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Abstract— High-Performance Computing (HPC) and 

Artificial Intelligence (AI) workloads typically demand 

substantial memory bandwidth and, to a degree, memory 

capacity. CXLTM memory expansion modules, also known as 

CXL “type-3” devices, enable enhancements in both memory 

capacity and bandwidth for server systems by utilizing the CXL 

protocol which runs over the PCIe interfaces of the processor. 

This paper discusses experimental findings on achieving 

increased memory bandwidth for HPC and AI workloads using 

Micron’s CXL modules. This is the first study that presents real 

data experiments utilizing eight CXL E3.S (x8) Micron CZ122 

devices on the Intel® Xeon® 6 processor 6900P (previously 

codenamed Granite Rapids AP) featuring 128 cores, alongside 

Micron DDR-5 memory operating at 6400 MT/s on each of the 

CPU’s 12 DRAM channels. The eight CXL memories were set 

up as a unified NUMA configuration, employing software-based 

page level interleaving mechanism, available in Linux kernel 

v6.9+, between DDR5 and CXL memory nodes to improve 

overall system bandwidth. Memory expansion via CXL boosts 

read-only bandwidth by 24% and mixed read/write bandwidth 

by up to 39%. Across HPC and AI workloads, the geometric 

mean of performance speedups is 24%. 

Keywords—DDR5, CXL, HPC, software-interleaving, 

bandwidth, LLM inferencing, AI vector search 

I. INTRODUCTION  

High-performance and AI workloads encompass important 

computational tasks that demand substantial processing and 

memory resources. These workloads are frequently utilized 

in scientific research, simulations, and data-intensive 

applications, including computational fluid dynamics, 

weather forecasting, and DNA sequencing.  

 

Alongside HPC, AI plays a crucial role in analyzing large 

datasets and driving innovations across various fields. For 

example, LLM inference and vector search in Retrieval-

Augmented Generation (RAG) are crucial workloads as they 

enable efficient access to relevant information and enhance 

the quality of generated responses, making AI interactions 

more accurate and contextually aware. 

 

This paper presents experimental work conducted by Micron 

and Intel, which examines the performance of AI and HPC 

workloads on the Intel® Xeon® 6 processor 6900P series now 

in full production, paired with Micron CZ122 CXL devices. 

The study quantifies the performance benefits of utilizing 

Micron CZ122 devices in HPC/AI workloads, noting 

improvements in performance by expanding system memory 

bandwidth using CXL memory expansion, beyond local 

DRAM modules. The memory bandwidth expansion enabled 

by CXL is essential for enhancing the performance of HPC 

and AI workloads. 

 

While CXL has primarily aimed at expanding memory 

capacity, its advantages for bandwidth-intensive workloads 

still need to be thoroughly explored and quantified in real 

CXL-capable systems, utilizing as many supported PCIe 

lanes as possible. In particular, the unique bandwidth 

characteristics of local DRAM and CXL memory can differ 

depending on the read/write ratio of workloads, creating 

challenges in optimizing the capabilities of each memory tier 

in terms of memory bandwidth. For this purpose, a software-

based weighted interleaving method, available in mainstream 

Linux kernel distribution, is employed for optimization. 

II. PLATFORM CONFIGURATION 

A. Intel Xeon 6 CPU System (Avenue City platform) 

The 6900P CPU supports 6 x16 (96) PCIe 5.0 lanes. The lanes 
support CXL 2.0 Type-3 devices, allowing for memory 
expansion. The CPU supports any four x16 lanes to be used as 
CXL links. 

 

Figure 1. System Architecture of Intel Xeon 6 processor 6900P with 

128 cores and 12x Micron DDR5 6400 MT/s. All 12 local DRAM 

channels are designated as NUMA node 0 (HEX mode), while all 

the Micron’s CXL modules (8 in total) are brought up as separate 

NUMA node 1. 



 

 

As the focus of this paper is on demonstrating the 

effectiveness of increasing bandwidth rather than capacity, 

smaller memory modules were intentionally chosen for both 

native DRAM (64 GB) and CXL (128 GB) modules. 

 

The system configuration employed (Figure 1) facilitates the 

management of various memory tiers by efficiently 

organizing and distinguishing between the locally attached 

DRAM and the CXL memory modules. 

 

Traditionally, the Linux kernel has managed memory 

allocation across multiple NUMA (Non-Uniform Memory 

Access) nodes. Each of the memory types (either DRAM or 

CXL) is represented as a single NUMA node, allowing the 

system to use existing abstractions to manage and allocate 

memory across these two different pools.  

 

Recently, NUMA nodes have been used to categorize 

memory into performance tiers, while existing allocation 

policies can place memory on specific NUMA nodes. For 

example, when brought up as system memory, CXL memory 

is treated as a separate NUMA node. 

 

To showcase the advantages of using CXL memories, the 

system configuration is designed so that the local RDIMM 

slots are filled with the fastest available Micron RDIMMs, 

delivering a bandwidth of 6400 MT/s per slot. All 12 

available slots are populated – totaling 768GB memory 

capacity. As shown in Figure 2, eight Micron CZ122 128GB 

CXL devices are utilized, occupying 64 PCIe lanes and 

providing a total additional memory capacity of 1TB. 

 

 
Figure 2. Configuration of Micron CZ122 CXL modules with an 

Intel Xeon-6 CPU on an Avenue City platform involves connecting 

four cards directly to the backplane, while the other four cards are 

attached using riser cards in two CME slots. 

Additional details on the platform are shown in the table 

below. 

 

Platform Intel Avenue City 

CPU family Intel® Xeon® 6 6900P series with 128 

cores 

Native DRAM Micron DDR5-64GB (6400MTs)  

(12 modules ~ 768 GB) – HEX mode 

CXL Memory Micron CZ122 – 128GB * 8 

(8 modules E3.S form factor ~ 1TB) 

OS Red Hat Enterprise Linux 9.4 

Kernel 6.11.6 (With support for weighted 

memory interleaving) 

B. Memory Expansion with Micron CZ122 CXL modules 

Micron's CZ122 CXL modules are currently in production 

and have demonstrated reliable performance across various 

workloads, effectively showcasing memory expansion over 

CXL interface. The addition of these CXL modules enhance 

both the memory bandwidth and the capacity of the server, 

building on what is already provided by the RDIMM slots; 

that is, delivering memory bandwidth expansion. 

 

Optimally placing newly allocated pages is a complex issue. 

NUMA interleaving, a traditional approach under Linux, 

evenly distributes pages across memory nodes for consistent 

performance. However, it lacks the ability to consider 

memory tier performance differences. 

 

A recent series of patches has added weighted NUMA 

interleaving capabilities to the Linux kernel, allowing for 

more strategic memory allocation based on performance 

characteristics of different memory nodes in system. This 

strategy optimizes system memory bandwidth by effectively 

utilizing bandwidth both local DRAM and CXL memory 

nodes. The weighted-interleaving feature, introduced in 

Linux kernel version 6.9+ and influenced significantly by 

Micron’s contributions, enables the adjustment of weights 

assigned to individual pages across various memory types, 

thereby enhancing overall memory bandwidth (as illustrated 

in Figure 2). 

 

 

Figure 3. Software-based weighted interleaving (M:N) allowing 

placing M pages on local DRAM and N pages on CXL memory for 

optimized system memory bandwidth. 



 

 

III. NATIVE DRAM VS. CXL ATTACHED MEMORY 

PERFORMANCE CHARACTERISTICS 

Before the performance analysis of the actual workloads is 

introduced, the performance characteristics of local DRAM 

and CXL memory regarding bandwidth at various read-to-

write ratios of memory traffic will be presented and 

discussed1. 

 

The performance data from table above indicates that DRAM 

performs optimally in read-only workloads, but its 

performance diminishes when the number of writes is equal 

to or exceeds the number of reads. For instance, in a workload 

with a 1:1 read to write ratio, DRAM's performance drops by 

20% compared to a read-only scenario.  

 

Conversely, CXL memory demonstrates the opposite trend 

due to the bidirectional nature of the PCIe interface, resulting 

in better performance for mixed read-write workloads. 

Another noteworthy observation is that CXL memory shows 

an 8% decrease in bandwidth during a non-temporal write 

 
1 Performance results are derived from testing in the specified 

configuration (Section II.A). Results may vary, so it is 

recommended to reconfirm them in your setting. 

workload. Therefore, it's crucial to analyze the read-to-write 

ratio of a workload to identify the optimal interleaving 

strategy for utilizing DRAM and CXL memory tiers 

effectively. 

 

As shown in Figure 4, it's also important to note that memory 

latency is reduced when using CXL. This is because 

workloads that rely solely on local DRAM can be bandwidth-

limited, leading to significantly higher memory access 

latency (loaded latency) under heavy loads. In contrast, 

combining DRAM with CXL memory through optimized 

weighted interleaving results in lower latency, despite CXL 

memory having a higher unloaded latency. 

 

At each data point on the “DRAM + CXL” curve, the 

interleave ratio of DRAM and CXL is displayed. Under low 

bandwidth conditions, it's advantageous to utilize more 

DRAM due to its lower latency compared to CXL memory 

(9:1 ratio). However, as the load increases, the reliance on 

DRAM decreases while the emphasis shifts towards CXL 

memory. Ultimately, a 3:1 ratio was identified as optimal 

under maximum load conditions for a read-only workload 

traffic. 

 

When comparing the use of CXL memory alongside local 

DRAM, various performance improvements can be observed. 

For instance, in a read-only scenario (where DRAM excels) 

the addition of CXL memory bandwidth results in a 24% 

performance boost. The upcoming experiments will 

demonstrate that for mixed read/write workloads, the 

performance improvements with CXL, attributed to balanced 

memory interleaving, can reach as high as 38%. The 

following sections will demonstrate that for different 

workload mixes, we may need to adjust the interleaving 

weights based on the read-to-write ratio of the workload.  

Workload 
Memory 

Tier 

Bandwidth  

(in GB/s) 

Bandwidth 

(Normalized) 

CXL over 

DRAM 

(Theoretical 

gains with CXL) 

Read only DRAM 556 1.00 - 

3R,1W DRAM 486 0.87 - 

2R,1W DRAM 474 0.85 - 

2R,1W 

(non-
temporal 

W) 

DRAM 466 0.84 - 

1R,1W DRAM 446 0.80 - 
 

Read only CXL 205 1.00 37% 

3R,1W CXL 214 1.04 44% 

2R,1W CXL 208 1.01 44% 

2R,1W 
(non-

temporal 

W) 

CXL 189 0.92 41% 

1R,1W CXL 214 1.04 48% 

 

Figure 4.  Bandwidth vs Latency curves using DRAM only vs DRAM + CXL. The interleaving weights are represented as pairs 

(DRAM, CXL). It’s important to note that at low bandwidth, a greater number of pages (9) are allocated to DRAM compared to 

CXL (1), as indicated by the weights (9,1). Conversely, under high load conditions, the optimal interleaving weights shift to (3,1). 



 

 

IV. WORKLOAD ANALYSIS 

A. Intel MLC (Microbenchmark) 

Intel MLC (Memory Latency Checker) is a microbenchmark 

tool designed to assess memory latencies and bandwidth in 

computer systems. It helps analyze how these metrics change 

under varying loads, providing insights into the performance 

of the memory subsystem. 

 

Utilizing the software-based interleaving kernel feature, 

memory allocation between DRAM and CXL is determined 

based on a user-defined ratio. Bandwidth measurements are 

obtained by running the MLC workloads with different 

read:write ratios.  

 

The weights for each memory tier are given in terms of the 

number of pages allocated on DRAM versus CXL memory. 

For example, a weight of 3 (DRAM) and weight of 1 (CXL) 

means 75% of the pages (and eventually the associated 

memory traffic) allocated on DRAM, while 25% allocated to 

CXL memory. The following tables presents the results of 

MLC for various read:write ratios. 

 
Workload: R (read-only) 

 

Weight 

(DRAM) 

Weight 

(CXL) 

BW 

(in GB/s) 

BW 

(Normalized) 

1 0 556 1.00 

1 1 394 0.71 

2 1 590 1.06 

5 2 669 1.20 

3 1 690 1.24 

4 1 677 1.22 

0 1 205 0.37 

 

As shown above, MLC results for the R (Read-only) 

workload indicate a 24% increase in bandwidth with a 3:1 

interleave ratio of DRAM to CXL. 

 
Workload: W2 (2W, 1R) 

 

Weight 

(DRAM) 

Weight 

(CXL) 

BW 

(in GB/s) 

BW 

(Normalized) 

1 0 
474 1.00 

1 1 
422 0.89 

2 1 
624 1.32 

5 2 
636 1.34 

3 1 
617 1.30 

4 1 
586 1.24 

0 1 
208 0.44 

 

As shown above, MLC results for the W2 (2W, 1R) workload 

indicate a 34% increase in bandwidth with a 5:2 interleave 

ratio of DRAM to CXL. 
 

 

 

 

Workload: W5 (1W, 1W) 

 

Weight 

(DRAM) 

Weight 

(CXL) 

BW 

(in GB/s) 

BW 

(Normalized) 

1 0 
446 1.00 

1 1 
409 0.92 

2 1 
621 1.39 

5 2 
614 1.37 

3 1 
585 1.31 

4 1 
551 1.24 

0 1 
214 0.48 

 

As shown above, MLC results for the W5 (1W, 1R) workload 

indicate a 39% increase in bandwidth with a 5:2 interleave 

ratio of DRAM to CXL. 

 
Workload: W10 (2R, 1W non-temporal) 

 

Weight 

(DRAM) 

Weight 

(CXL) 

BW 

(in GB/s) 

BW 

(Normalized) 

1 0 
466 1.00 

1 1 
390 0.84 

2 1 
533 1.14 

5 2 
607 1.30 

3 1 
601 1.29 

4 1 
572 1.23 

0 1 
189 0.41 

 

As shown above, MLC results for the W10 (2R, 1W non-

temporal) workload indicate a 30% increase in bandwidth 

with a 5:2 interleave ratio of DRAM to CXL. 

 

In summary, as seen in the tables above, for the 100% Read 

workload, splitting the pages between DRAM and CXL in a 

3:1 ratio (3 pages in DRAM, 1 in CXL) results in a 24% 

bandwidth gain compared to using only DRAM.  

 

For the W2, W3, W5, and W10 MLC workloads, the optimal 

performance occurs with a DRAM to CXL ratio of 5 to 2. 

This configuration yields a 34-38% bandwidth increase over 

DRAM alone. The MLC data shows that adding CXL 

memory significantly boosts bandwidth.  

 

It is worth noticing that the MLC data provides us with a 

upper bound on the performance gains when the workload is 

memory-bandwidth bound given a particular read:write ratio. 

 

For instance, LLM inference predominantly involves read-

only traffic, with bottlenecks generally arising at the token 

generation stage, which necessitates repeated reading of 

model weights for each token. Consequently, the optimal 

interleave ratio should be 3:1 for DRAM to CXL memory. 

B. AI Workloads 

The Intel Xeon 6 processor with P-cores family is optimized 

for HPC and AI workloads, enhancing performance in deep 

learning and machine learning applications. Optimizations 

take advantage of Intel® Advanced Vector Extensions 512 



 

 

(Intel® AVX-512) Vector Neural Network Instructions 

(VNNI) and Intel® Advanced Matrix Extensions (Intel® 

AMX) on Intel CPUs.  

 

With 128 physical cores, the CPU architecture provides 

specialized acceleration for AI operations, improving 

throughput and reducing latency in LLM inferencing and 

vector search workloads. The architecture supports matrix 

multiplication and efficiently handles models with billions of 

parameters. 

 

LLM Inference - To run LLM inferencing on the Intel 

hardware, the open-source Intel Extensions for PyTorch 

(IPEX) was used. IPEX has up to date optimizations for an 

extra performance boost on Intel hardware. The LLM model 

used was Meta-Llama3-8B-Instruct. The data type employed 

for the weights is ‘bfloat16’. Batch size of one was used. With 

using the intel pytorch extensions for inferencing, the 

LLAMA3-8B-Instruct gave a speed up of 17% with 3:1 

DRAM to CXL ratio versus using DRAM only memory.  

 
Weight 

(DRAM) 

Weight 

(CXL) 

Output Token  

Latency (ms) 

Speedup 

1 0 42.91 1.00 

2 1 40.43 1.06 

5 2 37.54 1.14 

3 1 36.83 1.17 

 

FAISS (Vector Search) - FAISS [7] is a library developed 

by Facebook AI for efficient similarity search and clustering 

of dense vectors. The dataset used was the Microsoft Turing-

ANNS consisting of a raw vector space of one billion points 

with 100 dimensions, using L2 distance and k-NN method. 

As recommended by Meta [8], the index used was: 

OPQ128_256-IVF65536_HNSW32-PQ128x4fsr. This is an 

optimized FAISS index configuration that specifies a series 

of transformations and indexing methods for efficient 

similarity search. Here is a breakdown of what each part 

means: 

• OPQ128_256: Optimized Product Quantization 

rotates vectors for efficient encoding, with 128 and 

256 dimensions involved. 

• IVF65536: Inverted File Index with 65,536 clusters 

speeds up the search by dividing the vector space 

into clusters. 

• HNSW32: Hierarchical Navigable Small World 

graph with 32 neighbors, a graph-based method for 

approximate nearest neighbor search. 

• PQ128x4fsr: Product Quantization with 128 

dimensions and 4 subquantizers for further 

optimizations. 

 

The configuration combines several advanced techniques to 

create an efficient and scalable index for similarity search in 

large datasets. 

 

To report the final performance data, these parameters were 

configured: nprobe=4096 and efSearch=512. Both are crucial 

for balancing speed and accuracy in FAISS searches. A 

higher nprobe (number of clusters probed) increases accuracy 

but also search time. Similarly, efSearch (number of 

candidate nodes explored) enhances accuracy at the cost of 

search time. These values were optimized to achieve a high 

recall rate with minimal search time. The configuration 

resulted in a recall rate of 77% @ 10, meaning 77% of the 

true nearest neighbors are included in the top 10 results 

returned by the search algorithm. 

 
Weight 

(DRAM) 

Weight 

(CXL) 

Time  

(ms / query) 

Speedup 

1 0 0.545 1.00 

2 1 0.442 1.23 

5 2 0.454 1.20 

 

The FAISS workload demonstrated a 23% improvement with 

a DRAM to CXL ratio of 2:1. 

C. HPC Workloads 

HPC workloads stand for High performance workloads – 

those include OpenFOAM, HPCG, Xcompact3d, POT3D. 

These workloads typically require higher memory 

bandwidths in addition to increased capacity. 

 

OpenFOAM - OpenFOAM workload benchmarks are 

standardized test cases designed to evaluate the performance 

and scalability of hardware and software configurations when 

running OpenFOAM, an open-source computational fluid 

dynamics (CFD) software. These benchmarks simulate 

various fluid dynamics scenarios to assess how efficiently 

different systems handle complex CFD computations. The 

OpenFOAM drivaerFastback case was used with an input of 

approximately 200 million cells. The results from the 

benchmark for different DRAM/CXL ratios are shown 

below: 

 
Weight 

(DRAM) 

Weight 

(CXL) 

Execution 

time (s) 

Speedup 

1 0 254 1.00 

2 1 212 1.20 

5 2 209 1.22 

3 1 210 1.21 

 

The OpenFOAM workload has exhibited a 22% 

improvement with a DRAM to CXL ratio of 5:2. 

 

HPCG - The High-Performance Conjugate Gradients 

(HPCG) benchmark is a workload designed to assess 

supercomputing systems by solving a large, sparse linear 

system using a multigrid preconditioned conjugate gradient 

algorithm. Unlike the High Performance Linpack (HPL) 

benchmark, which focuses on dense matrix computations, 

HPCG emphasizes memory access patterns and data 

movement, reflecting the behavior of real-world scientific 

and engineering applications. By doing so, HPCG provides a 

more comprehensive measure of a system’s capability to 

handle complex, memory-intensive workloads. The input 

used was the following: x=192, y=192, z=192. Results are 

shown in the table below. 

 
Weight 

(DRAM) 

Weight 

(CXL) 

Performance 

(GFlops/s) 

Speedup 

1 0 92 1.00 

2 1 111 1.20 

5 2 113 1.23 

3 1 117 1.27 



 

 

 

The HPCG benchmark has shown 27% improvement with 

DRAM: CXL = 3:1 

 

Xcompact3D - The Xcompact3D benchmark is a 

performance evaluation tool designed to assess 

computational efficiency when solving the incompressible 

Navier-Stokes equations using the Xcompact3D solver. It 

focuses on simulating fluid dynamics scenarios, such as the 

3D Taylor-Green Vortex, to measure how effectively a 

system manages high-order finite-difference computations. 

Researchers and engineers utilize this benchmark to evaluate 

and compare the performance of different hardware 

configurations and computational setups in fluid dynamics 

simulations. Results are shown in the table below. 

 
Weight 

(DRAM) 

Weight 

(CXL) 

Execution time 

(s) 

Speedup 

1 0 196 1.00 

2 1 221 0.89 

5 2 157 1.25 

3 1 159 1.24 

 

The benchmark has seen 25% improvement with DRAM: 

CXL = 5:2 

 

POT3D - The Pot3D benchmark is a computational 

performance benchmark that simulates the 3D Poisson 

equation, often used to measure the performance of 

processors and systems in handling scientific and engineering 

workloads. This benchmark calculates electrostatic potentials 

within a 3D space, which is important in fields like molecular 

dynamics and computational physics. Results are shown in 

the table below. 

 
Weight 

(DRAM) 

Weight 

(CXL) 

Execution 

time(s) 

Speedup 

1 0 687 1.00 

2 1 562 1.22 

5 2 539 1.27 

3 1 552 1.24 

 

The POT3D workload has demonstrated a 27% improvement 

with a DRAM to CXL ratio of 5:2. 

D. Putting it All Together 

Figure 3 below presents a comprehensive summary of the 

performance improvements observed across various HPC 

and AI workloads. These gains range from a 1.17x to a 

remarkable 1.30x enhancement, illustrating the effectiveness 

of integrating DDR5-6400 memory with CXL technology. 

By carefully calibrating the balance between DRAM and 

CXL memory allocations, an optimized execution 

configuration can be found for demanding computational 

tasks. For HPC and AI workloads, the geometric mean of 

performance speedups across all those workloads is 24%. 

 

A notable example of these performance gains is the POT3D 

workload, a high-performance computing (HPC) application. 

The improvements in memory bandwidth and latency 

reduction have translated into a faster execution of complex 

simulations, highlighting the transformative impact of CXL 

memory expansion in HPC environments. 

 

On the artificial intelligence (AI) front, the FAISS benchmark 

serves as a prime example. FAISS, an AI workload focused 

on similarity search, has shown a remarkable 23% 

improvement with the optimized DRAM:CXL ratio of 2:1. 

This gain is a testament to the enhanced memory bandwidth 

and performance scalability that CXL technology brings to 

AI applications. By leveraging the combined capabilities of 

DDR5-6400 and CXL-based memory expansion modules, 

FAISS can manage larger datasets and perform more efficient 

searches, thereby accelerating the overall AI processing 

pipeline. 

V. CONCLUSION 

The experimental results presented in this paper demonstrate 

that Micron’s CZ122 CXL memory modules used in software 

level ratio based weighted interleave configuration 

significantly enhance memory bandwidth for HPC and AI 

workloads when used on systems with Intel’s 6th Generation 

Xeon processors. 

Figure 5. Summary of performance gains for the HPC and AI workloads running on DDR5-6400 (baseline) vs. DDR5-6400 + CXL. 



 

 

 

Key takeaways from this study include: 

• Significant improvements in system performance 

with the combination of CXL based memory 

expansion and native DDR5-6400 memory due to 

bandwidth improvements. 

• The optimization of the DRAM:CXL ratios as a 

critical factor in achieving these performance gains. 

• The potential for CXL technology to drastically 

elevate the capabilities of high-performance 

computing and artificial intelligence applications. 

 

The findings in this paper underscore the potential of CXL to 

significantly improve system efficiency and performance in 

demanding applications. Future research and development 

efforts should continue to explore and refine this integration, 

paving the way for even greater innovations in hybrid 

memory systems to meet the increasing computing demands 

for HPC and AI workloads. 
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