturally enable AI, support diverse use cases, and support 
small models such as tinyML to medium and large models  
such as convolutional neural networks (CNN), recurrent 
neural network (RNNs), and multilayer perceptrons (MLPs)   
at the edge and network, and generative AI large language 
model (LLM) transformer models in the data center. 

Altera delivers a broad portfolio of custom logic solutions 
such as FPGAs, SOCs, and CPLDs together with software 
tools, intellectual property (IP), and embedded processors, 
offering versatile and efficient solutions for accelerating AI 
tasks, particularly in applications where customization, 
deterministic, low latency, tight integration, and energy 
efficiency are critical. Their long product life cycles and the 
re-programmability help future-proof designs. 

Altera’s midrange FPGAs, such as Agilex 5 and Arria® 10, are 
optimized for applications requiring high performance, lower 
power, and smaller form factors. At the same time, Agilex 3, 
MAX®, and Cyclone® FPGAs are ideal for applications that 
need power- and cost-optimized devices in compact form 
factors. 
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Altera SoC FPGAs integrate the FPGA fabric with hardened 
Arm processors, offering a high degree of reconfigurability 
and performance in a single device. The Nios V processor is 
the next generation of soft processors for Altera FPGAs, 
implemented in the FPGA fabric and based on the open-
source RISC-V instruction set architecture (ISA). 

Altera FPGAs and SoC FPGAs enable ML developers to 
deploy tinyML models by applying either the Nios V soft-core 
processor in the FPGA fabric or the Arm Cortex-A processor 
in the Hard Processor System (HPS). Users can rapidly 
innovate by deploying the models on RISC-V or Arm 
processors. Once the model becomes stable, in the case of 
soft processors, custom instructions can be used to deploy 
the model to fur ther accelerate its per formance by 
redeploying the slower code portion of the model onto the 
FPGA fabric as a hardware accelerator. 

The Ashling RiscFree* Integrated Development Environment 
(IDE) for Intel® FPGAs is developed for Altera FPGAs. This 
IDE provides software development and heterogeneous 
debug support for the soft Nios V processors based on the 
RISC-V ISA and the hard Arm processors.

Altera SoC FPGAs Offer Versatile AI Deployment

TensorFlow* is a free and open-source library that makes 
developing and deploying ML models easier. TensorFlow 
Lite (TFLite)1 is a subset of the TensorFlow repository 
intended to run on mobile and embedded devices with a 
larger external RAM and can run full-fledged operating 
systems such as Android*, iOS*, and embedded Linux*. 
TensorFlow Lite for Microcontrollers (TFLite Micro) is a 
subset of TFLite for running ML models on microcontrollers 
and other devices with limited internal ram. It can run bare-
metal systems or real-time operating systems (RTOS). The 
TFLite micro library helps to run inference on TFLite models 
in microcontrollers. 

Deploying tinyML on Altera FPGAs and SoC FPGAs

Here are the high-level steps used for deploying a model on 
a Nios V or Arm processor:

•	 Train model: Train a model using a dataset in the 
TensorFlow framework or a pre-trained model.

•	 Convert model: Convert the TensorFlow model to the 
TFLite model format using the TFLite converter.

•	 Check accuracy: Check the TFLite model accuracy and 
minimize error due to conversion.
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The general guidelines for using the Nios V soft-core processor in Altera FPGAs, as illustrated in Figure 1, involve: 

1.	 Create an FPGA hardware system 
A.	 Choose a soft-core processor 
B.	 Instantiate the processor 
C.	 Add peripherals 
D.	 Generate the FPGA bitstream 
E.	 Program the FPGA

2.	 Integrate TFLite Micro into the Nios V processor 
A.	 Develop the tinyML software 
B.	 Apply the TFLite model

3.	 System deployment and validation 
A.	 Download the tinyML software into the FPGA 
B.	 Test the system

Figure 1.	 Training and Deploying tinyML on Nios V or Arm Processors on Altera SoC FPGAs
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•	 Create FPGA hardware system: Generate a processor 
system with the Nios V or Arm processor in the 
Quartus® Prime design software and program the SoC 
FPGA.

•	 Integrate TFLite Micro into Nios V or Arm processors: 
Integrate the TFLite Micro library into the processor’s 
software environment and the TFLite model.

•	 Deploy and validate system: Upload the integrated 
model into the SoC FPGA and test the model on the 
deployed system.

•	 Perform model inferencing: Use the model to make 
predictions and classifications.

A brief example of platform integration can be demonstrated 
using the sine wave regression model (a Hello World example 
prepared by TFLite). It includes the basics of using the library 
and a full end-to-end workflow of training a model and 
converting it with TFLite Micro for running inference on a 
microcontroller. Like a typical “hello world” C/C++ program, 
both Nios V and Arm processor applications require a single 
UART device to display messages on the console. Thus, it is 
suitable to verify platform integration attempts with minimal 
device dependency. 

The TFLite Hello World example is a pre-trained model with 
a single fully connected layer replicating a sine function. It is 
also converted into the TFLite model format with minimal 
accuracy loss. With the Train model, Convert model, and 
Check accuracy steps completed, you can begin platform 
integration from the Create FPGA hardware system and 
onwards.
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1.	 Installation of board-specific IDE: Install the Ashling RiscFree IDE for Intel FPGAs on your machine. To complete this 
task, refer to Installing Ashling RiscFree IDE for Intel FPGAs in the references section.

2.	 Toolchain setup, compiler flags, and linker setup: In the Nios V processor Board Support Package (BSP) editor, define:

•	 cflags_user flags: -ffunction-sections -fdata-sections -fno-rtti -fno-exceptions

•	 cflags_defined_symbols: -DTF_LITE_STATIC_MEMORY

•	 cxx_flags: -std=c++17

•	 link_flags: -Wl,--gc-sections

•	 cflags_optimization: -O3

3.	 Peripheral integration: The BSP editor automatically selects the JTAG UART device as the standard UART device 
during BSP generation. You can apply the same setup. 

4.	 Build TFLite static library: The following git commands should be run in a Linux or WSL environment.

	 $ sudo apt update 
$ sudo apt install make git python3 unzip python3-pip 
$ pip3 install numpy image 
$ git clone --depth 1 https://github.com/tensorflow/tflite-micro.git 
$ cd <clone directory>/tflite-micro 
$ python3 tensorflow/lite/micro/tools/\ 
project_generation/create_tflm_tree.py \ 
-e hello_world tflite_app

This creates a parent folder named tflite_app with the following child folders shown in Figure 2.

5.	 Customize timing function: Replace the timing function in micro_time.cc as shown.

	 #include <time.h> 
#include “system.h” 
... 
uint32_t ticks_per_second() { return ALT_CPU_TICKS_PER_SEC; } 
… 
uint32_t GetCurrentTimeTicks() { return clock(); }

	 With the above steps, a newly generated TFLite Micro library is integrated into the Nios V processor. 

Figure 2.	 Generated TFLite Static Library

https://github.com/tensorflow/tflite-micro.git
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6.	 Build the TFLite Hello World example 
Ensure the BSP project (named tflite_bsp) is generated successfully after implementing steps 2 and 3. Next, we can 
apply the generated tflite_app as the APP project and create the application CMakeLists file using the niosv-app 
executables in the Nios V processor command shell.

	 $ niosv-app \ 
--bsp-dir=tflite_bsp \ 
--app-dir=tflite_app \ 
--srcs-recursive=tflite_app/examples,\ 
tflite_app/signal,\ 
tflite_app/tensorflow \ 
--incs=tflite_app,\ 
tflite_app/examples/hello_world,\ 
tflite_app/tensorflow,\ 
tflite_app/third_party/flatbuffers/include,\ 
tflite_app/third_party/gemmlowp,\ 
tflite_app/third_party/kissfft,\ 
tflite_app/third_party/ruy

	 You may import the BSP and APP projects into the Ashling RiscFree IDE for Intel FPGAs or continue building them from 
the command line. 

	 $ cmake -S tflite_app \ 
-B tflite_app/build/Release \ 
-G “Unix Makefiles” \ 
-DCMAKE_BUILD_TYPE=Release  
$ make -C tflite_app/build/Release

Once the TFLite Hello World example elf file is generated, you may download it into the processor core and test the example. 
The Nios V processor platform integration is completed successfully when the application prints “ALL TESTS PASSED”, 
shown in Figure 3. 

System Deployment and Validation

Figure 3.	 TFLite Hello for the Nios V Processor
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Figure 4.	 Development Flowchart for the Arm HPS 

The hardware design used for this experiment is the Altera SoC FPGA golden hardware reference design (GHRD). The tinyML 
application runs under the Zephyr* OS environment as a single-thread application. The only dependency used from Zephyr 
is the clock ticks application program interface (API) to measure the execution time. 

The complete flow of the HPS development is portrayed in Figure D and can be summarized below:

1.	 Create an SoC FPGA hardware system 
A.	 Choose the Altera SoC FPGA GHRD 
B.	 Generate the SoC FPGA bitstream 
C.	 Prepare the Arm Trusted Firmware (ATF) bootloader 
D.	 Integrate the SoC FPGA bitstream with the ATF first-stage boot loader (FSBL) application 
E.	 Program the SoC FPGA

2.	 Integrate TFLite Micro into the Arm processor 
A.	 Prepare the Zephyr OS 
B.	 Modify the Zephyr OS 
C.	 Develop the tinyML software 
D.	 Apply the TFLite model

3.	 System deployment and validation 
A.	 Download the ATF second-stage boot loader (SSBL) application into the SoC FPGA 
B.	 Download the tinyML software into the FPGA 
C.	 Test the system

Altera’s Agilex 5 SoC FPGA is chosen as the example SoC FPGA for the following guideline.
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To begin platform integration for HPS processors, download the Altera Agilex 5 SoC FPGA GHRD from the Golden Hardware 
Reference Design (GHRD) Build Scripts Github repository in the references section and compile the Quartus Prime design 
software project to generate the SoC FPGA bitstream. Concurrently, the HPS requires the Arm Trusted Firmware to generate 
the HPS bootloader: BL2 as an FSBL and BL31 as an SSBL. BL2 must be embedded with the SoC FPGA bitstream to initialize 
and configure the HPS once booted. 

A Zephyr project is needed to compile a Zephyr application. Once installed, modifications are needed to enable TFLite libraries 
within the Zephyr OS. The steps to perform a TFLite platform integration for Zephyr and the Agilex 5 FPGA HPS are as follows:   

1.	 Installation of board-specific IDE: Install the Zephyr Software Development Kit (SDK) and its dependencies on your 
machine. To complete this task, refer to Developing with Zephyr – Getting Started Guide in the references section.

2.	 Device tree modifications: By default, the Agilex 5 device tree RAM size is 8 MBytes, which is insufficient for a common 
tinyML application. Increase the RAM size in the following device tree file.

	 <install_path>/zephyrproject/\ 
zephyr/dts/arm64/intel/\ 
intel_socfpga_agilex5.dtsi

3.	 Stack/heap size modifications: Increase the stack/heap size in the Zephyr project configuration files (prj.conf).

	 CONFIG_MAIN_STACK_SIZE=65536 
CONFIG_SYSTEM_WORKQUEUE_STACK_SIZE\ 
=524288 
CONFIG_HEAP_MEM_POOL_SIZE=262144 

4.	 Peripheral integration: The device tree file selects the UART controller as the standard UART device by default. You can 
apply the same setup.

5.	 Toolchain setup, compiler flags, and linker setup: This build uses the default settings of a Zephyr project. The generated 
application has -O0 settings to enable debugging. Compiling a release version can be enabled using CONFIG_SPEED_
OPTIMIZATIONS for the -O2 compiler setting or CONFIG_SIZE_OPTIMIZATIONS for -Os.

6.	 Build TFlite static library: To enable the TFLite static library within the Zephyr project, apply the following commands:

	 $ west config manifest.project-filter \ 
-- +tflite-micro 
$ west config manifest.group-filter \ 
-- +optional 
$ west update

	 These commands clone the latest version of TFLite static libraries and include them with the Zephyr build environment.

7.	 Customize timing functions: The Agilex 5 SoC FPGA has a 64-bit Arm Cortex-A architecture with 64-bit timers. On the 
other hand, the TFLite Micro library is based on a 32-bit platform (32-bit timer). To avoid integer overflow, the TFLite Micro 
time functions must read a 64-bit input from Arm’s 64-bit timer. 

	 Replace the timing function in micro_time.cc as such:

	 #define CLOCK_TICKS_PER_SEC \ 
400000000 
… 
uint32_t ticks_per_second() \ 
{ return CLOCK_TICKS_PER_SEC; } 
… 
uint64_t GetCurrentTimeTicks() \ 
{ return (uint64_t)(arch_k_cycle_get_64());

Create an SoC FPGA Hardware System

Integrate TFlite Micro into the Arm Processor
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	 In micro_time.h,

	 uint64_t GetCurrentTimeTicks(); 
… 
inline uint64_t TicksToMs(int64_t ticks) 
{ 
	  return static_cast<uint64_t>(1000.0f *static_cast<float>(ticks) / static_cast<float>(ticks_per_second())); 
}

	 In micro_profiler.h, all the 32-bit tick variables must be changed to 64-bit size.

	 uint64_t start_ticks_[kMaxEvents]; 
uint64_t end_ticks_[kMaxEvents]; 
… 
struct TicksPerTag { 
	 const char* tag; 
	 uint64_t ticks; 
};

	 In micro_profiler.cc, any variable that applies the above 32-bit ticks variables must be changed to a 64-bit size.

	 With that, a newly modified TFLite library and Zephyr OS are compatible with the HPS processor.

8.	 Build the application: The application is ready to build using the following command:

	 $ west build \ 
-b intel_socfpga_agilex5_socdk samples/\ 
modules/tflite-micro/hello_world/ \ 
-d agilex5_tinyml -p

	 Where -b refers to the board used for this build, and -d is used to create the build directory with all the generated files. 
Inside that directory, there is a sub-directory named zephyr, where the zephyr.bin and zephyr.elf files can be found.

Once the SoC FPGA completes the SoC boot flow using FSBL and SSBL, you may proceed to download the zephyr.elf file 
(i.e., TFLite Hello World zephyr application) into the processor core and test the example. Similar results in Figure C will be 
produced, indicating the successful SoC FPGA platform integration. 

System Deployment and Validation

With the above steps, a model can be quickly deployed to the Nios V or Arm processor during the evaluation stages. In the 
case of soft processors, custom instructions can be used to deploy the model to accelerate its performance. Most used 
functions in the model can be profiled and accelerated in the FPGA fabric to improve the overall latency and throughput of 
the system. 

Agilex 5 and Agilex 3 FPGAs have fabric infused with AI Tensor Blocks, giving higher compute density per DSP block of 20 
block floating point 16 (Block FP16) or int8 multiply accumulate (MAC) blocks. Other lower precisions, such as FP9 and INT4, 
are supported in the DSP blocks, which greatly helps accelerate the performance and latency of the most used functions in 
your model and reduce the model sizes, improving computational efficiencies and memory footprint.

Further Enhancements



9

WP-01340-1.1

1 TensorFlow Lite is renamed as LiteRT on September 04, 2024.
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Altera’s FPGA portfolio addresses various AI/ML inferencing needs. The Agilex 7, Agilex 5, Agilex 3, Arria 10, Cyclone, and 
MAX FPGA families can deploy tinyML models and AI/ML at the edge and embedded. At the same time, the Agilex 7 FPGA 
M-Series can be used for generative AI LLM-based transformer models at the edge or data center.

Agilex 5 FPGAs were the first FPGAs infused with tensor blocks in the fabric itself, giving high compute density, followed by 
Agilex 3 FPGAs. We also offer high-bandwidth memory (HBM) on Agilex 7 FPGAs M-Series to implement memory-bound 
models such as LLMs.

The silicon is complemented by easy-to-use software flow tools such as the FPGA AI Suite and OpenVINO™ toolkit for more 
popular edge applications. They offer a push-button conversation AI model to the FPGA AI Suite inference IP, which can be 
easily integrated into an FPGA using the Quartus Prime design software.

Integrating tinyML with low-power microcontrollers such as Nios V and Arm processors on Altera FPGAs  by leveraging their 
flexibility and performance enables tinyML to operate on a broad spectrum of devices, bringing intelligent compute to the 
edge. Users can execute complex AI tasks on smaller, less resource intensive FPGA devices, deploying a cost-effective and 
power-efficient solution. Users can also implement multiple Nios V processor instances running tinyML on Agilex™ FPGAs. 
No-cost tools and a unified debugging environment make developing and debugging solutions easy across all Altera SoC 
FPGAs. Additionally, by porting 32-bit tinyML applications onto the 64-bit Arm Cortex-A architecture, Altera enables the 
seamless enhancement of computational efficiency and futureproofing embedded ML solutions without any changes to the 
software.

Users can rapidly innovate by deploying the models on RISC-V or Arm processors in Altera SoC FPGAs. Once the model 
becomes stable, custom instructions can be used to further accelerate the performance of the model in the case of soft 
processors.

1.	 Altera® FPGAs and SoCs with FPGA AI Suite and OpenVINO™ Toolkit Drive Embedded/Edge AI/Machine Learning 
Applications White Paper

2.	 LiteRT for Microcontrollers

3.	 TFLite Micro – Porting to a new platform

4.	 Developing with Zephyr - Getting Started Guide

5.	 Golden Hardware Reference Design (GHRD) Build Scripts

6.	 Installing the Ashling RiscFree IDE for Intel FPGAs

Conclusion
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