intel.

Programmer's Guide

Intel® QuickAssist Technology

Hardware Version 2.0

December 2024

Document Number: 743912-007

Performance varies by use, configuration and other factors. Learn more on the Intel's Performance
Index site.

Performance results are based on testing as of dates shown in configurations and may not reflect all
publicly available updates. See backup for configuration details. No product or component can be
absolutely secure.

Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.

The products described may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Code names are used by Intel to identify products, technologies, or services that are in development and
not publicly available. These are not "commercial" names and not intended to function as trademarks.

See Intel's Legal Notices and Disclaimers.

© Intel Corporation. Intel, the Intel logo, Atom, Xeon, and other Intel marks are trademarks of Intel
Corporation orits subsidiaries. Other names and brands may be claimed as the property of others.

https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/
https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/
https://www.intel.com/LegalNoticesAndDisclaimers

Contents

1

About this Document 1
11 Conventionsand Terminology |
Architecture 3
Infrastructure 5
31 QueuesandQueuePairs e 5
311 QueuesPairs 5
312 QueueBundles 6

3.2 Servicelnstances 7
3.21 Configurable ltems (viaconfigfile) 7

3.3 MemoryManagement 7
3.31 SharedVirtualMemory 7
3.311 SVMKernelRequirements 8

3.3.2 DMA-ableMemory e 8
3.3.3 Memory Type Determination 9
3.34 BufferFormats 9
3.341 FlatBuffers. 9

3.3.4.2 Scatter-GatherList(SGL)Buffers 9

3.35 HugePages e 10

3.4 ModesofOperation 12
341 CallingSemantics 12
3411 Asynchronous(Polled) 12

3412 Asynchronous(Interrupts) 12

3413 Synchronous. 12

3414 ProsAndCons 12

3.5 LoadBalancing 16
351 PerEndpoint 16
352 AcrossEndpoints 18
3521 LoadSharingCriteria. 18

3.5.3 Dimensions 19

3.6 Debugability 19
3.61 Overview of Intel® QAT debugfsentries 19
3.611 Entriesin/sys/kernel/debug/qat_* 20

3.61.2 Memorydriver queries (gae_mem_slabs) 20

3.7 Heartbeat e 21

3.71 HeartbeatOperation 21

3.711 Initialization 21

3.71.2 HeartbeatMonitoring 22

3.71.3 ResettingaFailedDevice 22

3.7.2 Incorporating Heartbeat into Intel® QAT Applications 23
3.7.3 RestartSequence 23
3.7.4 Status of Packets in Flight (Crypto ApplicationsOnly) 24
3.75 DeterminingDevicelD e 25
3.7.6 TestingHeartbeat 25
3.7.61 Simulated Heartbeat Failure Configuration 25

3.7.6.2 SimulatingHeartbeatFailure 25

3.7.7 Handling Device Failuresin a Virtualized Environment 27
3.7.8 Incorporating Dummy Responses into an Intel® QAT Application 28

3.8 Telemetry e 28
3.81 TelemetryUsage 28
3811 Out-Of-Tree 28

3812 In-Tree e 30

3.8.2 Telemetry Control 30
3.821 Telemetry Commands 31

3.8.2.2 DeviceLevel TelemetryValues 32

3.8.2.3 RingPairLevel Telemetry Values 32

3.8.3 Monitoring Telemetry-TextBased 33
3.831 Out-Of-Tree 33

3.8.32 In-Tree e 34

3.9 RateLimiting e 34
391 Service Level Agreement (SLA) 34
3.9.2 SLAUNItS . . . 35
3.9.3 SLAManagerApplication 36
3931 SLACommands 36

310 PowerManagement e 37
3101 Configuration 37
31011 OQut-of-Tree e 37

31012 In-Tree e 37

S10.2 Usage o e 37
3.10.3 Considerations 38

311 Reliability, Availability, and Stability (RAS) 38
311 RASUSsage 38
3112 AERErrors. . . . e 39
Acceleration Driver 40
41 Controllingthe Driver. e 40
411 gatiserviCe 40
4111 gat_serviceUsage 40

412 adf_ctl . .. 47
4121 adf_ctlUsage 47

4122 Examples 42

4.2 Application Payload Memory Allocation 42

A2T SErVICES . o o 43

422 ThreadSpecificUSDM 43

43 ReturnCodes e 44
4.4 Linux* Device Driver OperationsReturnCodes 45
Configuration Files 47
51 ConfigurationFile Overview 47
5.2 GeneralSection e 48
521 ServicesEnabled 49
5211 Performance Considerations 50

522 ServicesProfile 50
5221 General Default Configuration Parameters, 51

523 ConcurrentRequests 51
524 PowerManagementParameters 52
5.2.5 Shared Virtual Memory (SVM) Parameters 52
5251 SVMEnabled 52

5252 ATEnabled 53

5.3 Logicallnstances Section L 53
531 [KERNEL]Section. 54
5.3.2 UserProcess [xxxxx] Sections 54
5.3.3 Cryptographic Logical Instance Parameters 55
5.3.4 DataCompression Logical Instance Parameters, 56
5.3.5 Settingthe Core Affinity Parameterfora LogicalInstance 57

5.4 Maximum Number of Process Calculations 57
5.41 Increasing the Maximum Number of Processes/Instances 57
5411 Invalid Configurations 58

5412 Configuring Instances for Virtual Functions 59

5.5 Configuring Multiple Intel® QuickAssist Technology Endpointsina System 60
5.6 Configuring Multiple Processes on a System with Multiple Intel® QAT Endpoints 62
57 Sample ConfigurationFiles 65
Services 66
6.1 Data Compression e 66
611 CompressionFeatures 66

6.1.2 Compression Limitations 66

61.3 CompressionSessionSetup. 67

6.1.4 Decompression SessionSetup 67
6141 Deflate Decompression 68

6142 LZADecompression 68

6143 LZ4DecompressionLimitations L 69

6.1.4.4 Multi-frame decompressionsupport 69

615 Performance Considerations 69
61.6 FlushFlags 69

617 Checksums e 70
618 LZ4sCompressed DataBlockformat 70
6181 LZ4CompressionSupport e 71

619 Compress-and-Verify 72
6191 Compressand Verify ErrorloginSysfs 72

61.9.2 Compressand VerifyandRecover (CnVnR) 73

6.110 Dynamic Compression 74
6111 Maximum Expansion with Auto Select Best Feature (ASB) 75
6.112 Maximum Compression Expansion. 75
6113 NoSession APl e 76
6114 Compressionlevels 77
6115 CompressionStatusCodes 77
6116 Intel® QuickAssist Technology Compression APIErrors 78
61161 Compression APIErrors. 78

6117 Overflows Errors 83
61171 Traditional API Overflow Exception 84
6117.2 DataPlane APIOverflowError 85
6117.3 HandlingOverflowErrors 85
6.117.4 Compression Overflows in a Virtual Environment 85

61175 Avoiding Compression Overflow Exceptions 85

6118 Integrity Checksums 86
61181 Verify HW integrity CRC's 87

6119 DataCompression Applications L 87
61191 CompressionforStorage 87
6.119.2 Data Deduplicationand WAN Acceleration 88

6.2 CryptographicServices 89
6.21 Introduction 89
6.211 Supported Cipher Algorithms 89

6.21.2 Supported Hash/Authenticate Algorithms 90

6.21.3 Supported Public Key Algorithms 91

6.2.2 Cryptography Applications. 91
6221 IPsecandSSLVPNs 92
6.2.2.2 EncryptedStorage 92
6.2.2.3 WebProxy Appliances 93

7 Supported APlIs 94
71 Intel QuickAssist Technology APIs 94
711 Cryptographic and Data Compression API Descriptions 94
7111 DataPlane APIsOverview 95

7112 1A Cycle Count Reduction When Using DataPlane APIs 95

711.3 Usage Constraintsonthe DataPlane APIs 96

712 Intel® QAT APILImitations o o o 97
7.2 Additional APIs . . e 99
7.21 DynamicInstance Allocation Functions 100
7211 icp_sal_userCyGetAvailableNumDynlnstances 101

7.21.2 icp_sal_userDcGetAvailableNumDyninstances 101

7213 icp_sal_userCylnstancesAlloc 102

7214 icp_sal_userDclinstancesAlloc 102

7215 icp_sal_userCyFreelnstances 103

7.21.6 icp_sal_userDcFreelnstances 103

7217 icp_sal_userCyGetAvailableNumDynInstancesByDevPkg 104

7.21.8 icp_sal_userDcGetAvailableNumDyninstancesByDevPkg 104

7219 icp_sal_userCylnstancesAllocByDevPkg 105

7.2110 icp_sal_userDclInstancesAllocByDevPkg 105

72111 icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel 106

7.2112 icp_sal_userCylnstancesAllocByPkgAccel 106

7.2.2 IOMMU Remapping Functions 107
7221 icp_sal_iommu_get_remap_size 107
7222 icp_sal_iommu_map 108
7223 icp_sal_iommu_unmap 108
7224 10MMU Remapping FunctionUsage 109

7.2.3 PollingFunctions 110
7231 icp_sal_pollBank 110
7.2.3.2 icp_sal_pollAllBanks 110
7233 icp_sal_CyPollinstance m
7234 icp_sal_DcPollinstance n2
7235 icp_sal_CyPollDplnstance 1n2
7.2.3.6 icp_sal_DcPollDplinstance 13

7.2.4 User Space Access Configuration Functions 14
7241 icp_sal_userStart n4
7242 icp_sal_userStop 15

725 VersionInformation Function 115
7251 icp_sal_getDevVersioninfo 116

7.2.6 ResetDevice Function 116
72.61 icp_sal_reset_device 117

727 Thread-Less APIs e 17
7271 icp_sal_poll_device_events n7
7272 icp_sal_find_new_devices 18

7.2.8 Compressand Verify (CnV)Related APIs 18
7.2.81 icp_sal_get_dc_error. 118
7.2.8.2 icp_sal_dc_simulate_error 19

729 Heartbeat APls 19
7291 icp_sal_check_device N9
7292 icp_sal_check_all_devices 120
7.2.9.3 icp_sal_heartbeat_simulate_failure L. 120

7210 DevicePolling APls e 121
7.210.1 icp_sal_poll_device_events 121
7.210.2 cpaCylnstanceSetNotificationCb 121
7.210.3 cpaDclnstanceSetNotificationCb 122

7.211 CongestionManagementAPIls 123
72111 icp_sal_SymGetinflightRequests 123
7.21.2 icp_sal_AsymGetinflightRequests, 124
7.211.3 icp_sal_dp_SymGetinflightRequests. 124

7212 Service SpecificPolling APIs 125
72121 icp_sal_CyPollsSymRing 125
7.212.2 icp_sal_CyPollAsymRing 126

7.213 CheckDevice Availability APIs 126
7.213.1 icp_sal_userlsQatAvailable 126

8 Virtualization 128
81 Virtualization Deployment Model forIntel® QAT 2.0 i 128

8.2 Physical Device Direct Assignment 129

9

8.3 SingleRoot IOV (SR-IOV) 129

8.4 Reducing Numberof VFsperEndpoint 129
Secure Architecture Considerations 132
91 Terminology e 132
911 ThreatCategories 132

912 AttackMechanism 133

91.3 AttackerPrivilege 133
914 DeploymentModels 134

9.2 Threat/Attack Vectors 134
921 GeneralMitigation 134
922 General Threats 135
9221 DMA L 135

9.2.2.2 Intentional Modificationof IADriver. L 136

9.2.2.3 Modification of the QAT ConfigurationFile 136

9.2.2.4 Malicious ApplicationCode 136

9225 DenialofService 137

9.2.3 Threats Specific to Cryptographic Service 137
9.2.31 Reading CryptographicKeys 137

10 Revision History 138

List of Tables

p—

Terminology 2
Prosand consof modesofoperation 16
Dimensions Gen1&Gen2 e 19
Dimensions Gen3& Gend 19
Intel® QuickAssist Technology /sys/kernel/debug Entries 20
Read/Write to /sys/kernel/debug/qae_mem_dbg/qae_mem_slabs 20
AutoResetOnErrorValues 22
Heartbeat System Virtual Files 26
Telemetry Commands 31
RiNg Pairs 31
Device Level Telemetry Values 32
Ring Pair Level Telemetry Values 32
Sample Mapping Table for 5th Gen Intel® Xeon® Scalable Processer-MCCSKU 35
Rate Limiting SLACommands 36
Power Management Configuration 37
RASError Types 38
RAS AERErrors 39
Acceleration Driver Services 43
Return Codes e 44
Linux* Device Driver OperationsReturnCodes 45
General Section Parameters 48
General Default Configuration Parameters, 51
[KERNEL] Section Parameters 54
[User Process] SectionParameters 55
Cryptographic Logical Instance Parameters. 56
Data Compression Logical Instance Parameters 56
Configuration Variations 58
Configuring Physical Functions and Virtual Functions 59
Compression CpaDcSessionSetupData Properties L. 67
Decompression CpaDcSessionSetupData Properties L. 67
FlushFlags 69
Checksums 70
Differences between LZ4 and LZ4sblockformat 71

vii

34
35
36
37
38
39
40
41

42

43

A4
45
46
47

Compress and Verify and Recover (CnVnR) Behaviors 73
ASB Settings L 75
Compressionlevels 77
Compression APILErrors 78
Overflows Errors. 84
Integrity Checksums 86
Supported Cipher Algorithms 89
Supported Hash/Authenticate Algorithms 90
Supported Public Key Algorithms 91
Key Generation Cryptographic APl Limitations 97
ThreatCategories 132
Attack Mechanism 133
Attacker Privilege 133
DeploymentModels 134

1 About this Document

This programmer’s guide provides information on the architecture of the software and usage guidelines.

Information on the use of Intel® QuickAssist Technology (Intel® QAT) APIs, which provide the interface
to the acceleration services (cryptographic and data compression), is documented in the related Intel®
QAT software library documentation referenced in the Release Notes.

In this document, for convenience:

= Software packageis used as a generic term for the Intel® QAT Software Package for Hardware Ver-
sion 2.0.

= Acceleration driver is used as a generic term for the software that allows the Intel® QAT Software
Library APIs to access the Intel® QAT Endpoint(s).

Note: Refertothe Release Notes for a list of supported platforms.

Note: Currentversion of this document covers the out-of-tree acceleration driver. Future version of this
document will be updated to cover in-tree driver as well.

For additional details on in-tree driver refer to https://github.com/intel/qgatlib.

1.1 Conventions and Terminology

The following conventions are used in this manual:

» Code text - code examples, command line entries, Application Programming Interface (API)
names, parameters, filenames, directory paths, and executables.

= Bold text - graphical user interface entries, buttons, and actions in instructions.
= /talic text - key terms and publication titles.

The following terms and acronyms are used in this manual.

https://github.com/intel/qatlib

intel.

Programmer's Guide

Table 1: Terminology

Term Description

API Application Programming Interface
asym Asymmetric Cryptography

BDF Bus Device Function

BOM Bill of Materials

CBC Cipher Block Chaining

cy Cryptography

dc Data Compression

GRUB Grand Unified Bootloader

oS Operating System

PCI Peripheral Component Interconnect
PF PCle Physical Function

Intel” QAT | Intel® QuickAssist Technology
SKU Stock Keeping Unit

SR-IOV Single Root-1/O Virtualization

VF Virtual Function

About this Document

2 Architecture

Because the hardware is accessed via the Intel® QAT APIs, itis not necessary to know all of the hardware
and software architecture details, but some knowledge of the underlying hardware and software is helpful
for performance optimization and debug purposes.

A simplified view of the hardware/software stack is shown in the following figure.

Customer Application

Packet Callback Polling
payloads

Intel® QuickAssist API

User space
......... io s - | UIO/ VFIO }

Kernel space

Tx Ring Rx Ring
ntel ® E 5uickAssi5t Kernel
i 5 - . |
Device Driver Intel ® QuickAssist
Firmware

L Intel® QuickAssist Hardware Accelerators

The flow can be broken down as:

1. Application submits payloads via the Intel® QuickAssist APl as part of the request. The
userspace library converts these requestsinto descriptors and places thesein the Trans-
mit (Tx) hardware-assisted queues (aka ring).

2. Firmware parses the descriptor and configures the accelerators accordingly. Upon a job
completion firmware returns the processed payload (either encrypted or compressed or
both) and generates a response message. This response message is inserted in the re-
sponse ring.

3. A polling thread owned by the application queries the response ring via the Intel® Quick-
Assist Library. If the application chooses non-blocking calls the user space library will is-
sue a callback to the application to inform that the operation is complete.

Intel Programmer's Guide

Note: The UIO (to be replaced with VFIO) layer is a framework present in both Linux Kernel
and user space library libudev. This framework enables exchanging data between Kernel and
user space. It offers better latency performance than IOCTL.

4 Architecture

3 Infrastructure

The following sections describe the building blocks of the Intel” QAT Endpoints’ architecture.

3.1 Queues and Queue Pairs

Communication between CPU and Intel® QuickAssist Technology hardware is via hardware-assisted
queues (aka rings):

* Queues are circular buffers.
= Memoryisin Systemn DRAM.
= Deviceis configured with base address, entry size and number of entries via device CSRs.

» Head and Tail pointers are in device CSRs (MMIO space).

3.1.1 Queues Pairs

* To send a request, software writes request descriptor to next available entry in the request queue,
and updates the tail pointer.

* Device firmware reads request descriptor from request queue, updating the head pointer. It then
processes the request, writes response descriptor onto response queue, and updates the tail
pointer.

* Response queues can be configuredto generate aninterrupt when device firmware updates the tail
pointer, or can be polled.

Intel Programmer's Guide

Software

Process

Intel® QAT Device

3.1.2 Queue Bundles

Queues are grouped into bundles of 8 queues (4 Queue Pairs (QPs)).
* When SR-IOV is enabled, each bundle shows up as a separate Virtual Function.
Within each bundle, by default, a separate QP is used for each of the three possible services:
1. Public Key Crypto
2. Symmetric Crypto

3. Data Compression

Public Key Crypto

et Crpto EHRHEEEEEHELELE

ata Compression

Max of 2 service types per QAT device at atime. Each QP can be allocated to a specific service, in a bare
metal environment.

6 Infrastructure

Programmer's Guide Intel

3.2 Servicelnstances

At the Intel® QuickAssist Technology API, we abstract queue pairs using the concept of service in-
stances.

» Touse a service, an application must first get a handle to a service instance.
= Corresponds to one or more queue pairs:

— Data compression instance contains 1 queue pair.

— Cryptographic instance:

x QAT Gen2: contains 2 queue pairs, one for each sub-service of crypto (symmetric crypto,
public key crypto).

x QAT Gen4: crypto instances can be specified as either sym (symmetric) or asym (asym-
metric) cryptography and contain 1 queue pair.

3.2.1 Configurable ltems (via config file)

* Queue depth (for each queue).

* Number of service instances per process for a given device (limited by available rings), forexample:
- One per address space (e.g. user space processes).
— One per software or hardware thread (logical core), to avoid contention.

» Number of queue pairs per service, per bundle/VF, will be configurable in future.

3.3 Memory Management

This section describes memory management requirements for submitting buffers to the QAT hardware.

3.3.1 Shared Virtual Memory

Shared Virtual Memory (SVM) is a new feature in QAT 2.0 hardware. In QAT 1.x hardware, memory needs
to be submitted to the hardware as pinned and physically contiguous memory. In QAT 2.0, SVM allows
direct submission of an applications buffer, thus removing the memcpy cycle cost, cache thrashing, and
memory bandwidth. The SVM feature enables passing virtual addresses to the QAT hardware for pro-
cessing acceleration requests.

With SVM:
» Virtually contiguous (can also deal with Scatter Gather Lists of virtually addressed buffers).

= Virtually addressed.

Infrastructure 7

Intel Programmer's Guide

» Cantolerate page faults but Pinning (i.e. locked, guaranteed resident in physical memory) is recom-
mended for performance.

3.3.1.1 SVM Kernel Requirements
In order to use SVM, ensure that kernel version v6.1 or higher is used. Alternatively verify the following
kernel patches are applied.

= 81c95fbaebfab990c3c786c8c3e87426a33106fe

* €65a6897be5e4939d477c4969a05e12d90b08409

Verification can be done with the following steps:

git tag --contains 81c95fbaebfa5990c3c786c8c3e87426a33106fe
git tag --contains e65a6897be5e4939d477c4969a05e12d90b08409

This requirement provides mitigation for the issue QAT20-23616 described in the Release Notes.
The following kernel boot parameters need to be defined in order to utilize SVM.
intel_iommu=on,sm_on

Refer to Shared Virtual Memory Parameters for details on QAT configuration files updates required to
support SVM.

3.3.2 DMA-able Memory

If SVM is not enabled, Memory passed to Intel® QuickAssist Technology hardware must be DMA‘able.
» Physically contiguous (can also deal with Scatter Gather Lists).
* Physically addressed.

- If VT-dis enabled (e.g. in virtualized system), then Intel IOMMU will translate to host physical
addresses as needed.

* Pinned (i.e. locked, guaranteed resident in physical memory).

Intel provides a User Space DMA-able Memory (USDM) component (kernel driver and corresponding
user space library) which allocates/frees DMA-able memory, mapped to user space, performs virtual to
physical address translation on memory allocated by this library

This componentis used by the sample code supplied with the user space library.

8 Infrastructure

Programmer's Guide Intel

3.3.3 Memory Type Determination

QAT 2.0 hardware offers the application to use virtual memory directly to sending the acceleration re-
questsand saving the memory copy overhead. However, different SVM configurations will result in differ-
ent memory types. The QAT package offers memory management library called User Space DMAable
Memory(USDM) to help user space applications using the pinned memory.

SVMEnabled ATEnabled Memory Type

FALSE(O) FALSE(O) Pinned Memory (USDM)

TRUE() FALSE(O) Pinned Memory (USDM)

FALSE(O) TRUEQ) Invalid configuration

TRUEQ) TRUEQ) Pinned Memory (USDM) or Dynamic Memory
(malloc/ zalloc/mmap...)

3.3.4 Buffer Formats

Data buffers are passed across the APl interface in one of the following formats:
= Flat Buffers represent a single region of physically contiguous memory.

» Scatter-Gather Lists (SGL) are essentially an array of flat buffers, for cases where the memory is
not all physically contiguous.

3.3.4.1 Flat Buffers

Flat buffers are represented by the type CpaFlatBuffer, definedinthe file cpa.h. It consists of two fields:

= Data pointer pData: points to the start address of the data or payload. The data pointer is a virtual
address; however, the actual data pointed to is required to be in contiguous and DMAable physical
memory. This buffer type is typically used when simple, unchained buffers are needed.

= Length of this buffer: dataLenInBytes specified in bytes.

For data plane APIs (cpa_sym_dp.h and cpa_dc_dp.h), a flat buffer is represented by the type CpaPhys-
FlatBuffer, also defined in cpa.h. Thisis similar to the CpaFTatBuffer structure; the difference is that,
in this case, the data pointer, bufferPhysAddr, is a physical address rather than a virtual address.

3.3.4.2 Scatter-Gather List (SGL) Buffers

A scatter-gatherlistis defined by the type CpaBufferList, also definedinthefile cpa.h. Thisbufferstruc-
ture is typically used where more than one flat buffer can be provided to a particular API. The buffer list
contains four fields, as follows:

= The number of buffersin the list.

= pBuffers: pointerto an unbounded array of flat buffers.

Infrastructure 9

Intel Programmer's Guide

datalLeninBytes

Buffer

bufferPhysAddr (physically contiguous)

* UserData: an opaque field; is not read or modified internally by the API. This field could be used to
provide a pointer back into an application data structure, providing the context of the call.

* pMetaData: pointer to metadata required by the API:

— The metadataisrequiredforinternal use by the API. The memory for this buffer needs to be al-
located by the client as contiguous data. The size of this metadata bufferis obtained by calling
cpaCyBufferListGetMetaSize for crypto, cpaBufferLists, and cpabcBufferListGetMeta-
Size for data compression.

— The memory required to hold the CpaBufferList structure and the array of flat buffers is not
required to be physically contiguous. However, the flat buffer data pointers and the metadata
pointer are required to reference physically contiguous DMAable memory.

— Thereis aperformance impact when using scatter-gather lists instead of flat buffers. Refer to
the Performance Optimization Guide for additional information.

— Scatter-Gather list (SGL) buffers should not have more than 256 entries.

For data plane APIs (cpa_sym_dp.h and cpa_dc_dp.h) aregion of memory that is not physically contigu-
ousis described using the CpaPhysBufferList structure. Thisis similar to the CpaBufferList structure;
the difference, in this case, the individual flat buffers are represented using physical rather than virtual
addresses.

3.3.5 Huge Pages

Theincluded User space DMAable Memory driver usdm_drv . ko supports 2MB pages. This allows direct
access to main memory by devices other than the CPU and the actual supported maximum memory size
in one individual allocation when huge pagesis enabled is 2MB - 5KB. Where the 5KB is used for memory
management forthe memory driver. The use of 2MB pages provides benefits, butalso requires additional
configuration. Use of this capability assumes that a sufficient number of huge pages are allocated in the
operating system for the particular use case and configuration.

Here are some example use cases:

= Default settings applied:

10 Infrastructure

Programmer's Guide Intel

#Buffers
leninBytes
pBuffers yiito
Data
UserData P 0
leninBytes;
pMetaData
pData,
| |
| |
| |
|]
| |
m Buffer 1

User mustalsoallocate this data

modprobe usdm_drv.ko

» Setmaximum amount of Non-uniform Memory Access (NUMA) type memory thatthe User Space
DMAable Memory (USDM) driver can allocate to 32MB for all processes. Huge pages are disabled:

modprobe usdm_drv.ko max_mem_numa=32768

= Set maximum number of huge pages that the USDM can allocate to 50 in total and 5 per process:

modprobe usdm_drv.ko max_huge_pages=50 max_huge_pages_per_process=5

Note: This configuration works for up to the first 10 processes.

Here are examples of invalid use cases to avoid:

= Thisis erroneous configuration, maximum number of huge pages that USDM can allocate is 3 to-
tals: 3 forafirst process, O for the next processes:

insmod ./usdm_drv.ko max_huge_pages=3 max_huge_pages_per_process=5

= This command results in huge pages being disabled because max_huge_pages is O by default:

insmod ./usdm_drv.ko max_huge_pages_per_process=5

= This command results in huge pages being disabled because max_huge_pages_per_process is O
by default:

Infrastructure n

Intel Programmer's Guide

insmod ./usdm_drv.ko max_huge_pages=5

Note: The use of huge pages may not be supported for all use cases. For instance, depending on the
driver version, some limitations may exist for an Input/Output Memory Management Unit (IOMMU).

3.4 Modes of Operation

3.4.1 Calling Semantics

3.4.11 Asynchronous (Polled)

Hardware “request/response” interface is inherently asynchronous (non-blocking).
= Calling function returns once request submitted.

» Callback invoked when response available (polled).

3.4.1.2 Asynchronous (Interrupts)

Hardware “request/response” interface is inherently asynchronous (non-blocking).
= Calling function returns once request submitted.

» Callback invoked when response available (interrupt-driven).

3.4.1.3 Synchronous

Software interface is traditionally synchronous (blocking).
= Calling function blocks until response available.

= Canbeimplemented “on top of” asynchronous hardware semantics.

3.4.1.4 Pros AndCons

12 Infrastructure

Programmer's Guide Intel

Application QAT Driver DRAM Accelerator
or Library

Write Payload Data

-

Asynchronous API Call_ |

Write Request Descriptor
>

Ring Doorbell

4 ead Reqguest Descriptor
Source Data, etc.

[‘J Poll ! Read

_~Write Destination Data,
Read \Response Descriptor, efc.

ip— |
;lt
1
1
1
|
O
2,
o
oY)
o !
1
I
|
I
1
1\
[— |
[
[

Infrastructure 13

intel.

Programmer's Guide

Application

Accelerator

Callback

:|<. ______________

Write Request Descriptor
>

Ring Doorbell

QAT Driver DRAM
or Library
Write Payload Data
-~
Asynchronous API Call_ |

[

ead Reqguest Descriptor

_-Write Destination Data,

Source Data, etc.

rrupt

14

Infrastructure

Programmer's Guide

intel.

Application

|

Return

K-----c---

Write Request Descriptor_
>

Ring Doorbell i

QAT Driver DRAM Accelerator
or Library
Write Payload Data
~
Synchronous API Call<_ |

sleep

ead Request Descriptor

Source Data, etc.

_~Write Destination Data,

Inte

rrupt

Infrastructure

15

intel.

Programmer's Guide

Table 2: Pros and cons of modes of operation

Asynchronous

Synchronous

CPU Utilization

Software thread can do other things
while hardware processes job, without
need for expensive context switch.

Software thread blocked oridle
awaiting response. Can use
multi-threading, but context switching
can be expensive.

Acceleration

A single software thread can have

Hardware has at most one request

Utilization multiple requests outstanding, outstanding per CPU/software thread,
keeping multiple accelerator engines. remaining threads are idle.
Ease of Use Can be difficult if application is Easier tointegrate if application is

designed to use synchronous APlIs.

designed to use synchronous APIs.

Note: Asynchronous APItends to be optimal for performance, but harder to integrate.

3.5 Load Balancing

3.5.1 Per Endpoint

There are four arbiters, which by default are used for the different services (with one spare/unused).

Each partition:

= Arbitrates across two request queues per bundle/VF, to pick a request.

= Load balances all of these requests across all available “engines”.

Within a partition, arbitration uses round robin.

» Ensures fairness (in terms of number of requests) across queue pairs and guests

16

Infrastructure

Programmer's Guide

intel.

Infrastructure

17

Intel Programmer's Guide

3.5.2 Across Endpoints

In a platform or CPU with multiple Intel® QAT devices, software is responsible forload sharing across de-
vices/endpoints. Sapphire Rapids has up to four Intel® QAT devices/endpoints in a single CPU package
(depending on SKU) PCle card may have multiple (QAT 1.x) devices across one or more chipsets.

Software-based Load Sharing can be implemented at various layers:

* Forapplicationsusing the Intel® QuickAssist Technology AP, the application mustimplement load
balancing.

» Forapplications using a framework (e.g. OpenSSL), the framework implements load balancing.

3.5.2.1 Load Sharing Criteria

= Simple round-robin scheme recommended.

* May want to consider “locality” in a multi-socket (NUMA) platform.

o |

Intel® QAT Device Intel® QAT Device

18 Infrastructure

Programmer's Guide

intel.

3.5.3 Dimensions

Table 3: Dimensions Gen1& Gen 2

per Bundle

Genl Gen2
Intel® Communication | Intel® C62x Chipset Intel Atom® Processor
Chipset 8925 to 8955 C3000
Series
Number PCle End- |1 3 1
points
Number of Bundles | 32 16 16
/NVFs per Endpoint
Numberof Queue Pairs | 8

Table 4: Dimensions Gen 3& Gen 4

Gen3

Gen4

Intel® Atom P5000 Processor/ Ice
Lake D

Intel® 4th Gen Intel® Xeon® Scal-
able Processor (per socket)

per Bundle

Number PCle End- |1 4
points

Number of VFs per | 128 16
Endpoint

Number of Queue Pairs | 8 4

3.6 Debugability

3.6.1 Overview of Intel” QAT debugfs entries

Some useful debugging information for the driver and configuration is available via the Linux de-
bugfs file system, with the entries /sys/kernel/debug/qat_* and /sys/kernel/debug/qae_mem_dbg/

gae_mem_sTabs.

Infrastructure

19

intel.

Programmer's Guide

3.6.1.1 Entriesin /sys/kernel/debug/qat_*

This includes:

Table 5: Intel® QuickAssist Technology /sys/kernel/debug

Entries
Entry Description Supported Plat-
forms
cnv_errors Indicates number of compressAnd\Verify errors. | All
Referto Compress and Verify Errorlog in Sysfs.
dev_cfg Displays internal device configuration informa- | All
tion.
frequency Displays frequency of Acceleration Engines. All
fw_counters Displays Acceleration Engine firmware re- | All
quests/responses.
heartbeat, heart- | Referto System Virtual Files. All
beat_failed, heart-
beat_sent
pm_status Displays power management status. Refer to | QAT 2.0
Power Management for additional information.
transport Contains firmware request/response data. Avail- | Al
able only for kernel space instances.
version Includes package version information. All

3.6.1.2 Memory driver queries (gae_mem_slabs)

Debug features are also available by reading and writing the file /sys/kernel/debug/qae_mem_dbg/
gae_mem_slabs . When reading the virtual/physical address, size and slab 1id together with the pid
of the allocating process are shown. Writing a string to the file will start executing debug commands.

Forexample:

cat /sys/kernel/debug/qae_mem_dbg/qae_mem_sTabs

Pid 78854, Slab Id 10550771712

virtual address 000000000b39412d, Physical Address 274e00000, Size 2097152
Pid 78854, Slab Id 10309599232

virtual address 000000003670dd45, Physical Address 266800000, Size 2097152

There are three commands supported, and the below table shows their output:

Table 6: Read/Write to /sys/kernel/debug/gae_mem_dbg/gae_mem_slabs

Writing these strings...

..will output this when the file

isread

d <pid> <virtual or physical address>

dress

The 256 byte in hex and ascii from the start ad-

C

ontinues on next page

20

Infrastructure

Programmer's Guide Intel

Table 6 —continued from previous page
Writing these strings... ..will output this when the file is read
“c <pid> <slab id>" (pid should be the process id | The allocation bit map for the given slab identifier
that can be obtained by a previous read)
“t” Total size of NUMA memory allocated in kernel
space

Forexample, by combiningawrite to the file and a subsequent read, you can see the total allocated NUMA
memory, e.g.:

echo "t" > /sys/kernel/debug/qae_mem_dbg/qae_mem_slabs ; cat /sys/kernel/debug/qae_mem_dbg/
—qgae_mem_slabs
Total allocated NUMA memory: 142606336 bytes

As above, the “d” and “c” commands will output their respective information.

3.7 Heartbeat

Under some circumstances, firmware in the Intel® QAT devices could become unresponsive, requiring a
device reset to recover. The Intel® QAT Heartbeat feature provides a mechanism for the customer ap-
plication to detect and reset unresponsive devices. It also notifies the application processes of the start
and end of the reset operation and suspends all Intel® QAT instances between the events.

3.7.1 Heartbeat Operation

A Heartbeat-enabled Intel® QAT device firmware periodically writes counters to a specified physical
memory location. A pair of counters perthreadisincrementedat the startand end of the main processing
loop within the firmware. Checking for Heartbeat consists of checking the validity of the pair of counter
values for each thread. Stagnant counters indicate a firmware hang.

3.7.1.1 Initialization

At startup, the Intel® QAT device driver allocates memory for the counter pairs to be written by the
firmware and then sends a message to the firmware to start the Heartbeat functionality.

Infrastructure 21

Intel Programmer's Guide

3.7.1.2 Heartbeat Monitoring

Heartbeat check/monitoring refers to invocation of one of the two API calls that checks if the device is
responsive. Heartbeat failure refers the API returning failure.

The Intel® QAT driver does not monitor for Heartbeat. It should be initiated by a Heartbeat management
thread calling one of the following APIs periodically:

* jcp_sal_check_device(Cpa32U accelid)
* jcp_sal_check_all_devices(void)
A failure return code implies the device has failed or hung.
The Heartbeat management thread should satisfy the following conditions:
= Forany given device, only one such process/thread should monitor.
= One process can monitor one or more devices.

* |t canbe auserapplication that uses Intel® QAT services, or a separate management/control plane
process.

* Invirtualized environment, monitoring process(es)/thread(s) must run in the context of the host or
hypervisor.

3.7.1.3 Resetting a Failed Device

A device can be configured for automatic reset by the Intel® QAT framework or manually reset by the
application by using the AutoResetonError field in the device configuration file /etc/<device>. conf, as
shown below.

Table 7: AutoResetOnError Values

AutoResetOnError Value | Action on Heartbeat Failure
0 (default) Do not reset the device
1 Reset the device automatically

If an Intel® QAT device is not configured for automatic reset, the management thread should reset it using
the icp_sal_reset_device(Cpa32uU accel1id) API.

The icp_sal_reset_device() function starts an asynchronous reset sequence and returns immedi-
ately. The reset function should not be called again until the device has completed the reset to avoid a
reset storm. The icp_sal_check_device(<device id>) function couldbe calledinaloop to checkif the
device resetis still in progress.

If the application devices are all configured for automatic reset then the icp_sal_check_al1_devices()
function could be used; otherwise, the function should not be used because it does not return the identity
of the failed device, which is a required parameter for the icp_sal_reset_device() function.

22 Infrastructure

Programmer's Guide Intel

Function Signatures

The details of the above functions, parameters, and return values can be found in Supported APIs > Ad-
ditional APIs.

3.7.2 Incorporating Heartbeat into Intel” QAT Applications

Atypical Intel® QAT user application consists of two tasks:

» Thefirsttaskis typically an application thread that initializes Intel® QAT instances and sessions, and
then submits service requests for Intel® QAT crypto or compression.

* If an application employs polling to receive Intel® QAT service responses, then this task is also an
application thread. Alternatively, responses are received as an interrupt handler.

Two more tasks are required to support Heartbeat:

* Thefirstisamanagementtaskto monitorthe devices for failure orhang and then resets them, when
required. As discussed earlier, this could be an application thread of an independent management
process.

= The second taskis an application thread that polls for device reset events:
— Deviceisrestarting: CPA_INSTANCE_EVENT_RESTARTING
— Devicerestartis complete: CPA_INSTANCE_EVENT_RESTARTED

If the application employs polling toreceive Intel® QAT service responses, then this task could be included
in the same polling loop.

The polling for device events is done using the API: icp_sal_pol1_device_events().

The two callback functions for crypto and compression are registered using the following APls:
* cpaCyInstanceSetNotificationCb
» cpabDcInstanceSetNotificationCh

The details of the above functions, parameters, and return values can be found in Supported APIs > Ad-
ditional APIs.

3.7.3 Restart Sequence

During the restart sequence, the user space library releases the memory used for rings and other data
structures as part of the shutdown and reallocates them when the restart is completed. This is trans-
parent to the user application, so it can continue to use the same logical instance after reset to submit
Intel® QAT service requests. Any memory allocated by the user application for the Intel® QAT service is
untouched during device reset.

A typical Heartbeat error use-case is as follows:

1. The driver and the firmware is loaded, initialized and started.

Infrastructure 23

Intel Programmer's Guide

2. The user-space application registers to receive instance notifications by calling cpaCyInstance-
SetNotificationCb and cpabDcInstanceSetNotificationcCh.

3. The management thread monitors for the device’s heartbeat. When a device is unresponsive, a de-
vice reset s initiated by this thread or by the Intel® QAT framework depending on the device config-
uration.

4. The kernel-space process sends the restarting event to the user-space process.

5. The user-space driver passes the device restarting event to all the registered application instances.
It also frees memory and rings associated with the registered instances.

6. Thekernel-space driver triggers the device reset.

7. During reset, the Intel® QAT service request made by the user application returns one of:
* CPA_STATUS_FAIL
= CPA_STATUS_RETRY
* CPA_STATUS_RESTARTING

8. When the device reset is complete, the kernel-space driver sends a device restarted event to the
user space driver.

9. Theuserspace driverallocatesthe memory andringsandthen forwards the device Restarted event
to each of the registered instances.

3.7.4 Status of Packets in Flight (Crypto Applications Only)

When a device has fatal errors, the application ordinarily cannot determine whether or not inflight re-
quests have been processed successfully.

The current Intel® QAT release includes a dummy response feature that creates mock responses to all
requests submitted during a fatal error condition, so the application can detect them and, therefore, know
which requests need to be resubmitted to the available devices or to the software.

Note: The sequence of dummy responses will match the sending request sequence for all requests
submitted during a fatal error.

Since the dummy response feature only supports Public Key Encryption (PKE), dummy responses may
be generated only when the icp_sal_CyPollInstance() function is called, since it is the function for
crypto services.

Theicp_sal_poll_device_events() function shouldalso be called by the application, so that the appli-
cation get a notification when the device encounters a failure and dummy responses are generated when
callingicp_sal_cypPollInstance() forthe inflight requests.

24 Infrastructure

Programmer's Guide Intel

3.7.5 Determining Device ID

The <device id>thatis passed as a parameter to several Heartbeat APl is the numeric suffix of the device
name displayed by the following command. (device name: gat_devO0):

service gat_service status

The output will look like:

There is 1 QAT acceleration device(s) in the system: gat_devO - type: c3xxx, inst_id: 0, node_
—id: 0, bsf: 01:00.0, #accel: 3 #engines: 6 state: up

The Intel® QAT library has no API to discover the device number easily. However, an application can use
the IOCTLs IOCTL_GET_NUM_DEVICES and IOCTL_STATUS_ACCEL_DEV to find the device_id of a particular
device if they know the Bus Device Function (BDF). Refer to perform_query_dev() in . /adf_ct1.cpp.

3.7.6 Testing Heartbeat

Two debug capabilities are available to assist the developers incorporating Heartbeat into their applica-
tions:

= Simulation of Heartbeat failure.

= System virtual files under /sys/kernel/debug/.

3.7.6.1 Simulated Heartbeat Failure Configuration

The Heartbeat feature is always enabled in the package. However, a debug capability that simulates de-
vice failure can be enabled during the configure step as follows:

./configure --enable-icp-hb-fail-sim

3.7.6.2 Simulating Heartbeat Failure

Simulating Heartbeat failure can be accomplished using two methods:
» Usingthe APlicp_sal_heartbeat_simulate_failure(<device id>).

= Executing the command:

cat /sys/kernel/debug/<device>/heartbeat_sim_fail

Infrastructure 25

Intel Programmer's Guide

System Virtual Files

Note: The heartbeat /sys/kernel/debugfiles are associated with the QAT Physical Function (PF).

The Heartbeat feature implements the following system virtual files under the
/sys/kernel/debug/qat_<device>_<your_device_BDF>/ directory.

For additional details refer to debugfs-driver-gat documentation.

Table 8: Heartbeat System Virtual Files

File Content

heartbeat O: Device isresponsive. -1: Device is NOT responsive.
heartbeat_failed | Number of times the device became unresponsive.

heartbeat_sent Number of times the control process checked if the device is responsive.

A developer could simulate the Heartbeat management process by running the following script in the
background:

#!/bin/bash
while : do

cat /sys/kernel/debug/<device>/heartbeat > /dev/null sleep 1
done

Heartbeat Polling Frequencies

The application developer should decide on the following two Heartbeat polling frequencies:
= Device Heartbeat monitoring.
* Checking for device reset events.
Device Heartbeat Monitoring
Consider the following points when determining the frequency of Heartbeat monitoring:
* Increasing Heartbeat monitoring frequency will minimize the customer’s system downtime.

= However, since device unresponsiveness should be an infrequent event, high frequency Heartbeat
monitoring wastes CPU cycles.

= Also, if there are large Intel® QAT service requests that take some time to complete, high frequency
Heartbeat monitoring could result in false reports of unresponsiveness.

= With QAT Gen4 devices, heartbeat update timer in firmware is a constant value of 200ms (uncon-
figurable). With QAT Gen2 devices this value is configurable with configuration item Heartbeat-
Timer (the default value is 500ms and the minimal allowed value is 200ms)

26 Infrastructure

https://www.kernel.org/doc/Documentation/ABI/testing/debugfs-driver-qat

Programmer's Guide Intel

* Forboth QAT Gen2 and Gen4 monitoring interval should be larger or equal than the Heartbeat up-
dateinterval. (e.g. if user configure HeartbeatTimer=300, polling interval should be >=300ms)

Checking for Device Reset Events

If the application uses polling for reading Intel® QAT service responses, there is no value in checking for
resets more frequently. Since device unresponsivenessis aninfrequent occurrence, frequency of check-
ing for reset events could be a fraction of the frequency of polling for Intel® QAT service responses.

3.7.7 Handling Device Failures in a Virtualized Environment

The Heartbeat feature in the acceleration software can be used in a virtualized environment. Refer to
the Using Intel® Virtualization Technology (Intel® V/T) with Intel® QuickAssist Technology Application
Note for more details on enabling SR-IOV and the creation of Virtual Functions (VFs) from a single
Intel® QuickAssist Technology acceleration device to support acceleration for multiple Virtual Machines
(VMs).

The following sequence describes a possible use case for using the Heartbeat feature in a virtualized en-
vironment.

1. The Intel® QAT Physical Function driver (PF driver) isloaded, initialized and started.

2. The Intel® QAT Virtual Function driver (\VF driver) is loaded, initialized and started in the Guest OS
inthe VM.

3. The PF driver detects that the firmware is unresponsive (using either of the following methods:
User Proc Entry Read (not Enabled by Default) on page 47 or User Application Heartbeat APIs (not
Enabled by Default) on page 48).

4. The PF driver sends the “Restarting” event message to the VF via the internal PF-to-VF communi-
cation messaging mechanism.

5. The VF driver sends the “Restarting” event to the application’s registered callback. The callback
is registered using either of the Intel® QAT API functions cpabcInstanceSetNotificationcb() or
cpaCyInstanceSetNotificationch() in the Guest OS. (The application’s callback function may
perform any application-level cleanup.)

6. The PF driver starts the reset sequence (save state, initiate reset, and restore state).

7. Theuserrestarts the Guest OS and loads the VF driver and application in the Guest OS.

Note:

» |f the Heartbeat feature in the acceleration software is not enabled, the PF driver will not notify the
VF driver that the firmware is unresponsive.

* The error detection mechanisms are not available on the VF driver in the VM, but device errors
caused by any of the software running on the VM will be detected by the PF driver using the above
mechanisms.

Infrastructure 27

Intel Programmer's Guide

3.7.8 Incorporating Dummy Responses into an Intel” QAT Applica-
tion

The dummy response feature has been incorporated in a scenario with the Intel® QAT engine and Nginx*.
Figure below illustrates how it works. This can be used as a reference to so-called “software fallback.”

The Intel® QAT engine is a shim layer between OpenSSL* libcrypto* and Intel® QAT Library. The Intel®
QAT Library will generate failover responses.

The Heartbeat Monitoring Daemon, a single process, is a daemon which is used to check the device sta-
tus periodically and trigger the driver the reset the device when heartbeat failure happens. Its only activity
iscallingicp_sal_check_device() oricp_sal_check_all_devices() periodically.

The Intel® QAT Engine polls forand handles “device error” and “device ok” events (viaudev). It keeps track
of the number of devices which are active.

* Ifsome, butnotall, Intel® QAT devices encounter errors, switch to remaining available devices by re-
submitting the inflight requests, which are responded to with dummy responses and new requests
to the available devices.

« |f the number of active Intel® QAT devices goes to zero, switch to software and resubmit the inflight
requests which are responded to with dummy responses and new requests to the software.

* |f the number of active Intel® QAT devices goes positive again, switch back to hardware.

3.8 Telemetry

The telemetry featureis a tool to view the performance and utilization of an acceleration device. Teleme-
try data can be viewed on a per device and a per ring pair (also known as queue pair) basis.

Note: There are differences between the implementations of Telemetry with the in-tree acceleration
driver and the out-of-tree acceleration driver.

Details for each are included in the sections below.

3.8.1 Telemetry Usage

3.8.1.1 Out-Of-Tree

The telemetry feature is configured and queried using sysfs files in the Linux filesystem.
The telemetry sysfs folderis located at /sys/devices/pciAAAA:BB/AAAA:BB:CC.D/telemetry
Where:
* AAAA:BB:CC.Disthe Domain:BDF of the target Intel® QAT Endpoint.

28 Infrastructure

Programmer's Guide

intel.

HB Mon Daemon

QAT

App, e.g.,, NGINX

OpenSSL libssl

OpenSSL liberypto
OpenSSL gEngine AP

Intel® QAT Engine

IntelQ

T API

Intel ® QAT Library
User Space

) Kernel/Space
Driver

Intel® QAT Device

Infrastructure

29

Intel Programmer's Guide

Example:

1s /sys/devices/pciAAAA:BB/0000:6b:00.0/telemetry

3.8.1.2 In-Tree

Important: Referto Release Notes -In-Tree for kernel version requirements for enabling this feature.

The telemetry feature is configured and queried using debugfs files in the Linux filesystem.
The telemetry debugfs folderis located at /sys/kernel/debug/qat_4xxx_*/telemetry
Where:
= gat_4xxx_*is the Domain.BDF of the target Intel® QAT Endpoint.

Example:

sudo Ts /sys/kernel/debug/qat_4xxx_0000:76:00.0/telemetry/telemetry

Note: Update the Domain:BDF above as needed.

The telemetry feature is controlled with standard linux file commands into the control file as outlined be-
low. The telemetry data is accessed through the device_data or rp_<X>_data file depending on what
datais required.

The telemetry data for device level and ring pair level is updated each second.

3.8.2 Telemetry Control

Device level telemetry is enabled by echoing 1into the control file and disabled by echoing 0. Reading the
control file will tell whether the feature is currently enabled or disabled.

Ring Pair level telemetry is enabled when device level telemetry is enabled. However the ring pairs need
to be selected. Only 4 ring pairs can be shown at any given time. By echoing the number of the ring pair
(0-63) into a rp_<x>_data file it can be selected. Where Xis A,B,C or D.

30 Infrastructure

Programmer's Guide Intel

3.8.2.1 Telemetry Commands

Table 9: Telemetry Commands

Operation Command

Enable Telemetry echo 1 > control

Disable Telemetry echo 0 > control

Query Telemetry data | cat device_data

Select Ring Pairs echo Num > rp_<X>_data, Num is the ring pair to be selected
Query Ring Pairdata | cat rp_<X>_data

Selecting Ring Pairs
Out-Of-Tree

This section provides guidance on the mapping of ring pairs to the VFs for the PF when using the Out-
Of-Tree acceleration driver.

There are 4 Ring Pairs per VF. The Ring Pairs for a PF looks like the following:

Table 10: Ring Pairs
Ring Pairs

0 1 2 3
4 5 6 7
8 9 |10 [N
12 113 114 |15
16 |17 |18 |19
20 | 21 | 22 | 283
24 | 25 | 26 | 27
28 | 29 | 30 | 31
32| 33|34 |35
10 | 36 | 37 | 38| 39
1 40 | 41 | 42 | 483
12 | 44 | 45 | 46 | 47
13 [48 | 49 | 50 | 51
14 | 52 | 53|54 |55
15 | 56 |57 |58 |59
16 | 60 | 61 | 62 | 63

O 0| OO RWIN L
T

The servicesEnabled defined for the PF control the mapping of the Ring Pairs:
* If only one workload is enabled (dc/sym/asym), the first two columns are used for this service.

» [fdcandsymorasymisenabled, thefirsttwo columnsareforsymorasymandthe secondtwo columns
are fordc

Infrastructure 31

intel.

Programmer's Guide

» If symand asymis enabled, the first and third columns are for asym and second and fourth columns

are for sym.

3.8.2.2 Device Level Telemetry Values

Table 11: Device Level Telemetry Values

Value

Meaning

sample_cnt

Message count, counter.

pci_trans_cnt

PCle Partial Transactions, counter.

max_rd_Tat

Max Read Latency, nanoseconds.

rd_Tat_acc_avg

Average Read Latency, nanoseconds.

max_lat Max Get To Put latency, nanoseconds.
Tat_acc_avg Average Get To Put latency, nanoseconds.
bw_in PCle write bandwidth, Mbps.

bw_out PCle read bandwidth, Mbps.

at_page_reg_lat_acc_avg

Average Page Request Latency, nanoseconds.

at_trans_Tlat_acc_avg

Average Translation Latency, nanoseconds.

at_max_tTb_used

Maximum uTLB Consumed, counter.

util_cpr<x>

Compression Slice Utilization On Slice X, percentage execution cycles.

util_dcpr<x>

Decompression Slice Utilization On Slice X, percentage execution cycles.

util_xTt<x>

Translator Slice Utilization On Slice X, percentage execution cycles.

util_cph<x>

Cipher Slice Utilization On Slice X, percentage execution cycles.

util_ath<x>

Authentication Slice Utilization On Slice X, percentage execution cycles.

util_ucs<x>

UCS Slice Utilization On Slice X, percentage execution cycles.

util_pke<x>

PKE Slice Utilization On Slice X, percentage execution cycles.

3.8.2.3 RingPair Level Telemetry Values

Table 12: Ring Pair Level Telemetry Values

Value Meaning
sample_cnt Message count, counter.
rp_num Number of the ring pair returning data.

pci_trans_cnt

PCle Partial Transactions, counter.

Tat_acc_avg

Average Get To Put latency, nanoseconds.

bw_in

PCle write bandwidth, Mbps.

bw_out

PCle read bandwidth, Mbps.

at_glob_devtlb_hit

Descriptor DevTLB hit rate perring, counter.

at_glob_devtlb_miss

Descriptor DevTLB miss rate perring, counter.

tl_at_payld_devtlb_hit

Payload DevTLB hit rate per ring, counter.

tl_at_payld_devtlb_miss

Payload DevTLB miss rate per ring, counter.

32

Infrastructure

Programmer's Guide Intel

3.8.3 Monitoring Telemetry - Text Based

The following example Python scripts highlight how telemetry data can be monitored at the command
line. The script first enables telemetry service for each QAT endpoint that supports telemetry and is in
the up state. It then queries the telemetry data on a periodic basis collecting the data and formatting the
display.

Intel(R) QuickAssist Device Utilization

Device %Comp %Decomp %PKE #Cipher %Auth S Latency(ns)

gat_dev®d

gat_devl 174276
gat_dev2 174266
gat_dev3 174264
gat_devd 182140
gat_dev5 181970
gat_devb 181984
gat_dev7 181892

3.8.3.1 Out-Of-Tree

Device utilization script for Out-Of-Tree driveris included here.

Important: WWhen running script as non-root User, ensure adf_ctl is added to gat group.

sudo chgrp gat /usr/local/bin/adf_ct]

Script can be downloaded from here

Running the script looks like:

sudo monitor-gat-oot-utilization

Infrastructure 33

Intel Programmer's Guide

3.8.3.2 In-Tree

Device utilization script for In-Tree driver can be downloaded from here

Running the script looks like:

sudo monitor-gat-utilization

3.9 Rate Limiting

Note: Theinstructionsinthissectionapplytothe Out-of-Tree QAT package. Fordetails on Rate Limiting
with In-tree solution, refer to sysfs-driver-qat_rl documentation.

Rate Limiting is implemented by monitoring the utilization of the device on a per-VF, per-service basis
and comparing that to the SLA allocated to that VF and service.

Resources are shared across guests and the resource utilization of each guestis measured relative to the
capacity of the physical function.

The feature is supported for SYM, ASYM, and DC services.
To enable the Rate Limiting feature:

1. Install the driver package on the host with Single-Root Input/Output Virtualization (SR-IOV) en-
abled.

2. SetservicesEnabledtoasymor symordc.

3. Perform gat_service shutdownandgat_service start.

3.9.1 Service Level Agreement (SLA)

Service Level Agreement enforcement allocates a specified amount of capacity for a specified service
to a specified VF: max SLA enforced = (number of VVFs) X (number of services) where:

* Number of VFs varies based on device type

* Number of services = 2 (asymmetric or symmetric or compression)

34 Infrastructure

https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-driver-qat_rl

Programmer's Guide

intel

3.9.2 SLA Units

SLA units are measured as follows:

= Symmetric Crypto - IMbps of throughput.

= Asymmetric Crypto - 1unitis equal to 0.1 percent of available utilization.

= Compression - IMbps of throughput.

Note:

1. In Gen4 devices, for Asymmetric Crypto services, it is more accurate to use metrics such as slice
utilization and PCl bandwidth instead of Operations/second for SLA measurements.

2. Slice utilization and PCI bandwidth are more fair metrics as they show exactly how much HW re-

sources each user is consuming, regardless of a particular algorithm processing speed.

3. Gen4 devices use a Hardware-assisted Rate limiting approach whereas legacy devices use a
firmware-only Rate limiting approach.

4. For asymmetric service, SLAs shall be allocated at a granularity of 1 unit of device utilization per-
centage for RSA2K.

5. Belowisasample mapping table forthe 5th Gen Intel® Xeon® Scalable Processer- MCC SKU plat-
form that translates the SLA units to equivalent ops/sec.

6. Users can run tests with the required algorithm to determine the mapping for other SKUs with dif-
ferent performance. Gen4 asymmetric performance numbers can differ based on the SKU.

Table 13: Sample Mapping Table for 5th Gen Intel® Xeon®

Scalable Processer- MCC SKU

Unit | RSA2K decrypt with CRT (Ops/sec) | RSA4K decrypt with CRT (Ops/sec)
1 60 -

5 300 -

10 600 60

50 3000 300

100 6000 600

300 | 18000 1800

500 | 30000 3000

750 | 45000 4500

1000 | 60000 6000

Infrastructure

35

Intel Programmer's Guide

3.9.3 SLA Manager Application

The sTa_mgr tool is used to create, update, delete, list and get SLA capabilities. The SLA Manager
executable is available in $I1CP_R0OOT/build/sla_mgr after the package is built and installed using ./
configure; make install commands.

3.9.3.1 SLA Commands

Table 14: Rate Limiting SLA Commands

Operation | Command
Rate Limiting V1(Legacy)
Create SLA ./sTa_mgr create <vf_addr> <rate_in_sTa_units> <service>
Update SLA ./sTa_mgr update <pf_addr> <sla_id> <rate_in_sla_units>
Rate Limiting V2
Create SLA ./sTa_mgr create <vf_addr> <cir> <pir> <service>
Update SLA ./sTa_mgr update <pf_addr> <sla_id> <cir> <pir>
For Legacy and Rate Limiting V2
Delete SLA ./sTa_mgr delete <pf_addr> <sTla_id>
Delete all SLAs ./sTa_mgr delete_all <pf_addr>
Query SLA capabilities ./sla_mgr caps <pf_addr>
Query list of SLAs ./sla_mgr Tlist <pf_addr>
Options:

= pf_addr - Physical address in domain:bus:device.function(xxxx:xx:xx.x) format.

» vf_addr - Virtual address in domain:bus:device.function(xxxx:xx:xx.x) format.

» Service- Asym(=0) or Sym(=1) or DC(=2).

* rate_in_sla_units-[0O-MAX]. MAX s found by querying the capabilities.

» cir/pir-committed/peakinformation rate [0-MAX]. MAX is found by querying the capabilities.
* sTa_id- Value returned by create command.

In Legacy mode, to create/update SLA we use rate_in_sla_units. With Rate Limiting V2, we use cir/pir.
These units are equal to:

» loperation per second - forasymmetric service (Legacy) or 0.1 percent of available utilization (Rate
Limiting V2).

» 1Megabits per second - for symmetric service/compression service.

Note: To use Legacy Rate limiting sla_mgr application, user needs to configure with option —enable-
legacy-sla-magr.

36 Infrastructure

Programmer's Guide Intel

3.10 Power Management

The goal of power management is to manage and save power consumed by the device in the following
states:

* idle =>whenever no request is sent, power state is minimum.
* initialized orreset.

= active =>whenever there are requests to be handled, power state is max.

3.10.1 Configuration

3.10.1.1 Out-of-Tree

When using the Out-of-Tree QAT package, Power management configuration is included in the device
configuration file (i.e. /etc/4xxx_devX.conf where X is the O-based index of the device.)

Power management configurations parameters include:

Table 15: Power Management Configuration

Parameter Description

PmIdTeSupport Configure the device to enable/disable power management idle sup-
porting.
Power management idle support is enabled by default.

3.10.1.2 In-Tree

When using the in-tree solution, Power Management configuration is handled via sysfs-driver-gat.
For details refer to sysfs-driver-qgat documentation.

3.10.2 Usage

The information of power management status are exposed in debug sysfs file /sys/kernel/debug/
gat_4xxx_AAAA:BB:CC.D/pm_status where:

= AAAA:BB:CC.Disthe Domain:BDF of the target Intel® QAT Endpoint.

Example:

cat /sys/kernel/debug/qat_4xxx_0000:6b:00.0/pm_status

The QAT device is statically configured, so any change in device configuration file will only be effective
after the device is rebooted.

Infrastructure 37

https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-driver-qat

Intel Programmer's Guide

3.10.3 Considerations

While power management is an important feature in reducing power consumed, it can affect the inter-
nal components’ clocks of QAT devices, and that can affect example telemetry work. It also can impact
latency numbers.

Important: Itisrecommendedto disable the power management feature if either of the followingis true:
» Using feature dependent on clock speed, such as telemetry, or

* Supporting latency-sensitive workload.

3.11 Reliability, Availability, and Stability (RAS)

The RAS feature goal is to support the acceleration devices Reliability, Availability and Stability by han-
dling the error interrupts initiated by the device.

Additionally the types of errors are counted and the counters made available via sysfs.
For additional details refer to sysfs-driver-gat_ras documentation.

3.11.1 RAS Usage

Following PCle specifications, errors are categorized as follows:

Table 16: RAS Error Types

Error Type Description
Correctable Device can recover on its own, no software involvement.
The ras_correctable counterisincremented in sysfs.
Uncorrectable Software intervention is needed to resolve the error. This may require the appli-

cation to reset the session or resend the request to the device.

The ras_uncorrectable counterisincremented in sysfs.

Fatal Device unable to recover on its own even with software help. Restarting the de-
vice is required.

The ras_fatal counterisincremented in sysfs.

The RAS sysfs files are located at /sys/devices/pciAAAA: BB/AAAA:BB:CC.D/ras_Xwhere:
= AAAA:BB:CC.Disthe Domain:BDF of the target Intel® QAT Endpoint.
* ras_Xisthe errortype (ras_correctable/ras_uncorrectable/ras_fatal).

Example:

38 Infrastructure

https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-driver-qat_ras

Programmer's Guide

intel.

cat /sys/bus/pci/devices/0000\:6b\:00.0/ras_fatal

Note: RAS is enabled by default when the device is initialised.

3.1.2 AERErrors

The Linux kernel implements an AER driver for each PCle device to handle errors reported through the
AER mechanism.

AER error counters for each device are exposed through sysfs files categorized as follows:

Table17: RAS AER Errors

Error Type

Description

AER Correctable

Device can recover on its own, no software involvement.
The aer_dev_correctable counterisincremented in sysfs.

AER Uncor- | Softwareinterventionis neededto resolve the error. Inthe case of an error caused

rectable by a transaction failure or for instance a packet memory buffer that can’t be re-
stored by ECC, then the device will need to reset in order to retry the transaction
and attempt recovery.
The aer_dev_uncorrectable counterisincremented in sysfs.

AER Fatal In the case of a fatal error, the AER driver will additionally reset the PCle link in an

attempt to recover.
The aer_dev_fatal counterisincremented in sysfs.

AER errors counters are exposed at /sys/bus/pci/devices/AAAA:BB:CC.D/aer_dev_Xwhere:

* AAAA:BB:CC.Disthe Domain:BDF of the target Intel® QAT Endpoint.

= aer_dev_Xisthe errortype (aer_dev_correctable/aer_dev_uncorrectable/aer_dev_fatal).

Example:

cat /sys/bus/pci/devices/0000\:6b\:00.0/aer_dev_correctable

Important: AER reporting must be enabled in the BIOS to have errors reported through AER.

Infrastructure

39

4 Acceleration Driver

Intel® QAT can accelerate the following services:
= Symmetric cryptography
* Public key cryptography
= Data compression/decompression

The Intel® QAT Endpoints are exposed as PCl devices. Applications running in user space typically ac-
cess these services via the Intel® QAT APIs. Applications that run in the Linux* kernel can also access
some services via the Linux* Kernel Cryptographic Framework (LKCF) API.

4.1 Controlling the Driver

Two methods are provided to manage the acceleration driver. They include:
» gat_service: script to manage the Intel® QAT Endpoints.

= adf-ct1: Utility for loading configuration files and sending events to the driver.

411 qgat_service

The gat_service script is installed with the software package in the /etc/init.d/ directory. The script
allows a user to start, stop, or query the status (up or down) of a single Intel® QAT Endpoint or all Intel®
QAT Endpointsin the system.

4111 qat_service Usage

To view all Intel® QAT Endpoints in the system, use:

service gat_service status

If for example, there are two Intel® QAT Endpoints in the system, the output will be similar to the following:

40

Programmer's Guide Intel

gat_dev0 - type: cbxx, inst_id: 0, bsf: 06:00:0, #accel: 5 #engines: 10 state: up
gat_devl - type: cbxx, inst_id: 1, bsf: 83:00:0, #accel: 5 #engines: 10 state: up

Other options are also available:

service gat_service start||stop||status]||restart]||shutdown

For a system with multiple Intel® QAT Endpoints, you can start, stop or restart each individual device by
passing the Intel® QAT Endpoint to be restarted or stopped as a parameter gat_dev<N>, for example:

service gat_service stop gat_dev0
service gat_service stop gat_devl

The shutdown qualifier enables the user to bring down all Intel® QAT Endpoints and unload driver mod-
ules from the kernel. This contrasts with the stop qualifier, which brings down one or more Intel® QAT
Endpoints, but does not unload kernel modules, so other Intel® QAT Endpoints can still run.

4.1.2 adf_ctl

The adf_ct1 user space utility is separate to the driver and provides a mechanism for:

= Loading configuration file data to the kernel driver. The kernel space driver uses the data and also
provides the data to the user space driver.

* Sending events to the driver to bring devices up and down.

The adf_ct1 provided with the Intel® QAT 2.0 driver can also be used to interface with Intel® QAT 1.6 and
1.7 devices.

4121 adf_ctlUsage

To bring up, down, restart or reset device(s):

adf_ct1l [-c|--config] [gat_dev] [up|down]|restart]|reset]

To print device(s) status:

adf_ct1l [gat_dev] status

To use the specified configuration file:

-c (--config) [config/file/path]

Note: If no device (physical or virtual) is selected, this file is used against all existing devices.

Acceleration Driver 4

Intel Programmer's Guide

41.2.2 Examples

To bring device O down:

adf_ct1 gat_dev0 down

To load device configuration from default path (e.g. /etc/4xxx_devl.conf), then bring device 1up:

adf_ct1 gat_devl up

To load device configuration from specified path /etc/4xxx_devl. conf and bring device Tup:

adf_ct1l -c /etc/user_4xxx_devl.conf gat_devl up

To restart all devices with default configuration files:

adf_ctl restart

To restart all devices with specified configuration file /etc/user_c4xxx_devl. conf:

adf_ct]l -c /etc/user_4xxx_devl.conf restart

To restart device O with specified configuration file ~/user_4xxx_devl. conf:

adf_ct]l -c ~/user_c4xxx_devl.conf gat_dev0 restart

To restart device O:

adf_ct1 gat_devO reset

4.2 Application Payload Memory Allocation

When performing offload operations through the Intel® QAT API, it is required that the payload data be
placedin abufferthatis resident, physically contiguous, and DMA accessible from the acceleration hard-
ware. Itis the application’s responsibility to provide buffers with these constraints.

Buffers are passed to the API with virtual addresses. The APl translates these addresses to the address
information required by the hardware.

42 Acceleration Driver

Programmer's Guide Intel

4.2.1 Services

Table 18: Acceleration Driver Services

Service API Reference

Cryptographic service | cpaCySetAddressTranslation() | Seethe Intel® QuickAssist Technology
Cryptographic APl Reference Manual
(refer to Table 2) for details.

Data Compression ser- | cpabcSetAddressTranslation() | See the Intel® QuickAssist Technol-
vice ogy Data Compression API Reference
Manual (refer to Table 2) for details.

When the software requires the physical address, it calls the registered function.

Note: This address translation function is called at least once per request. Consequently, for optimal
performance, the implementation of this function should be optimized.

If using the Intel® QAT Data Plane AP, buffers are passed to the Intel® QAT API as physical addresses.
The library passes this directly to the hardware, without the need for translation.

4.2.2 Thread Specific USDM

By default, memory allocation uses the USDM slab allocator, which gives 2MB contiguous memory. The
allocation has locks in the library to prevent a race condition in getting the memory from the slab.

Thislock has animpact on some multi-threaded applications and use cases, like HAProxy, causing a drop
in performance.

To mitigate this issue, thread specific USDM is implemented which allocates and handles memory spe-
cific to threads. (For multi-thread apps, allocated memory information will be maintained separately for
each thread).

This feature can be enabled by configuring with the configure flag:
--enable-icp-thread-specific-usdm

In some use cases with thread specific USDM, using a 128K slab allocator instead of the default 2MB
allocator could improve performance and reduce memory consumption for a large number of threads.
This can be enabled by configuring with the configure flag

--enable-128k-s1ab

Note: There s a limitation with thread specific USDM: memory allocated in one thread should be freed
only by the thread which allocatesiit.

Incorrect cleanup can lead to a segmentation fault (segfault).

Acceleration Driver 43

Intel Programmer's Guide

Also, memory allocated in a thread is freed automatically when the thread exits/terminates, even if the
user does not explicitly free the memory.

See the ./configure flags section of the Getting Started Guide for more information on these flags.

Important: We have observed poor multithreaded performance with QAT_Engine using OpenSSL* at
higher thread counts.

Unfortunately, these issues appear to stem from the way OpenSSL* implements its en-
gine_table_select and locks. For relevant issues on the OpenSSL* github pages, see the two
issues below:

= OpenSSL* 1.11.x: Performance bottleneck with locks in engine_table_select () function #18509,
https://github.com/openssl/openssl/issues/18509

* OpenSSL* 3.0: 3.0 performance degraded due to locking #20286, https://github.com/openssl/
openssl/issues/20286

4.3 Return Codes

This table shows the return codes used by various components of the acceleration driver, defined in
$ICP_ROOT/quickassist/include/cpa.h.

Table 19: Return Codes

Return Type Return Code Description
CPA_STATUS_SUCCESS 0 Requested operation was successful.
CPA_STATUS_FAIL -1 General or unspecified error occurred. Refer to

the console log user space application orto /var/
Tog/messages in kernel space for more details of
the failure.
CPA_STATUS_RETRY -2 Recoverable error occurred. Refer to relevant
sections of the API for specifics on what the sug-
gested course of action.
CPA_STATUS_RESOURCE -3 Required resource is unavailable. The resource
that has been requested is unavailable. Refer to
relevant sections of the API for specifics on what
the suggested course of action.
CPA_STATUS_INVALID_PARAM | -4 Invalid parameter has been passed in.
CPA_STATUS_FATAL -5 Fatal error has occurred. A serious error has oc-
curred. Recommended course of actionis to shut
down and restart the component.

continues on next page

44 Acceleration Driver

https://github.com/openssl/openssl/issues/18509
https://github.com/openssl/openssl/issues/20286
https://github.com/openssl/openssl/issues/20286

Programmer's Guide

intel.

Table 19 — continued from previous page

Return Type

Return Code Description

CPA_STATUS_UNSUPPORTED -6

The function is not supported, at least not with
the specific parameters supplied. Thismay be be-
cause a particular capability is not supported by
the currentimplementation.

CPA_STATUS_RESTARTING -7

The API implementation is restarting. This may
be reported if, for example, a hardware implemen-
tationis undergoing a reset.

4.4 Linux*Device Driver Operations Return Codes

This table shows the return codes used by the driver to handle Linux* device driver operations.

Table 20: Linux* Device Driver Operations Return Codes

Return Type Return Code Description

SUCCESS 0 Operation was successful.

FAIL 1 General error occurred. Refer to the console log user space
application or to /var/log/messages in kernel space for
more details of the failure.

-EPERM -1 Operationis not permitted. Used during ioctl operations.

-ENOENT -2 No such file or directory.

-EINTR -4 Interrupted system call.

-EIO -5 Input/Output error occurred. Used when copying configu-
ration data to and from user space.

-EBADF -9 Bad File Number. Used when an invalid file descriptor is de-
tected.

-EAGAIN -1 Try Again. Used when a recoverable operation occurred.

-ENOMEM -12 Out of Memory. Memory resource that has been requested
is not available.

-EACCES -13 Permission Denied. Used when the operation failed to con-
nect to a process or open a device.

-EFAULT -14 Bad Address. Used when an operation detects invalid pa-
rameter data.

-EBUSY -16 Device or resource is busy.

-EEXIST -17 File exists.

-ENODEV -19 No Such Device. Used when an operation detects invalid
deviceid.

-EINVAL -22 Invalid argument.

-ENOTTY -25 Invalid Command Type. Used when an ioctl operation de-
tects aninvalid command type.

-ENOSPC -28 No space left on device.

-ERANGE -34 Math result not representable.

continues on next page

Acceleration Driver

45

intel.

Programmer's Guide

Table 20 - continued from previous page

Return Type Return Code Description

-ENOSYS -38 Function notimplemented.

-EL3HLT -46 Level 3 Halted.

-ETIME -62 Timer expired.

-EBADMSG -74 Not a data message.

-EOVERFLOW -75 Value too large for defined data type.
-EOPNOTSUPP -95 Operation not supported on transport endpoint.
-EINPROGRESS -115 Operation now in progress.

46

Acceleration Driver

5 Configuration Files

This section describes the configuration file(s) that allows customization of runtime operation. The con-
figuration file(s) must be tuned to meet the performance needs of the target application. Thereisasingle
configuration file for each Intel® QAT Endpoint in the system.

If Single-Root Input/Output Virtualization (SR-IOV) is enabled, a separate configuration file is used for
each virtual function.

Note: The software package includes default configuration file(s), which may not provide optimal per-
formance on all platforms. Consider performance implications as well as the configuration details pro-
vided in this section if your system requires modifications to the default configuration file.

5.1 Configuration File Overview

There is a single configuration file for each Intel® QAT Endpoint and there may be multiple Intel® QAT
Endpoints.

Note: Depending on the model number, a device may also contain no Intel® QAT Endpoints.

The configuration file is splitinto a number of different sections: a General section and one or more Log-
ical Instance sections.

The General section includes parameters that allow the user to specify:
= Which services are enabled.
= Concurrent requests default configuration.
* Interrupt coalescing configuration (optional).
= Statistics gathering configuration.
Additional details are included in General Section.
Logical Instances sections (there may be one or more) include parameters that allow the user to set:

= The number of cryptography or data compression instances being managed.

47

intel.

Programmer's Guide

* Foreachinstance, the name of theinstance, whether or not pollingis enabled, and the core to which
an instance is affinitized.

Additional details are included in Logical Instances Section.

Sample configuration files are included in the package in the quickassist/utilities/adf_ctl/
conf_files directory.

5.2 General Section

The general section of the configuration file contains general parameters and statistics parameters.

Note: Default denotes the value in the configuration file when shipped or the value used if not specified
in the configuration file.

This table describes the other parameters that can be included in the General section.

Table 21: General Section Parameters

Parameter Description Default | Range
ServicesEnabled Defines the service(s) available (cryp- | <varies>| sym, asym,
tographic [cyl, symmetric [sym], cy, dc
asymmetric [asym], data compression Note: Mul-
[dc]). tiple values
Refer to ServicesEnabled for addi- permitted,
tional details. use; as the
delimiter.
ServicesProfile Specifiesthe services thatare available | Default | See Service-
when the driver loads. sProfile for
additional
details.
CyNumConcurrentSymRequests Specifies the number of cryptographic | 512 64,128, 256,
concurrent symmetric requests for 512, 1024,
cryptographicinstances in general. 2048, 409¢,
Referto Concurrent Requests for addi- 8192, 16384,
tional details. 32768, or
65536
CyNumConcurrentAsymRequests | Specifies the number of cryptographic | 64 64,128, 256,
concurrent asymmetric requests for 512, 1024,
cryptographic instances in general. 2048, 4096,
Refer to Concurrent Requests for addi- 8192, 16384,
tional details. 32768, or
65536

continues on next page

48

Configuration Files

Programmer's Guide

intel.

Table 21— continued from previous page

tion Service(ATS).
Refer to Shared Virtual Memory Pa-
rameters for additional details.

Parameter Description Default | Range
DcNumConcurrentRequests Specifiesthe numberof datacompres- | 512 64,128, 256,
sion concurrent requests for datacom- 512, 1024,
pression instances in general. 2048, 4096,
Referto Concurrent Requests for addi- 8192, 16384,
tional details. 32768, or
65536
DcIntermediateBuffersSizeInkB | Specifies the size in KB of each inter- | 64 32o0r64
mediate buffer in on-chip memory for
dynamic compression.
ServiceChainingEnabled Flag enables dc chaining. 0 Oorl
NOTE: servicesEnabled must be set
todc.
HeartbeatTimer Default heartbeat timer. 1000 >200
AutoResetOnError Automatically resets the deviceincase | O Oorl
of fatal error or heartbeat failure.
PmIdTeSupport This flag is to enable power manage- | 1 Oorl
mentidle support.
Refer to Power Management Parame-
ters for additional details.
SVMEnabled This flagis to enable SVM support. 0 Oorl
Refer to Shared Virtual Memory Pa-
rameters for additional details.
ATEnabled This flag is to enable Address Transla- | O Oorl

5.2.1 ServicesEnabled

Additional details on the ServicesEnabled parameter:

= This parameter is valid for all QAT devices.

= Default value varies depending on the underlying QAT Endpoint.

* cyisnotvalidvalue for QAT2.0 devices. asymand symare used.

= Only two of the three services (asym, sym, and dc) may be enabled on an individual QAT2.0 End-

points.

Configuration Files

49

Intel Programmer's Guide

5.2.1.1 Performance Considerations

Important: The followingis applicable to QAT2.0 devices only.

In order to maximize QAT throughput performance for a given service type, one should specify ONLY
that service type parameter for ServicesEnabled.

By design, two Acceleration Engine clusters are available, each containing four Acceleration Engines.
Each of these two clusters are limited to using a single service. Therefore, the possible split options are
4|4 or 8 for a given service type.

Configuration examples:

= While using VFs on a system configured for ServiceseEnabled = sym;dc, 4 acceleration engines
will be dedicated to SYM and 4 acceleration engines will be dedicated to DC, so only 2 resource
providers per child VF can be used for SYM. Here, we should expect some performance degrada-
tion for SYM (even if DC is not used).

* While using VFs on asystem configured for Servicesenabled = sym,all 8 acceleration engines will
be dedicated to SYM, so all 4 resource providers of a child VF can be used for SYM only. Here, we
will see the best SYM performance.

Note: Packet size will also modulate the impact of the above configuration settings.

5.2.2 ServicesProfile

Important: This parameteris valid for QAT1.7x devices.

The servicesProfile parameter defines the services that are available when the driver loads. Forexam-
ple, if servicesProfile = COMPRESSIONisinthe General section, the compression and decompression
are available, along with service chaining, but not cryptography.

Note: When a ServicesProfiles parameter value is used that supports rate limiting is defined, internal
resources are reallocated to administrating Rate Limiting/Device Utilization. This reduces performance
by roughly 5%.

50 Configuration Files

Programmer's Guide Intel

5.2.2.1 General Default Configuration Parameters

Table 22: General Default Configuration Parameters

Service DEFAULT | CRYPTO | COMPRESSION | CUSTOMI
Asymmetric Crypto YES YES YES
Symmetric Crypto YES YES YES
Hash YES YES YES YES
Cipher YES YES YES
MGF KeyGen YES YES

SSL/TLS KeyGen YES YES YES
HKDF YES YES
Compression YES YES YES
Decompression (stateless) | YES YES YES
Decompression (stateful) | YES YES

Service Chaining YES

Device Utilization YES YES YES
Rate Limiting YES YES YES

Note: Set the service profile to determine available features.

5.2.3 Concurrent Requests

Additional details on the concurrent request parameters:
* This parameteris valid for all QAT devices.
» The concurrent request parameters include both Transmit (Tx) and Receive (Rx) requests.
= Foreach service enabled, NumConcurrentRequests must be set to value from the range.

» The number of concurrent requests registered by the Intel® QuickAssist driver is set to NumConcur-
rentRequests - 2.

Thisimplementation guarantees that the request ring will never be full and avoids the need fora Memory
Mapped IO (MMIO) read. This implementation maximizes throughput performance.

Configuration Files 51

Intel Programmer's Guide

5.2.4 Power Management Parameters

Important: This parameteris valid for QAT2.0 devices.

Power management configuration is included in the device configuration file (i.e. /etc/4xxx_devX.conf
where X is the O-based index of the device.)

Power management configurations parameters include:

» pmIdlesupport - Configure the device to enable/disable power management idle supporting.
Power management idle support is enabled by default.

Refer to the Power Management section for additional details.

5.2.5 Shared Virtual Memory (SVM) Parameters

Important: This parameteris valid for QAT2.0 devices.

SVM configuration parameters are included in the device configuration file (i.e. /etc/4xxx_devX.conf
where X is the O-based index of the device.)

5.2.5.1 SVMEnabled

When this flag is set in the driver configuration, it indicates that the guest virtual address (GVA) to host
physical address (HPA) translation will use IOMMU hardware based translation table instead of using the
software based address translation. With SVMEnabled set, it is not required to submit buffers that are
physically contiguous.

Details

» This parameteris disabled by default. Referto SVM Kernel Requirements section for additional de-
tails.

* The parameteris valid for both PF and VF configuration files.

= Itispossible forthe VF to enable this parameter even if the parameteris disabledin the correspond-
ing PF configuration file.

52 Configuration Files

Programmer's Guide Intel

5.25.2 ATEnabled

When this flag is set in the driver configuration, the Address Translation Service (ATS) is enabled.
IOMMU and QAT have the ability to handle page faults using Page Request Service (PRS) when using
dynamic virtual memory allocated by systemcall such asmalloc.

Details

» This parameteris disabled by default. Referto SVM Kernel Requirements section for additional de-
tails.

= SVMEnabled must be enabled in order to enable ATEnabled.
= The parameteris valid for both PF and VF configuration files.

* |tis not possible for the VF to enable the service if the parameter is disabled in the corresponding
PF configuration file.

5.3 Logical Instances Section

This section allows the configuration of logical instances in each address domain (kernel space and indi-
vidual user space processes).

The address domains are in the following format:
» Forthe kernel address domain: [KERNEL] targeted to Linux* Kernel Crypto Framework (LKCF).

= For user process address domains: [xxxxx], where xxxxx may be any ASCII value that uniquely
identifies the user mode process.

In user space, to allow the driver to configure the logical instances associated with a user process cor-
rectly, the process must call the function icp_sal_userstart passing the xxxxx string during process
initialization. When the user space process s finished, it must call the function icp_sal_userstop to free
resources. Refer to User Space Access Configuration Functions for more information.

A single VF configured for the SR-IOV use case cannot have both user space instances and kernel space
instances. Separate VFs must be created for user space and kernel space.

TheNumProcesses parameter (in the User Process section) indicates the max number of user space pro-
cesses within that section name with access to instances on this device. Refer to icp_sal_userStart for
more information.

The items that can be configured for a logical instance are:
* The name of the logical instance.
= The polling mode.

» The core to which the instance is affinitized (optional).

Configuration Files 53

Intel Programmer's Guide

5.3.1 [KERNEL] Section

In the [KERNEL] section of the configuration file, information about the number and type of kernel in-
stances can be defined. This table describes the parameters that determine the number of kernel in-
stances for each service.

Note: The maximum number of cryptographic and data compression instances supported per Intel®
QAT Endpoint is 32. For exceptions refer to Increasing the Maximum Number of Processes/Instances.

Table 23: [KERNEL] Section Parameters

Parameter Description Default | Range
NumberCyInstances Specifies the number of cryptographic instances. 0 Oto 32
Note: Depends on the number of allocations to other
services.

NumberDcInstances Specifies the number of data compressioninstances. | O Oto 32
Note: Depends on the number of allocations to other
services.

5.3.2 User Process [xxxxx] Sections

There is one [xxxxx] section of the configuration file for each Intel® QAT Endpoint to be configured. In
each [xxxxx] section of the configuration file, user space access to the Intel® QAT Endpoint can be con-
figured. Parameters for each user process instance can also be defined. Common names for this section
are [SSL] or [SHIM]

Note: Checkthe SKU information for your specific device to determine how many Intel® QAT Endpoints
the device contains.

This table shows the parameters in the configuration file that can be set for user process [xxxxx] sections.

54 Configuration Files

Programmer's Guide

intel.

Table 24: [User Process] Section Parameters

Parameter Description Default | Range

NumProcesses The number of user space pro- | 1 For constraints, see Max-
cesses with section name [xxxxx] imum Number of Process
that have access to this device. Calculations.

The maximum number of For exceptions, see /ncreas-
processes that can call ing the Maximum Number of
icp_sal_userstart and be Processes/Instances.

active at any one time. See

icp_sal_userStart for additional

information.

Caution: Resources are pre-

allocated. If this parameter value

is set too high, the driver fails to

load.

LimitDevAccess Indicates if the user space pro- | O O (disabled, processes in
cesses in this section are limited this section can access mul-
to only access instances on this tiple Intel® QAT Endpoints),
Intel® QAT Endpoint. or

1 (enabled, processes in this
section can only access this
Intel® QAT Endpoint).

For additional information,
see Configuring Multiple
Processes on a System
with Multiple Intel® QAT
Endpoints.

NumberCyInstances Specifies the number of crypto- | 6 0 to 32. For exceptions,
graphic instances. see Increasing the Max-
Note: Depends on the number of imum Number of Pro-
allocations to other services. cesses/Instances.

NumberDcInstances Specifies the number of data | 2 O to 32. For exceptions,

compression instances.

see Increasing the Max-

Note: Depends on the number of imum Number of Pro-
allocations to other services. cesses/Instances.

5.3.3 Cryptographic Logical Instance Parameters

The following table shows the parameters that can be set for cryptographic logical instances.

Note: Default denotes the value in the configuration file when shipped.

Configuration Files 55

intel.

Programmer's Guide

Table 25: Cryptographic Logical Instance Parameters

Parameter Description Default Range
CyXName Specifies the name of crypto- | IPSecO for KER- | String (max. 64 char-
graphic instance number X. NEL section. | acters)
SSLO for user
section
CyXIspPolled Specifies if cryptographic in- | O for kernel space | O (interrupt mode) for
stance number x works in poll | instances instances in the KERNEL
mode, interrupt mode or epoll | Tforuserspacein- | section.
mode. stance 1 (poll mode) for in-
stances in user space
sections.
2 (epoll mode event
based polling mode)
for instances in user
space section.
CyxcCoreAffinity | Specifiesthe coretowhichthein- | Varies depending | O to max. number of

stance should be affinitized.

on the value of X.

cores in the system.

5.3.4 Data Compression Logical Instance Parameters

This table shows the parameters in the configuration file that can be set for data compression logical in-

stances.
Table 26: Data Compression Logical Instance Parameters

Parameter Description Default Range

DcXName Specifies the name of data com- | IPCompO String (max. 64 char-
pression instance number X. acters)

DcXIsPolled Specifies if data compression in- | O for kernel space | O (interrupt mode) for
stance number x works in poll | instances instances in the KERNEL
mode, interrupt mode or epoll | Tforuserspacein- | section.
mode. stances 1 (poll mode) for

instances in the KER-
NEL_QAT and user
space sections.

2 (epoll mode event
based polling mode)
for instances in user
space section.

DcXCoreAffinity | Specifies the core to which | Varies depending | O to max. number of
the data compression instance | onthevalue of X. | coresinthe system.
should be affinitized.

Note:

56 Configuration Files

Programmer's Guide Intel

* The maximum number of data compression instances supportedis 64.

= Default denotes the value in the configuration file when shipped.

5.3.5 Setting the Core Affinity Parameter for a Logical Instance

When instances are configured with IsPolled = 1 (Polling mode), the parameter CoreAffinity does
not have any impact.

Although not used, it is a valid parameter and applications can query the value using cpaCyInstanceGet-
Info2 (see coreAffinity bitmask in CpaInstanceInfo2). For example, the sample code affinitizes the
thread that uses an instance to the core indicated in CoreAffinity the config file for that instance.

For instances configured in Interrupt Mode (IsPolled = 2 in user space (epoll) and IsPolled = 0in
kernel space), the value of CoreAffinity is used to affinitize the interrupt handler to that core.

5.4 Maximum Number of Process Calculations

TheNumProcesses parameteris the number of user space processes per service within the [xxxx] section
domain with access to this Intel® QAT Endpoint.

The value to which this parameter can be set is determined by a number of factors including the number
of cryptography instances and/or datacompressioninstancesin the process sectionalong with Service-
senabled and potentially ServicesProfile. The total number of processes, per service, created by the
driver is given by the expression (e.g., for cryptography):

(NumProcesses) x (NumberCyInstances)

The maximum number of processes that can be supported is dependant upon the underlying hardware.

5.4.1 Increasing the Maximum Number of Processes/Instances

Note:
» One bankis used per Intel® QAT virtual function (VF).

» This section only applies when the instances that make use of polled mode.

The maximum number of instances can be increased with the careful selection of the Servicegenabled
parameter.

Compression, symmetric cryptography, and asymmetric cryptography each require two rings out of the
16 possible rings for a ring bank. By selecting only, the services needed, the number of instances can be
increased.

Configuration Files 57

Intel Programmer's Guide

Here are the variations including the maximum number of processes that can be supported for given con-
figuration:

Note: The servicesProfile parameter value may also need to be changed. See Services Profile for
additional information.

Table 27: Configuration Variations

ServicesEnabled | QAT 1.7x | QAT 2.0 | Notes

sym 128 64 Compression and asymmetric crypto service not available.
asym 128 64 Compression and symmetric crypto service not available.
cy 128 Invalid Compression and symmetric crypto service not available.
dc 128 64 Asymmetric and symmetric crypto service not available.
dc;sym 64 32 Asymmetric crypto services will not be available.

dc;asym 64 32 Symmetric crypto services will not be available.

sym;asym Invalid 32 Compression services will not be available.

5.4.1.1 Invalid Configurations

If maximum number of processes is exceeded, the acceleration software will fail to load. The error mes-
sage will be similar to:

service gat_service restart gat_dev0

Stopping device gat_dev0

Starting device gat_dev0

Processing /etc/4xxx_dev0.conf

Ioctl failed

QAT Error: Failed to load config data to device

And dmesg output will look similar to:

[116378.383041] pon't have enough rings for instance SSLO in process SHIM_DEVO_INT_32
[116378.391976] 4xxx 0000:6b:00.0: Failed to create rings for cy

[116378.398881] 4xxx 0000:6b:00.0: Failed to process user section SHIM
[116378.406484] 4xxx 0000:6b:00.0: Failed to config device

58 Configuration Files

intel.

Programmer's Guide

5.41.2 ConfiguringInstances for Virtual Functions

To configure the number of instances for a virtual function:
1. Install the driver package on the host with SR-IOV enabled.

2. Update the physical function configuration file to set servicesEnabled (refer to /ncreasing the
Maximum Number of Processes/Instances).

3. Perform gat_service shutdownandgat_service start.

4. Update the virtual function configuration file to set Servicestnabled (refer to /ncreasing the Max-
imum Number of Processes/Instances).

5. Restartthe gat_service.

The value of servicesEnabled in the VF configuration file should be the same as the value of service-
sEnabled in the PF configuration file, or a subset of that value as shown in this table. Forinstance, if a PF
is configured as cy, allowable VF configurations related to that PF can only be cy, asym, or sym. VF device
restart will fail if a VF configuration is not allowed for that related PF.

Ifa VF serviceis configuredto asubset of PF service, the number of VF instancesis limited to the number
allowed for that PF service as described in Increasing the Maximum Number of Processes/Instances. For
example, if the PF configuration file has ServicesEnabled=dc; asym, only four (not eight) dcinstances are
enabled if the VF is configured for dc only.

Note: Valid Physical Function for each supported platform is described in the Configuration Variations
table.

Table 28: Configuring Physical Functions and Virtual

Functions
Configured PF Service | Available VF Services
dc;asym dc;asym
asym
dc
dc;sym dc;sym
sym
dc
asym;sym asym;sym
sym
asym
asym asym
sym sym
dc dc

Configuration Files

59

Intel Programmer's Guide

5.5 Configuring Multiple Intel” QuickAssist Technology
Endpoints in a System
A platform may include more than one Intel® QAT Endpoint. Each device must have its own configuration

file. When the acceleration software is installed, default configuration files are installed to the /etc folder.
The format and structure of the configuration file is exactly the same for all devices.

Warning: If a configuration file does not exist for an Intel® QAT Endpoint, that endpoint will not start,
and an erroris displayed indicating that a configuration file was not found.

To determine the number of Intel® QAT Endpoints in a system, use the Tspci utility:

Tspci -nn | egrep -e
—"'8086:37c8|8086:19e€2|8086:0435|8086:6154|8086:4940|8086:4942|8086:4944|8086:4946"'

The output from a high-end 4th Gen Intel® Xeon® Scalable Processor is similar to the following:

6b:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4940] (rev 40)
70:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4940] (rev 40)
75:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4940] (rev 40)
7a:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4940] (rev 40)
e€8:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4940] (rev 40)
ed:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4940] (rev 40)
£2:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4940] (rev 40)
£7:00.0 Co-processor [0b40]: Intel Corporation Device [8086:4940] (rev 40)

The output from a system with a high-end Intel® C62x Chipset SKU is similar to the following:

88:00.0 Co-processor [0b40]: Intel Corporation Device [8086:37c8] (rev 03)
8a:00.0 Co-processor [0b40]: Intel Corporation Device [8086:37c8] (rev 03)
8c:00.0 Co-processor [0b40]: Intel Corporation Device [8086:37c8] (rev 03)

Then, after the driveris loaded, the user can use the gat_service script to determine the name of each
Intel® QAT Endpoint and its status. For example:

service gat_service status

The output from a high-end 4th Gen Intel® Xeon® Scalable Processor is similar to the following:

Checking status of all devices.
There is 8 QAT acceleration device(s) in the system:

gat_dev0 - type: 4xxx, inst_id: 0, node_id: 0, bsf: 0000:6b:00.0, #accel: 1
—#engines: 9 state: up

gat_devl - type: 4xxx, inst_id: 1, node_id: 0, bsf: 0000:70:00.0, #accel: 1
—#engines: 9 state: up (continues on next page)

60 Configuration Files

Programmer's Guide Intel

(continued from previous page)

gat_dev2 - type: 4xxx, inst_id: 2, node_id: 0, bsf: 0000:75:00.0, #accel: 1
—#engines: 9 state: up

gat_dev3 - type: 4xxx, inst_id: 3, node_id: 0, bsf: 0000:7a:00.0, #accel: 1
—#engines: 9 state: up

gat_dev4 - type: 4xxx, inst_id: 4, node_id: 1, bsf: 0000:e8:00.0, #accel: 1
—#engines: 9 state: up

gat_dev5 - type: 4xxx, inst_id: 5, node_id: 1, bsf: 0000:ed:00.0, #accel: 1
—#engines: 9 state: up

gat_dev6 - type: 4xxx, inst_id: 6, node_id: 1, bsf: 0000:f2:00.0, #accel: 1
—#engines: 9 state: up

gat_dev7 - type: 4xxx, inst_id: 7, node_id: 1, bsf: 0000:f7:00.0, #accel: 1
—#engines: 9 state: up

The output from a system with a high-end Intel® C62x Chipset SKU is similar to the following:

gat_dev0 - type: cbxx, inst_id: 0, bsf: 06:00:0, #accel: 5 #engines: 10 state: up
gat_devl - type: cbxx, inst_id: 1, bsf: 85:00:0, #accel: 5 #engines: 10 state: up
gat_dev2 - type: cbxx, inst_id: 2, bsf: 87:00:0, #accel: 5 #engines: 10 state: up

The gat_servicecanstart, stop, restart and shutdown each device separately or all Intel® QAT Endpoints
together. Refer to Managing Intel QuickAssist Technology Endpoints Using gat_service for more infor-
mation.

ome Important contiguration tiie INTormation wnen using multiple inte n oints:
S important configuration file inf ti h ing multiple Intel® QAT Endpoint

* When specifying kernel and user space instances in the configuration file, the Cy<Number>Name and
Dc<Number>Name parameters must be unique in the context of the section name only.

- Forexample, it is valid to have a parameter called CyOName in both a kernel instance section (if
supported) and a user instance section in the same configuration file without issue. Also, the
parameter names do not need to be unique at a system-wide level. For example, it is valid to
have a parameter called CyOName in both the configuration file for dev0 and the configuration
file for devl without issue.

= For Intel® QAT Endpoints with configuration files that have the same section name (for example,
[ssL] and the same datain that section), itis necessary to use the cpaCyInstanceGetInfo2 () func-
tion to distinguish between Intel® QAT Endpoints. The cpaCyInstanceGetInfo2() allows the user
of the API to query which Intel® QAT Endpoint a cryptography instance handle belongs to. In ad-
dition, for any application domain defined in the configuration files (e.g. [SSL]), a call to cpaCyGet-
NumInstances() returns the number of cryptography instances defined for that domain across all
configuration files. A subsequent call to cpaCyGetInstances () obtains these instance handles.

Configuration Files 61

Intel Programmer's Guide

5.6 Configuring Multiple Processes on a System with
Multiple Intel” QAT Endpoints

As an example, consider a system with two Intel® QAT Endpoints where it is necessary to configure two
user space sections. One section is identified as SSL and the other is identified as Internet Protocol Se-
curity (IPSec).

* Forthe SSL section, configure eight processes, where each process has accessto one acceleration
instance.

» Forthe IPSec section, configure one process, with access to eight acceleration instances, four per
Intel® QAT Endpoint.

In this scenario, the user space section of the configuration file would look like the following for the first
Intel® QAT Endpoint.

[SSL] #User space section name

NumProcesses=4 # There are 4 user space process with section name SSL with accessl
—to this device

LimitDevAccess=1 # These 4 SSL user space processes only use this device
NumCyInstances=1 # Each process has access to 1 Cy instance on this device
NumDcInstances=0 # Each process has access to 0 Dc instances on this device

Crypto - User instance #0

CyOName = "ssSLO"

CyOIspPolled = 1

CyOCoreAffinity = 0 # Core affinity not used for polled instance

[IPsec] #User space section name

NumProcesses=1 # There is 1 user space process with section name IPSec with accessl
—to this device

LimitDevAccess=0 # This IPSec user space process may have access to other devices
NumCyInstances=4 # The IPSec process has access to 4 Cy instances on this device
NumDcInstances=0 # The IPSec process has access to 0 Dc instances on this device

Crypto - User instance #0

CyOName = "IPSecO"

CyOIspolled = 1

CyOCoreAffinity = 0 # Core affinity not used for polled instance
Crypto - User instance #1

CylName = "IPSecl"
Cylispolled = 1
CylcoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #2

Cy2Name = "IPSec2"

Cy2ispPolled = 1

Cy2CoreAffinity = 0 # Core affinity not used for polled instance

(continues on next page)

62 Configuration Files

Programmer's Guide Intel

(continued from previous page)

Crypto - User instance #3

Cy3Name = "IPSec3"

Cy3ispolled =1

Cy3CoreAffinity = 0 # Core affinity not used for polled instance

The second Intel® QAT Endpoint configuration looks like:

[sSL] #User space section name

NumProcesses=4 # There are 4 user space process with section name SSL with accessl
—to this device

LimitDevAccess=1 # These 4 SSL user space processes only use this device
NumCyInstances=1 # Each process has access to 1 Cy instance on this device
NumDcInstances=0 # Each process has access to 0 Dc instances on this device

Crypto - User instance #0

CyOName = "sSSLO"

CyOIspolled = 1

CyOCoreAffinity = 0 # Core affinity not used for polled instance

[IPsec] #User space section name

NumProcesses=1 # There 1is 1 user space process with section name IPSec with accessl
—to this device

LimitDevAccess=0 # This IPSec user space process may have access to other devices
NumCyInstances=4 # The IPSec process has access to 4 Cy instances on this device
NumDcInstances=0 # The IPSec process has access to 0 Dc instances on this device

Crypto - User instance #0

CyOName = "IPSecO"

CyOIspPolled = 1

CyOCoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User 1instance #1

CylName = "IPSecl"

Cylispolled = 1

CylCoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #2

Cy2Name = "IPSec2"

Cy2IspPolled = 1

Cy2CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #3

Cy3Name = "IPSec3"

Cy3Ispolled = 1

Cy3CoreAffinity = 0 # Core affinity not used for polled instance

Eight processes (with section name SSL) can call the icp_sal_userstart("ssL") function to
get access to one crypto instance each. One process (with section name IPSec) can call the
icp_sal_userstart("IPsec") functionto get access to eight crypto instances.

Internally in the driver, this works as follows:

Configuration Files 63

Intel Programmer's Guide

1. When the driveris configured (thatis, the service gat_serviceiscalled), the driverreads the con-
figuration file for the device and populates an internal configuration table.

2. Reading the configuration file for dev0:

a. For the section named [SSL], the driver determines that four processes are required and
that these processes limit access to this device only. In this case, the driver creates
four internal sections that it labels SSL_DEVO_INT_0, SSL_DEVO_INT_1, SSL_DEVO_INT_2 and
SSL_DEVO_INT_3. Each sectionis given access to one crypto instance as described.

b. Forsectionname [IPSec], the driver determines that one processisrequired and that this pro-
cessdoesnotlimitaccessto this device only (thatis, it may access instances on other devices).
In this case, the driver creates one internal section that it labels IPSec_INT_0 and gives this ac-
cess to four crypto instances on this device.

3. Reading the configuration file for dev1:

a. Forthe section named [SsSL], the driver determines that four processes are required
and that these processes are limited to access this device only. In this case, the
driver creates four internal sections that it labels SSL_DEV1_INT_0, SSL_DEV1_INT_1,
SSL_DEV1_INT_2and SSL_DEV1_INT_3. Each sectionis givenaccesstoone cryptoin-
stance as described.

b. For the section named [IPSec], the driver determines that one process is required
and that this process may have access to instances on other devices. In this case, the
driver creates one internal section that it labels IPSec_INT_0 and gives this access to
four cryptoinstances on this device.

Note: This section name now appears in both devices’ internal configuration and, there-
fore, the process that gets assigned this section name will have access to instances on
both devices.

4. In total, there are nine separate sections (SSL_DEVO_INT_0, SL_DEVO_INT_1, SSL_DEVO_INT_2,
SSL_DEVO_INT_3, SSL_DEVI_INT_O, SSL_DEV1_INT_1, SSL_DEV1_INT_2, SSL_DEVI_INT_3 and
IPSec_INT_0) with access to crypto instances.

Whena process callstheicp_sal_userstart ("SSL™") function, the driverlocatesthe nextavailable sec-
tion of the form SSL_DEV<m>_INT<. . . .> (of which there are eight in total in this example) and assigns this
section to the process. This gives the process access to corresponding crypto instances.

When a process calls the icp_sal_userstart ("IPSec") function, the driver locates the next available
section of the form IPSec_INT_<....> (of which there is only one in total for this example) and assigns
this section to the process. This gives the process access to the corresponding crypto instances.

Note: Theicp_sal_userstartMultiProcess() function has been deprecated. The API still exists, but
it simply calls icp_sal_userstart().

64 Configuration Files

Programmer's Guide Intel

5.7 Sample Configuration Files

Sample configuration files are available in quickassist/utilities/adf_ct1/conf_files. Depending
on the product and configuration, one or more of these will be copied to /etc during the package instal-
lation.

Configuration Files 65

6 Services

Intel® QAT can accelerate the following services:
» Data compression/decompression.
= Symmetric cryptography.
= Public key cryptography.

Details on the services are included in the following sections.

6.1 Data Compression

6.1.1 Compression Features

= Deflate Compression Algorithm.

= LZ77 and Huffman Encoding.

» LZ4/L.Z4s Compression Algorithm.
= Compress and Verify.

= Checksums.

= Programmable CRC64.

* accumulateXXHash.

6.1.2 Compression Limitations

= Stateful compression is not supported.

= Stateful decompressionis not supported on QAT2.0 hardware devices.

* Batch and Pack (BnP) compression is not supported.

= accumulateXXHash is not supported when combined with autoSelectBestHuffmanTree

= accumulateXXHash is not supported in Decompression or Combined sessions

66

Programmer's Guide

intel.

6.1.3 Compression Session Setup

The following table lists the properties that should be configured in the CpabcSessionSetupbata struc-

ture depending on the compression algorithm requested.

Table 29:
Properties

Compression

CpaDcSessionSetupData

Property

Details

CpabcCompLv1 compLevel

CpaDcCompType compType

CpaDcAutoSelectBest autoSelectBestHuffmanTree

CpaDcSessionDir sessDirection

CpaDcSessi onState sessState

CpabcCompWwindowSize windowSize

CpabcChecksum checksum

Properties common to all algorithms

CpabcHuffType huffType

Deflate specific

CpabcCompLz4BlockMaxSize 1z4BlockMaxSize LZ4 specific
CpaBoolean 1z4BTockChecksum

CpaBoolean 1z4BTlockIndependence

CpaBoolean accumulateXXHash

CpabcCompMinMatch minMatch LZ4s specific

Note: Should the application use no-session API cpabcNsCompressbata(), the properties listed above

are available in the CpaDcNsSetupData data structure.

6.1.4 Decompression Session Setup

The following table lists the properties that should be configured in the CpabcSessionSetupbata struc-
ture depending on the format of the payload to decompression.

Table 30: Decompression CpaDcSessionSetupData

Properties
Property Deflate | LZ4
CpabcCompType compType Yes Yes
CpabDcSessionDir sessDirection | Yes Yes
CpaDcSessionState sessState Yes Yes
CpabcCompwindowSize windowSize | Yes Yes
CpabcChecksum checksum Yes Yes

Services

67

Intel Programmer's Guide

6.1.4.1 Deflate Decompression

With deflate based format such as Gzip the application is required to skip the GZip header and present
to Intel® QAT the first byte of the deflate block.

BFinal=1

‘

GZip header Deflate Block #1 Deflate Block #2 Deflate Block #3 GZip footer

Compressed payload to be submitted to Intel® QuickAssist HW

When the Deflate Block #3 is processed, the property endofLastBlock in the CpabcRqResults structure
will be set to CPA_TRUE. This notifies the application that no more data can be decompressed. At this
point, the session must be either removed and re-initialized, or reset. With an application handling multi-
gzip data, the both the Gzip footer and Gzip header must be skipped.

6.1.4.2 LZ4 Decompression

When decompressing LZ4 frames, the application is required to parse the frame header to extract B.
Checksum flag. This flag is used to set the configuration parameter 1z4BTockChecksumin CpabcSession-
Setupbata. When decompressing LZ4 frames, the application should not include the frame header nor
the frame footer in the source buffer to be processed by Intel® QAT hardware.

Application parses
Frame header

L74 Frame L74 Block #1 LZ4 Block #2 L74 Block #3 LZ4 Frame footer

— T . o T
Compressed payload to be submitted to Intel® QuickAssist HW

Note: Indecompressiondirection, the property endofLastBlock removesthe need forthe applicationto
know where the last block ends. The QAT hardware will stop after processing the last block. This applies
to both GZIP and LZ4 formats.

68 Services

Programmer's Guide Intel

6.1.4.3 LZ4 Decompression Limitations

When decompressing LZ4 data compressed without Intel® QAT hardware, it is important to ensure that
the compressor limits the history buffer to 32KB. Data compressed using a history buffer larger than
32KB will result with a CPA_DC_INVALID_DIST (-10) error code.

6.1.4.4 Multi-frame decompression support

Intel® QAT hardware can decompress a payload that includes multiple frames. This applies to both Gzip
and LZ4 formats. The figure below shows how the application must behave to decompress LZ4 multi
frame payloads.

Application must exclude the frame footer and the
next frame header prior submitting the next payload.

Application parses Frame -

header and gets header size -~ ‘
LZ4 Frame L74 Block L74 Block L74 Block L74 Frame L74 Frame L74 Block L74 Block L74 Block LZ4 Frame
Header #1 #2 #3 footer Header #1 #2 #3 footer
T
—_— — - —
‘_Compressed payload to be submitted to ‘_Compressed paylead to be submitted to
Intel® QuickAssist HW Intel® QuickAssist HW

6.1.5 Performance Considerations

To enable the application benefiting from the QAT 2.0 HW maximal performance, it is recommended to
populate all the DIMMs around the CPU sockets in use.

6.1.6 FlushFlags

The table below shows the flush flags that should be used depending on the application’s use case. The
application programming model should follow this table.

Table 31: Flush Flags

Algorithm Use Case Intermediate Request Last Request
Deflate Stateless compression CPA_DC_FLUSH_FULL CPA_DC_FLUSH_FINAL
toset BFINAL

Stateless decompression CPA_DC_FLUSH_FINAL
Stateful decompression | CPA_DC_FLUSH_SYNC CPA_DC_FLUSH_FINAL
(QAT1.X devices only)

LZ4 Stateless compression | CPA_DC_FLUSH_FINAL CPA_DC_FLUSH_FINAL
with accumulateXxHash =
CPA_FALSE

continues on next page

Services 69

Intel Programmer's Guide

Table 31— continued from previous page

Algorithm Use Case Intermediate Request Last Request
Stateless compression | CPA_DC_FLUSH_FULL CPA_DC_FLUSH_FINAL
with accumulateXxHash =
CPA_TRUE
Stateless decompression CPA_DC_FLUSH_FINAL CPA_DC_FLUSH_FINAL

LZ4s Stateless compression CPA_DC_FLUSH_FINAL CPA_DC_FLUSH_FINAL

Note: QATI1.X hardware devices still support stateful decompression operations. QAT2.0 hardware de-
vice only supports stateless operations.

6..7 Checksums

With the addition of LZ4 algorithm support on QAT 2.0, the compression hardware accelerators are now
capable to generate XXHash32 checksums. QAT 2.0 device is now supporting the following checksums:

Table 32: Checksums

Checksum Type | Usage

CRC32 Required for GZip support
Adler32 Required for Zlib support

XXHash32 Required for LZ4 support

Note: Inthe event the XXHash32 checksum should be reset, it must be done calling the APl cpaDcRe-
setXXHashState().

6.1.8 LZ4s Compressed Data Block format

LZ4sis avariant of LZ4 block format. LZ4s should be considered as an intermediate compressed block
format. The LZ4s format is selected when the application sets the compType to CPA_DC_LZ4S in CpaD-
cSessionSetupbata. The LZ4s block returned by the Intel® QAT hardware can be used by an external
software post-processing to generate other compressed data formats.

The following table lists the differences between LZ4 and LZ4s block format. LZ4s block format uses
the same high-level formatting as LZ4 block format with the following encoding changes:

70 Services

Programmer's Guide Intel

Table 33: Differencesbetween LZ4 and LZ4s block format

Feature LZ4 LZA4s
Seqguence 4-bit copy length 4-bit literal | Same as LZ4
Header length
Copy Length Length4-19bytes (encoding | Copy length value of O means no copy with this
values 0-15), sequence. For Min Match of 3 bytes, Copy length
19 bytes adds an extra byte | value 1-15 means length 3-17 with 17 bytes adding
with value 0x0O0. an extra byte with value 0xOO0.
For Min Match of 4 bytes, Copy length value 1-15
means length 4-18 with 18 bytes adding an extra
byte with value Ox00.

Note:
» LZ4 requires a copy/token in every sequence, except the last sequence.

* Thelast sequence in block does not contain a copy in both LZ4 and LZ4s.

LZ4s encoding creates a single block of compressed data per request. This is different from LZ4 which
creates multiple blocks defined by the LZ4 max block size setting. An LZ4s block is only made of LZ4s
sequences.

A sequencein LZ4s can contain:
= Only atoken.
= Only literals.
= Atoken and literals.

Any of the sequence types can exist anywhere in the LZ4s block. The last LZ4s sequence in the LZ4s
block shall satisfy the end-of-block restrictions outlined in the LZ4 specification.

6.1.8.1 LZ4 Compression Support

With the QAT 2.0 API, the application can create LZ4 frames. This is achieved using APIs cpaDcGener-
ateHeader () and cpabcGenerateFooter (). These APIs are also able to generate GZip and Zlib formats.
More information is available in the API reference manual.

The cpabcGenerateHeader () creates a 7 byte LZ4 frame header which includes:
= Magic number Ox184D2204.
* The LZ4 max block size defined in the CpabcSessionSetupbData.
* Flag byte as:
- Version=1
- Blockindependence=0

- Block checksum =0

Services 71

Intel Programmer's Guide

- Content size present=0
— Content checksum present =1
— Dictionary ID present=0
= Contentsize=0
= Dictionary ID=0
* Headerchecksum =1byte representing the second byte of the XXH32 of the frame descriptor field.

The cpabcGenerateFooter() APImustbe usedafterprocessingall the requests. This APImustbe called
last to append the frame footer. The cpabDcGenerateFooter () APl creates an 8 byte frame footer adding
both the end marker (4 bytes set to 0x00) and the XXHash32 checksum computed by Intel® QAT hard-
ware.

6.1.9 Compress-and-Verify

The Compress and Verify (CnV) feature checks and ensures data integrity in the compression operation
of the Data Compression API. This feature introduces an independent capability to verify the compres-
sion transformation.

Refer to Intel® QuickAssist Technology Data Compression API Reference Manual.

Note:

* CnV isalways enabled via the compression APIs (cpabcCompressbata(), cpabcCompressbata2 (),
cpabDcNsCompressData(), cpaDcDpEnqueueop()).

= CnV supports compression operations only.

* The compressAndverifyflaginthe CpabcbpopData structure should be setto CPA_TRUE when using
the cpabcDpEnqueueOp () or cpaDcDpEnqueueOpBatch() APL.

6.1.9.1 Compress and Verify Error log in Sysfs

The implementation of the Compress and Verify solution keeps a record of the CnV errors that have oc-
curred since the driver was loaded. The error count is provided on a per Acceleration Engine basis.

The path to the CnV errorlogis:
/sys/kernel/debug/qat_<qgat_device>_<Bus>\:<device>.<function>/cnv_errors.

For additional details refer to debugfs-driver-qat documentation.

Each Acceleration Engine keepsacount ofthe CnV errors. The CnV error counterisreset whenthe driver
is loaded. The tool also reports the last error type that caused a CnV error.

72 Services

https://www.kernel.org/doc/Documentation/ABI/testing/debugfs-driver-qat

Programmer's Guide Intel

6.1.9.2 Compress and Verify and Recover (CnhVnR)

The Compress and Verify and Recover (CnVnR) feature allows a compression error to be recoveredin a
seamless manner. Itis supported in both the Traditional and in the Data Plane APls.

The CnVnR feature is an enhancement of the Compress and Verify (CnV) solution. When a compress
and verify error is detected, the Intel® QAT software will do a correction without returning a CnV error to
the application.

When a recovery occurs, CpaDcRgResults.status will return CPA_DC_OK or CPA_DC_OVERFLOW and the
destination buffer will hold valid deflate data.

The application can find out if CnVnR is supported by querying the instance capabilities via the cpabc-
QueryCapabilities API. On completion, the compressAndverifyAndRecover property of the CpabcIn-
stanceCapabilities structure will be set to CPA_TRUE if the feature is supported.

Table 34: Compress and Verify and Recover (CnVnR)

Behaviors

API CnVnR Behavior

cpabDcCompressData Enabled by default, no option to disable.

cpabcCompressbata? CnVnR is enabled when compressAndverifyAndRecover property is
set to CPA_TRUE in CpaDcDpOpData structure.

cpaDcNsCompressData CnVnR is enabled by default.

cpabcDecompressData Not applicable

cpabcDecompressData?2 Not applicable

cpabcNsDecompressData Not applicable

cpaDcDpEnqueueOop CnVnR is enabled when compressAndverifyAndRecover property is
set to CPA_TRUE in CpaDcDpOpData structure.

cpaDcDpEnqueueOpBatch CnVnR is enabled when compressAndverifyAndRecover property is
set to CPA_TRUE in CpaDcDpOpData structure.

When a CnV recovery takes place, the Intel® QAT software creates a stored block out of the input pay-
load that could not be compressed. The maximal size of a stored block allowed by the deflate standard is
65,535 bytes.

pSrcBuffer Data Length 8192 bytes pDstBuffer Data Length 16384 bytes
5 Byte
8192 Byte Cleartext data Deflate 8192 Byte Cleartext data
Header
Consumed =8192 Bytes Produced = 8197 Bytes

When astoredblockis created, the DEFLATE header specifies that the datais uncompressed so that the
decompressordoes not attempt to decode the cleartext data that follows the header. The size of a stored
block can be defined as: Stored block size = Source buffer size + 5 Bytes (used for the deflate header).

Services 73

Intel Programmer's Guide

The recovery behaves differently on QAT 2.0 than on QAT1.X devices. With QAT1.X devices, the recov-
ery creates only one stored block, If the stored block size exceeds 65,535 bytes, the Intel® QAT solution
creates one stored block of 65,535 bytes and CpabcRgResults.status returns CPA_DC_OVERFLOW. On
QAT2.0 device, when the recovery takes place, multiple stored blocks are created. This improvement
was added to avoid the application having to handle the overflow.

CnV Recovery with LZ4 compression

When LZ4 compression is used, QAT software will generate an uncompressed LZ4 block in the event
of arecovery. The LZ4 uncompressed block will have bit <31> set in the block header followed by the
cleartext in the data section of the block.

CnV Recovery with LZ4s compression

LZ4s algorithm is an Intel® specific format. LZ4s payloads do not have a block header like LZ4. When a
CnV recovery occurs, the source data will be copied to the destination and datauncompressed property
will be set to CPA_TRUE in CpaDcRgResults structure.

Counting Recovered Compression Errors

The Intel® QAT AP has been updated to allow the application to track recovered compression errors. The
CpaDcStats data structure has a new property called numCompCnvErrorsRecovered that is incremented
every time a compression recovery happens.

The compression recovery process is agnostic to the application.

CpaDcRgResults.status returns CPA_DC_OK when a compression recovery takes place. The only way to
know if a compression recovery took place on the current requestis to call the cpabcGetStats () APland
to monitor CpabcStats . numCompCnvErrorsRecovered.

6.1.10 Dynamic Compression

Dynamic compression involves feeding the data produced by the compression hardware block to the
translator hardware block.

Compression Translator

| Source data buffer |—> —"l Intermediate buffer |—" —"l Destination buffer |

H/W block H/W block
With Dynamic compression, Dynamic deflateblocks are
theintermediate bufferholds returned tothe userviathe
the static deflate blocks. This destination buffer

buffer becomesthenthe input
of the translator H/W block

When the application selects the Huffman type to CPA_DC_HT_FULL_DYNAMIC in the session and auto-
select best feature is set to CPA_DC_ASB_DISABLED, the compression service may not always produce a
deflate stream with dynamic Huffman trees.

When using QAT2.0 device, it is no longer required to allocate intermediate buffers. The APl cpabcGet-
NumIntermediateBuffers() returns O. Asagood programming practice, the application should still call
cpabDcGetNumIntermediateBuffers() and ensure that the number of intermediate buffers returnedis O.

74 Services

Programmer's Guide Intel

6.1.11 Maximum Expansion with Auto Select Best Feature (ASB)

Compressing some input data may lead to alower-than-expected compressionratio. Thisis because the
input data may not be very compressible. To achieve a maximum compression ratio, the acceleration unit
provides an auto select best (ASB) feature.

With QAT1.X devices, the Intel® QuickAssist Technology hardware will first execute static compression
followed by dynamic compression and then select the output that yields the best compression ratio.

With QAT2.0 devices, the is different. ASB features chooses between a static and a stored block. ASB
features with choose the block type that offers the best compression ratio.

Regardless of the ASB setting selected, dynamic compression will only be attempted if the session is
configured for dynamic compression.

Table 35: ASB Settings

Setting Description
CPA_DC_ASB_DISABLED | ASB modeis disabled.
CPA_DC_ASB_ENABLED ASB modeis enabled.

Note:

= Setting ASB mode to CPA_DC_ASB_ENABLED, corresponds to the setting
CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS.

* These ASB modes have been deprecated:
— CPA_DC_ASB_STATIC_DYNAMIC
— CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS
— CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_NO_HDRS

* Based onthe ASB settings, the produced data returned in the CpabcRgResults structure will vary.

6.1.12 Maximum Compression Expansion

To facilitate the programming model of the application, Intel® added a new set of APIs that return the size
of the destination according to the algorithm used.

These APls are:
» cpabcDeflateCompressBound()
* cpabcLz4CompressBound()

* cpabclLz4SsCompressBound()

Services 75

Intel Programmer's Guide

This new set of APIs will return to the application the size of the destination buffer that must be allo-
cated to avoid an overflow exception. Each function initializes the outputSize parameter. The output-
Size parameter takesinto account the maximal expansion that the compressed data size canreach. The
returned outputSize value must be used both to allocate the size of the ppata and toinitialize the datalL-
enInBytes inthe CpaBufferList structure.

Note: Eachone ofthe compressBound() APlsacceptsasaparametertheinstance handle. Theinstance
handle is used internally by the library to determine on which hardware version the instance lives on. The
size of the destination buffer to be allocated depends on the hardware generation the instance lives on.

6.1.13 No Session API

The no session APlis asimplification of the existing compression and decompression APIs that does not
require the application to create/remove a session. Instead the parameters that would normally be set
when creating a session are passed into the compress/decompress APIs via a CpaDcNsSetupData struc-
ture. The no session APl is especially useful to simplify existing applications as sessions no longer need
to be created/tracked/removed. The no session APl canbe thought of as a “one shot” APlandisintended
for use cases where all the data to be compressed or decompressed for the current job is being submit-
ted as one request. In addition to the simpler protocol, the APl has a smaller memory footprint.

The no session API consists of the following API calls:
* cpabDcNsCompressbData()
* cpabcNsDecompressbata()
* cpaDcNsGenerateHeader()
* cpaDcNsGenerateFooter()

The cpabcNsCompressbata() and cpaDcNsDecompressbata() functionsare very similarto the cpabcCom-
pressbata2 () and cpabcDecompressData2 () functions. Instead of passing in a CpaDcSessionHandle, a
CpaDcNsSetupData structure and a CpabccCallbackFn are passed in. The CpabccCallbackFn is the user
callback to be called on request completion when running asynchronously. For synchronous operation
CpabcCallbackFn must be setto NULL.

The no session APl will work with all versions of QAT hardware but does not support stateful operation as
without a session no state can be maintained between requests.

It is still possible to seed checksums for CRC32 and Adler32 by setting the checksum field of the CpabD-
CcRgResults to the seed checksum value before submission. This will allow an overall checksum to be
maintained across multiple submissions. For LZ4, checksum seeding is not supported. If checksums
need to be maintained between LZ4 requests then the session based APl must be used. The no session
API supports data integrity checksums but as stateful operation is not supported the integrity check-
sums will always be for the current request only.

The no session API does support stateless overflow in the compression direction only like the session
based API. Inthat case consumed, produced and checksum fields within the CpabcRgResults structure will
be valid when a status of CPA_DC_OVERFLOW s returned. Itis the application’s responsibility to arrange data

76 Services

Programmer's Guide Intel

buffers forthe next submission, ensure the checksumis seeded and maintain an overall count of the bytes
consumed if footer generation is required. For performance reasons it is recommended that the com-
pressBound APl is used to size the destination buffer correctly to avoid overflow. It is necessary for an
application to seed the checksum whether it wishes to continue the series of requests or to start a new
one, only in the latter case, the seed is O for CRC32 and 1for Adler32.

The no session API does not support setting the sessbDirection field of the CpabcNsSetupbData
structure to CPA_DC_DIR_COMBINED. In addition, it does not support setting the sessState field to
CPA_DC_STATEFUL, or the flushFlag field of the CpabcopData structure to CPA_DC_FLUSH_NONE or
CPA_DC_FLUSH_SYNC.

The cpaDcNsGenerateHeader() and cpaDcNsGenerateFooter () functions are also very similar to the
session based equivalents but take a CpaDcNsSetupData instead of a CpabcSessionHandle. For cpab-
cNsGenerateFooter() an additional parameter is required called count that contains the overall length
of the uncompressed input data. For most cases this will be the consumed value from the single submis-
sion contained in the CpabcRgResults structure but in cases where multiple submissions represent the
overall file then it is the application’s responsibility to maintain the overall count of consumed bytes.

6.1.14 Compression Levels

Table 36: Compression Levels

Level | Ivi_enum QAT 2.0 (Deflate, iLZ77,LZ4,L.Z4s) QAT 1.7/1.8 (Deflate)
1 CPA_DC_L1 | 2(Hw_L1) DEPTH_1

2 CPA_DC_L2 DEPTH_4

3 CPA_DC_L3 DEPTH_8

4 CPA_DC_L4 DEPTH_16

5 CPA_DC_L5

6 CPA_DC_L6 | 8(HW_L6)

7 CPA_DC_L7

8 CPA_DC_L8

9 CPA_DC_L9 | 16 (HW_L9)

10 CPA_DC_L10 Unsupported. Will be
1 CPA_DC_L11 rejected at the API.
12 CPA_DC_L12

>12 Unsupported. Will be rejected at the APL.

6.1.15 Compression Status Codes

The cpabcRgresults structure should be checked for compression status codes in the CpabDcReqStatus
data field. The mapping of the error codes to the enums is included in the quickassist/include/dc/
cpa_dc.hfile.

Services 77

intel.

Programmer's Guide

6.1.16 Intel’ QuickAssist Technology Compression API Errors

The Intel® QuickAssist Technology Compression APIs that send requests to the compression hardware
canreturn the error codes shown in Compression APl Errors.

These APls are:

cpabcCompressbata()
cpabcCompressbata2 ()
cpabDcNsCompressbata()
cpabcbecompressbata()
cpabcbecompressbata2 ()
cpabDcNsDecompressData()
cpabcDpEnqueueop ()

cpabcDpEnqueueOpBatch()

Note: Decompressionissuesin may also apply to the compression use case due to potential issues en-
countered during a Compress-and-Verify operation. In this case, the file(s) /sys/kernel/debug/qat_*/
cnv_errors may show these nested errors. In some cases, the suggested corrective action may need to
be to store the block uncompressed or to compress the block with software.

6.1.16.1

Compression API Errors

Table 37: Compression API Errors

Error | Error Type Description Suggested Corrective
Code Action(s)
0 CPA_DC_OK No error detected by | None.

compression hard-
ware.

CPA_DC_INVALID_BLOCK_TYPE

Invalid block type
(type = 3); invalid in-
put stream detected
for decompression

Decompression error.
Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling Cpab-
cRemovesSession().

continues on next page

78

Services

Programmer's Guide

intel

Table 37— continued from previous page

Error | Error Type Description Suggested Corrective

Code Action(s)

-2 CPA_DC_BAD_STORED_BLOCK_LEN Stored block length | Decompression error.
did not match one’s | Discard output. For
complement; invalid | a stateless session,
input stream detected | resubmit affected

request. For a stateful
session, abort the
session calling Cpab-
cRemoveSession().

-3 CPA_DC_TOO_MANY_CODES Too many length | Decompression error.
or distance codes; | Discard output. For
invalid input stream | a stateless session,
detected resubmit affected

request. For a stateful
session, abort the
session calling Cpab-
cRemovesSession().

-4 CPA_DC_INCOMPLETE_CODE_LENS Code length codes in- | Decompression error.
complete: invalid in- | Discard output. For
put stream detected a stateless session,

resubmit affected
request. For a stateful
session, abort the
session calling Cpab-
cRemoveSession().

-5 CPA_DC_REPEATED_LENS Repeated lengths | Decompression error.
with no first length; | Discard output. For
invalid input stream | a stateless session,
detected resubmit affected

request. For a stateful
session, abort the
session calling Cpab-
cRemoveSession().

-6 CPA_DC_MORE_REPEAT Repeat more than | Decompression error.
specified lengths; | Discard output. For
invalid input stream | a stateless session,
detected resubmit affected

request. For a stateful
session, abort the
session calling Cpab-
cRemoveSession().

continues on next page

Services 79

intel.

Programmer's Guide

Table 37— continued from previous page

Error
Code

Error Type

Description

Suggested Corrective
Action(s)

CPA_DC_BAD_LITLEN_CODES

Invalid literal/length
code lengths; invalid
input stream detected

Decompression error.
Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling Cpab-
cRemoveSession().

CPA_DC_BAD_DIST_CODES

Invalid distance code
lengths; invalid input
stream detected

Decompression error.
Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling Cpab-
cRemovesSession().

CPA_DC_INVALID_CODE

Invalid literal/length or
distance code in fixed
or dynamic block; in-
valid input stream de-
tected

Decompression error.
Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling Cpab-
cRemoveSession().

-10

CPA_DC_INVALID_DIST

Distance is too far
back in fixed or dy-
namic block; invalid
input stream detected

Decompression error.
Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling Cpab-
cRemoveSession(). If
the error is observed
with LZ4 decompres-
sion, ensure that the
compressor has a
history buffer limited
to 32KB.

continues on next page

80

Services

Programmer's Guide

intel

Table 37— continued from previous page

Error
Code

Error Type

Description

Suggested Corrective
Action(s)

-1

CPA_DC_OVERFLOW

Overflow detected.
This is not an error,
but an exception.
Overflow is supported
and can be handled.

Resubmit with a larger
output buffer when
appropriate.

With decompression
executed on QAT2.0,
the application is re-
quired to resubmit the
compressed data with
a larger destination
buffer.

-12

CPA_DC_SOFTERR

Other non-fatal de-
tected.

Discard output. For
a stateless session,
resubmit affected
request. For a stateful
session, abort the
session calling Cpab-
cRemoveSession().

-13

CPA_DC_FATALERR

Fatal error detected.

Discard output and
abort the session
calling CpaDcRe-
moveSession().

4

CPA_DC_MAX_RESUBMITERR

On an error being de-
tected, the firmware
attempted to cor-
rect and resubmitted
the request, how-
ever, the maximum
resubmit value was
exceeded. Maximal
value is internally set
in the firmware to 10
attempts. This is a
QAT1.6 error only.
This error code is
considered as a fatal
error.

Discard output and
abort the session
calling CpaDcRe-
moveSession().

continues on next page

Services

81

intel.

Programmer's Guide

Table 37— continued from previous page

Error
Code

Error Type

Description

Suggested Corrective
Action(s)

-15

CPA_DC_INCOMPLETE_FILE_ERR

QATI1.X device can re-
portthis error with De-
flate decompression.
However, it is not
exposed to the appli-
cation. Theinputfileis
incomplete. This indi-
cates that the request
was submitted with a
CPA_DC_FLUSH_FIN
However, a BFINAL
bit was not found in
the request.

QAT2.0 can return
this error code to the
application during
LZ4 decompression.
This error is returned
when a LZ4 block is
incomplete.

No corrective actionis
required as it is not ex-
posed to the applica-
tion.

AL.

-16

CPA_DC_WDOG_TIMER_ERR

The request was
not completed as a
watchdog timer hard-
ware event occurred.
With QAT2.0 this
error can be triggered
by an internal parity
error.

Discard output and
resubmit the affected
request.

-17

CPA_DC_EP_HARDWARE

This is a recoverable
error. Request was
not completed as an
end point hardware er-
ror occurred (for ex-
ample, a parity error).

Discard output and
abort the session
calling CpaDcRe-
moveSession().

-18

CPA_DC_VERIFY_ERR

Compress and Verify
(CnV). This is a com-
pression direction er-
ror only. During the
decompression of the
compressed payload,
an error was detected
and the deflate block
produced isinvalid.

Discard output; re-
submit affected
request.

continues on next page

82

Services

Programmer's Guide Intel

Table 37— continued from previous page

Error | Error Type Description Suggested Corrective

Code Action(s)

-19 CPA_DC_EMPTY_DYM_BLK Decompression re- | Discard output.
quest contained

an empty dynamic
stored block (not
supported).

-20 CPA_DC_CRC_INTEG_ERR A data integrity CRC | Discard output.
error was detected.
-93 CPA_DC_LZ4_MAX_BLOCK_SIZE_EXCEEDED LZ4 maxblocksize ex- | Discard output.

ceeded.
-95 CPA_DC_LZ4_BLOCK_OVERFLOW_ERR LZ4 block overflow. Discard output.
-98 CPA_DC_LZ4_TOKEN_IS_ZERO_ERR LZ4 Decoded token | Discard output.
offset or token length
is zero.

-100 | CPA_DC_LZ4_DISTANCE_OUT_OF_RANGE_ERR | LZ4 distance out of | Discard output.
range for the len/ dis-
tance pair.

Note:

» Except for the errors CPA_DC_OK, CPA_DC_OVERFLOW, CPA_DC_FATALERR, CPA_DC_MAX_RESUBMITERR,
CPA_DC_WDOG_TIMER_ERR, CPA_DC_VERIFY_ERR, and CPA_DC_EP_HARDWARE_ERR, the rest of the error
codes can be considered as invalid input stream errors.

= When the suggested corrective action is to discard the output, it implies that the application must
alsoignore the consumed data, the produced data, and the checksum values.

6.1.17 Overflows Errors

This table describes the behavior of the Intel® QAT compression service when an overflow occurs during
a compression or decompression operation. It also describes the expected behavior of an application
when an overflow occurs.

Services 83

intel.

Programmer's Guide

Table 38: Overflows Errors

Operation Overflow Input Data | Valid Data | Status Re- | Note
Supported Consumed Produced? | turned in
Results
Traditional Stateless YES Possible - | Possible - | -11 Overflow
API compres- indicated indicated is consid-
sion in results | in results ered as an
consumed produced exception
field field
Stateless NO NO NO -1 Overflow is
decom- considered
pression asan error
Stateful YES on | Possible - | Possible - | -11 Overflow
decom- QAT1lx de- | indicated indicated is consid-
pression vices NO | in results | in results ered as an
on QAT2x | consumed | produced exception
devices field field on QATI1x
devices.
QAT 2.x
does not
support
stateful
decom-
pression.
Data Plane | Stateless NO NO NO -1 Overflow is
API compres- considered
sion as an error
Stateful NO NO NO -1 Overflow is
decom- considered
pression as an error

6.1.17.1 Traditional API Overflow Exception

Stateless sessions support overflow as an exception for traditional APl in the compression direction only.
This means that the application can rely on the cpabcRgResults . consumed to resubmit from where the
overflow occurred. An overflow in the decompression direction must be treated as an error.

In this case, the application must resubmit the request with a larger buffer as described in the procedure
for handling overflow errors. For stateful sessions, overflow is supported only in the decompression di-

rection.

84

Services

Programmer's Guide Intel

6.1.17.2 Data Plane API Overflow Error

The Data Plane API considers overflow status as an error. If an overflow occurs with the data plane AP,
the driver will output the following error message to the user:

Unrecoverable error: stateless overflow. You may need to increase the size of
your destination buffer

In this case, cpaDcRqResults.consumed, .produced and .checksum should be ignored. If length and
checksum are required, they must be tracked in the application, because they are not maintained in the
session.

6.1.17.3 Handling Overflow Errors

Resubmit the request with the following data:
» Use the same source buffer.

= Allocate a bigger destination buffer. It is recommended to use the compressBound() APIsin com-
pression direction.

= |fthe overall checksum needs to be maintained, insert the checksum from the previous successful
request into the cpabcRgResults struct.

6.1.17.4 Compression Overflows in a Virtual Environment

In a virtual environment, the guest does not download the firmware. Only the host downloads the
firmware. As a consequence, if the guest runs a newer Intel® QAT driver than the host, the guest applica-
tion might experience false CNV errors. The correct course of action would be to update the host with
the latest Intel® QAT driver.

6.1.17.5 Avoiding Compression Overflow Exceptions

Overflow exceptions happen for 2 reasons:
1. The application allocated a destination buffer that was too small to receive the compressed data.

2. A recovery occurred after a compress and verify error with an input payload greater than 65,535
bytes if the instance lives on a QAT1.X device.

To minimize the impact of resubmitting data after and overflow exception, the API cpabcDeflateCom-
pressBound() has been added to the Intel® QAT driver. A detailed explanation of compressBound APls
is provided in the Maximum Compression Expansion section.

Services 85

Intel Programmer's Guide

6.1.18 Integrity Checksums

Integrity checksums are an additional method for payload verification throughout the compres-
sion/decompression lifecycle. They may be used to verify corruption has not happened when sending
data to and from the Intel® QuickAssist HW, or for example the integrity checksums may be stored by an
application along with the compressed data and used to detect corruption in the future without needing
to decompress the data.

They should not be confused with the Gzip/Zlib/LZ4 footer checksums of CRC32, Adler32 and
XXHash32 that are calculated over the uncompressed input data only.

Integrity checksums use an additional structure that is the application’s responsibility to allocate, main-
tain, and free. The structure must be allocated by the user, and the QAT Library will populate it based on
values returned by the hardware. The structure is cpaCrcbata and contains the following fields:

Table 39: Integrity Checksums

cpaCrcData Fields Description

Cpa32u crc32 This is the existing CRC32 for the footer calculated across the uncom-

pressed data in either the source or dest buffer depending whether it is a
compress or decompress operation. This is the same as the value returned
in the cpaDcRgResults checksum field.

Cpu32U adler32 This is the existing Adler32/XXHash32 for the footer calculated across the

uncompressed data in either the source or dest buffer depending whether
itis a compress or decompress operation. This is the same as the value re-
turned in the cpaDcRgResults checksum field.

CpaIntegrityCrc in- | Thisfieldcontainsthe QAT 1.8 integrity checksumsthat consist of two 32bit
tegritycCrc CRC32's. These are calculated on the input data to the request within the

HW and on the output data from the request within the HW.

CpaIntegrityCrc64b This field contains the QAT 2.0 integrity checksums that consist of two 64
integrityCrc64b bit checksums. CPM 2.0 uses CRC64 by default for these checksums. The

checksums are calculated on the input data to the request within the HW
and on the output data from the request within the HW.

QAT will generate both CRC32 and CRC64. The CRC32 generated is the standard CRC32 as de-
finedinthe GZIPRFC (RFC1952). Allcompression algorithms support CRC generationin 4th Gen
Intel® Xeon® Scalable processorand later CPUs.

The CRC attributes of integrityCrc64b can be modified by the cpabDcSetCrcControlbata() API
call if sessions are used, meaning it's mapped to QAT’s programmable CRC feature. If the cpab-
cSetCrcControlbata APl is not used, the QAT driver uses default CpaCrcControlData. The
CRC32/Adler32 for deflate’s CRC attributes are fixed.

Onceallocated, apointer to the cpaCrcbata structure must be assigned to the pCrcbata field of the
requests CpabcOpData structure.

The cpacCrcbata structure assigned to the pCrcbata pointer should be treated in the same way as
the destination buffer, not freed until the request has completed, and not shared across requests if
running asynchronously.

86

Services

Programmer's Guide Intel

* Theintegrity checksum feature itselfis enabled on a perrequest basis by settingthe integrityCr-
cCheck field contained in the CpabcOpbData structure to CPA_TRUE.

* For decompression jobs, the application can verify the CRC32/Adler32 returned by QAT against
the CRC32/Adler32 in the GZIP/ZLIB frame as an integrity verification.

= Integrity checksums are available on the Traditional APl including No Session requests, but are not
available on the Data Plane API.

= Integrity checksums are calculated across only the current request in QAT 2.0. With QAT 1.8 it is
possible to seed the integrity checksums on stateful decompression requests by reusing the same
cpacCrcbatastructure onthe subsequent request without resetting the contents. For QAT 1.8 state-
fuldecompressionrequestsitis the application'sresponsibility to allocate the cpaCrcbata structure
and keepitallocated for the lifetime of the session. Integrity checksums are not available on devices
prior to QAT 1.8.

6.1.18.1 Verify HW Integrity CRC's

There is an additional feature to integrity checksums that can be enabled to automatically check that no
corruption to data buffers has occurred during transport to and from the Intel® QAT HW. This works by
calculating integrity checksums across the source and destination buffers within the Intel® QAT API, and
comparing the checksums with those generated within the Intel® QAT HW. Any discrepancies will result
in a status of CPA_DC_INTEG_ERR being returned within the cpaDcRgResults structure. These additional
checksums are calculated in SW using the CPU and have a cost in terms of performance. In order to en-
able the Verify HW Integrity CRC feature on a per request basis the verifyHwIntegritycCrcs field con-
tained in the cpabcopdata structure needs to be set to CPA_TRUE. Additionally the integrityCrcCheck
field must be enabled and a cpacrcbata structure allocated and a pointer to it must be assigned to the
pCrcData field.

6.1.19 Data Compression Applications

Data compression can be used as part of application delivery networks, data de-duplication, as well as in
anumber of crypto applications, for example, VPNs, IDS/IPS and so on.

6.1.19.1 Compression for Storage

In a time when the amount of online information is increasing dramatically, but budgets for storing that
information remain static, compression technology is a powerful tool for improved information manage-
ment, protection and access.

Compression appliances can transparently compress data such that clients can keep between two- and
five-times more data online and reap the benefit of other efficiencies throughout the data lifecycle. By
shrinking the primary data, all subsequent copies of that data, such as backups, archives, snapshots, and
replicas are also compressed. Compression is the newest advancement in storage efficiency.

Services 87

Intel Programmer's Guide

Storage compression appliances can shrink primary online data in real time, without performance degra-
dation. This can significantly lower storage capital and operating expenses by reducing the amount of
data that is stored, and the required hardware that must be powered and cooled.

Compression can help slow the growth of storage, reducing storage costs while simplifying both oper-
ations and management. It also enables organizations to keep more data available for use, as opposed
to storing data offsite or on harder-to-access media (such as tape). Compression algorithms are very
compute-intensive, which is one of the reasons why the adoption of compression techniques in main-
stream applications has been slow.

As an example, the DEFLATE Algorithm, which is one of the most used and popular compression tech-
niques today, involves several compute-intensive steps: string search and match, sort logic, binary tree
generation, Huffman Code generation. Intel® QAT devices in the platforms described in this manual pro-
vide acceleration capabilities in hardware that allow the CPU to offload the compute-intensive DEFLATE
algorithm operations, thereby freeing up CPU cycles for other networking, encryption, or other value-add
operations.

6.1.19.2 Data Deduplication and WAN Acceleration

Data Deduplication and WAN Acceleration are coarse-grain data compression techniques centered
around the concept of single-instance storage. Identical blocks of data (either to be stored on disk or to
be transferred across a WAN link) are only stored/moved once, and any further occurrences are replaced
by a reference to the first instance.

While the benefits of deduplication and WAN acceleration obviously depend on the type of data, multi-
user collaborative environments are the most suitable due to the amount of naturally occurring replication
caused by forwarded emails and multiple (similar) versions of documents in various stages of develop-
ment.

Deduplication strategies can vary in terms of inline vs post-processing, block size granularity (file-level
only, fixed block size or variable block-size chunking), duplicate identification (cryptographic hash only,
simple CRC followed by byte-level comparison or hybrids) and duplicate look-up (for example, Bloom
filter based index).

Cryptographic hashes are the most suitable techniques for reliably identifying matching blocks with an
improbably low risk for false positives, but they also represent the most compute-intensive workload
in the application. As such, the cryptographic acceleration services offered by the hardware through
the Intel® QAT Cryptographic API can be used to considerably improve the throughput of deduplica-
tion/WAN acceleration applications. Additionally, the compression/decompression acceleration ser-
vices can be used to further compress blocks for storage on disk, while optionally encrypting the com-
pressed contents.

88 Services

Programmer's Guide Intel

6.2 Cryptographic Services

6.2.1 Introduction

Intel® QuickAssist Technology (Intel® QAT) accelerates cryptographic workloads by offloading the data
to hardware capable of optimizing those functions. This makes it easier for developers to integrate built-
in cryptographic accelerators into network and security applications.

Symmetric cryptography algorithms include:
= Cipher operations (AES, DES, 3DES, ARC4, CHA-CHA, SM4).
= Wireless (Kasumi, Snow, 3G).
» Hash/Authenticate operations (SHA-1, MD5, SHA-2, SHA-3, SHAKE).
= Authentication (HMAC, AES-XCBC, AES-CCM).
Public key algorithms include:
= RSA operation.
= Diffie-Hellman operation.
= Digital signature standard operation.
» Key derivation operation.
= Elliptic curve cryptography (ECDSA and ECDH).

* Prime number testing.

6.2.1.1 Supported Cipher Algorithms

The following table provides details on supported cipher algorithms for each platform.

Note:

* cpaCysymInitSession() returnserror status of CPA_STATUS_UNSUPPORTED if cipheralgorithmis not
supported.

* The QAT2.0 driver has not been updated to enable the Opt-In functionality. This will be added in a
future release.

Table 40: Supported Cipher Algorithms

Algorithm QAT17x | QAT1.8 | QAT 2.0
NULL Yes Yes Yes
ARC4 Opt-in Opt-in | No
AES-ECB Opt-in Opt-in | Opt-in

continues on next page

Services 89

intel.

Programmer's Guide

Table 40 — continued from previous page

Algorithm QAT 1.7x | QAT1.8 | QAT 2.0
AES-CBC Yes Yes Yes
AES-CTR Yes Yes Yes
AES-CCM Yes Yes Yes
AES-GCM Yes Yes Yes
AES-F8 Opt-in Opt-in | Opt-in
AES-XTS Yes Yes Yes
DES-ECB Opt-in Opt-in | No
DES-CBC Opt-in Opt-in | No
3DES-ECB Opt-in Opt-in | No
3DES-CBC Opt-in Opt-in | No
3DES-CTR Opt-in Opt-in | No
KASUMI-F8 Yes Yes No
SNOWS3G-UEA2 | Yes Yes No
ZUC-EEAS3 Yes Yes No
CHACHA No Yes Yes
SM4-ECB No Opt-in | Opt-in
SM4-CBC No Yes Yes
SM4-CTR No Yes Yes

6.2.1.2 Supported Hash/Authenticate Algorithms

The following table provides details on supported hash algorithms for each platform.

Note:

* cpaCysymInitSession() returns error status of CPA_STATUS_UNSUPPORTED if hash algorithm is not

supported.

Table 41: Supported Hash/Authenticate Algorithms

Algorithm QAT 17x | QAT1.8 | QAT 2.0
MD5 Opt-in Opt-in | No
SHAI Opt-in Opt-in | Opt-in
SHA224 Opt-in Opt-in | Opt-in
SHAZ256 Yes Yes Yes
SHA384 Yes Yes Yes
SHABLI12 Yes Yes Yes
SHA3-224 No Opt-in | Opt-in
SHA3-256 Yes Yes Yes
SHA3-384 No Yes Yes
SHA3-512 No Yes Yes
AES-XCBC Yes Yes Yes

continues on next page

90

Services

Programmer's Guide

intel.

Table 41— continued from previous page

Algorithm QAT17x | QAT18 | QAT 2.0
AES-CBC_MAC | Yes Yes Yes
AES-CCM Yes Yes Yes
AES-GCM Yes Yes Yes
AES-GMAC Yes Yes Yes
AES-CMAC Yes Yes Yes
KASUMI-F9 Yes Yes No
SNOW3G-UIA2 | Yes Yes No
ZUC-EIA3 Yes Yes No
POLY No Yes Yes
SM3 No Yes Yes

6.2.1.3 Supported Public Key Algorithms

The following table provides details on supported asymmetric algorithms for each platform.

Note: QAT Public Key functions will return error status of CPA_STATUS_UNSUPPORTED if algorithm is not

supported.

Table 42: Supported Public Key Algorithms

Algorithm QAT17x | QAT1.8 | QAT 2.0
RSA-1024 Opt-in Opt-in | Opt-in
RSA-2048 Yes Yes Yes
RSA-3072 Yes Yes Yes
RSA-4096 Yes Yes Yes
RSA-8192 No No Yes
SM2 No Yes Yes
ECDH Point Multiply | Yes Yes Yes
ECDSA Sign Yes Yes Yes
ECDSA Verify Yes Yes Yes
x25519 Yes Yes Yes
x448 Yes Yes Yes

6.2.2 Cryptography Applications

Cryptography applications supported by the platforms described in this manual include, but are not lim-

ited to:

= Virtual Private Networks

= Encrypted Storage

Services

91

Intel Programmer's Guide

» Web Proxy Appliances

6.2.2.1 IPsec and SSL VPNs

Virtual Private Networks (VPNs) allow for private networks to be established over the public Internet by
providing confidentiality, integrity and authentication using cryptography. VPN functionality can be pro-
vided by a standalone security gateway box at the boundary between the trusted and untrusted networks.
ltis also commonly combined with other networking and security functionality in a security appliance, or
even in standard routers.

VPNs are typically based on one of two cryptographic protocols, either IPsec or Datagram Transport
Layer Security (DTLS). Each has its advantages and disadvantages.

One of the most compute-intensive aspects of a VPN is the cryptographic processing required to en-
crypt/decrypt traffic for confidentiality, to perform cryptographic hash functionality for authentication
and to perform public key cryptography, based on modular exponentiation of large numbers or elliptic
curve cryptography as part of key negotiation and exchange. The accelerator provides cryptographic ac-
celeration that can offload this computation from the CPU, thereby freeing up CPU cycles to perform
other networking, encryption, or other value-add applications.

The Intel® QAT Endpoint offers its acceleration services through an AP, called the Intel® QAT Crypto-
graphic API. This can be invoked from the Linux* kernel or from Linux* user space as well as from other
operating systems. Intel® also provides plugins to enable many of the PCH'’s cryptographic services to
be accessed through open source cryptographic frameworks, such as the Linux* kernel crypto frame-
work/API (also known as the scatterlist API) and OpenSSL* libcrypto* (through its EVP API). This
facilitates ease of integration with certain open source implementations of protocol stacks, such as the
Linux* kernel’s native IPsec stack (called NETKEY) or with OpenVPN* (an open source SSL VPN imple-
mentation).

6.2.2.2 Encrypted Storage

Inrecent years, cases of lost laptops containing sensitive information have made the headlines all too fre-
quently. Full disk encryption has become a standard procedure for many corporate PCs. Safe-guarding
critical data however is not just a necessity in the client space, it is also a necessity in the data center.

Enterprise-class storage appliances achieve throughput rates in excess of 50 Gbps. Several high-profile
cases of data theft have triggered updates to government regulations and industry standards. These reg-
ulations/standards now require protection of data-at-rest forapplications involving sensitive data such as
medical and financial records, typically using strong encryption. The high computational cost of adding
encryption to storage appliances makes offload solutions an attractive value proposition.

Several complimentary standards exist for the encryption of data-at-rest, which, when combined with tra-
ditional network security protocols such as IPsec or SSL/TLS, provide an end-to-end encrypted storage
solution, even for data-in-flight.

The IEEE* Security in Storage working group is developing the IEEE 1619 series of standards that deal
with cipher algorithms for disk and tape storage devices (AES in CCM and GCM modes). The crypto-
graphic acceleration services of platforms that use the Intel® QAT Endpoints are ideally suited for long-

92 Services

Programmer's Guide Intel

term encrypted storage solutions implementing the IEEE 1619.1 standard, by providing acceleration of
the AES-256 cipherin CBC, CCM, and GCM modes and HMAC authentication using SHA-1, SHA-256
and SHA-512 hashes.

The Trusted Computing Group’s (TCG) Storage Working Group does not prescribe a particular set of
algorithms for the disk encryption. Instead, it defines several Storage Subsystem Classes (SSC) for var-
ious usage models, which define services such as enrollment and connection, protected storage (an ex-
tension of Trusted Platform Module (TPM)), locking, logging, cryptographic services, authorization, and
firmware updates. The cryptographic acceleration services of the platform can help by providing the
highest level of encryption forauthenticating the host to trusted peripherals implementing the TCG stor-
age standards.

6.2.2.3 Web Proxy Appliances

Historically, Web Proxy appliances have evolved to present a public or intermediary interface for clients
seeking resources from other servers, providing services such as web page caching and load balancing.
These appliances are located at the edge of the network, typically at network gateways. Due to their cen-
tralized presence in the network, Web Proxy appliances today (referred to with several different names,
such as Application Delivery Controllers, Reverse Proxy, and so on) have become a collection of services
that include:

» Application Load Balancing (L4-L7)
= SSL Acceleration

= WAN Acceleration

= Caching

* Traffic Management

= Web Application Firewall

SSLand WAN acceleration have become common place capabilities of the Web Proxy appliance, requir-
ing compute intensive algorithms for cryptography (SSL) and compression (WAN acceleration). Intel®
QAT devices on the platforms described in this manual provide acceleration of asymmetric cryptography
(RSA is the most commonly used key negotiation algorithm in SSL), symmetric cryptography (all algo-
rithms defined in the TLS RFCs can be accelerated with the PCH) and compression (DEFLATE algo-
rithm). With the prominence of Web Proxy appliances in typical networks, this use case has applications
from cloud computing to small web server deployments.

Services 93

7 Supported APls

The supported APIs are classified in two categories:
* Intel QuickAssist Technology APIs
= Additional APIs

Details on the APIs are included in the following sections.

7.1 Intel QuickAssist Technology APIs

The platforms described in this manual support the following Intel® QAT AP libraries:

= Cryptographic: API definitions are located in: $ICP_ROOT/quickassist/include/Tac, where
$ICP_ROOT is the directory where the Acceleration software is unpacked. See the Intel QuickAssist
Technology Cryptographic APl Reference Manual for details.

= Data Compression: API definitions are located in: $ICP_R0O0T/quickassist/include/dc. See the
Intel QuickAssist Technology Data Compression APl Reference Manual for details.

7.1.1 Cryptographic and Data Compression API Descriptions

Full descriptions of the Intel® QAT APIs are contained in the Inte/ QuickAssist Technology Cryptographic
APl Reference Manual and the Intel QuickAssist Technology Data Compression APl Reference Manual.

In addition to the Intel® QAT Data Plane APls, there are a number of Data Plane Polling APIs that are de-
scribed in the Polling Functions section.

94

https://cdrdv2.intel.com/v1/dl/getContent/709199?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/709199?explicitVersion=true
https://cdrdv2.intel.com/v1/dl/getContent/709201?explicitVersion=true

Programmer's Guide Intel

7.1.1.1 Data Plane APIs Overview

The Intel QuickAssist Technology Cryptographic APl Reference Manual and the Inte/ QuickAssist Tech-
nology Data Compression APl Reference Manual containinformation onthe APIs thatare specifictodata
plane applications.

The APIs are recommended for applications that are executing in a data plane environment where the
cost of offload (that is, the cycles consumed by the driver sending requests to the hardware) needs to be
minimized. To minimize the cost of offload, several constraints have been placed on the APIs. If these
constraints are too restrictive for your application, the traditional APIs can be used instead (at a cost of
additional IA cycles).

The definition of the Cryptographic Data Plane APIs are contained in: $ICP_ROOT/quickassist/
include/lac/cpa_cy_sym_dp.h

The definition of the Data Compression Data Plane APIs are contained in: $ICP_ROOT/quickassist/
include/dc/cpa_dc_dp.h

7.1.1.2 1A Cycle Count Reduction When Using Data Plane APIs

From an |A cycle count perspective, the Data Plane APIs are more performant than the traditional APls.
The majority of the cycle count reduction is realized by the reduction of supported functionality in the
Data Plane APIs and the application of constraints on the calling application.

Inaddition, to furtherimprove performance, the Data Plane APIs attempt to amortize the cost of an MMIO
access when sending requests to, and receiving responses from, the hardware.

Atypicalusageistocallthe cpaCySymbDpEnqueueOp () orthe cpabcDpEnqueueop () function multiple times
with requests to process and the performopNow flag set to CPA_FALSE. Once multiple requests have been
engueued, cpaCySymbpEnqueueOp () or cpaDcDpEnqueueOp () may be called with the performopNow flag
set to CPA_TRUE. This sends the requests to the Intel®” QAT Endpoint for processing.

The Intel® QAT API returns a CPA_STATUS_RETRY when the ring becomes full.

The number of requests to place on the ring is application dependent and it is recommended that per-
formance testing be conducted with tunable parameter values.

Two functions, cpaCcysymbpPerformopNow() and cpabCDpPerformopNow(), are also provided that allow
queued requests to be sent to the hardware without the need for queuing an additional request. This is
typically used in the scenario where a request has not been received for some time and the application
would like the enqueued requests to be sent to the hardware for processing.

Supported APlIs 95

Intel Programmer's Guide

| Application | Service Access Layer | ADF
T

7 Formathardware message
ringPut()

Signal Hardware

|cpaCySymDpEngueueOppOpData CPA_FALSE] Formathardwaremessage |
i N | Request place on Queue
ringPut() ol but not signaled
I I
1 e . e e 1
= ——— == = = === — I I
D A v o I
(cpaCySymDpEnqueusOppOpData CPA_FALSE, Formathardwaremessage
P finaPutO)
grut . e but not signaled
I
e = - — e e e e e — =
== === ====7 |

|

I

I

I

I

I

7113 Usage Constraints on the Data Plane APlIs

The following constraints apply to the use of the Data Plane APlIs. If the application can handle these
constraints, the Data Plane APIs can be used:

Thread safetyisnotsupported. Each software thread should have access toits own unique instance
(cpainstanceHandle) to avoid contention on the hardware rings.

For performance, polling is supported, as opposed to interrupts (which are comparatively more ex-
pensive).

Polling functions are provided to read responses from the hardware response queue and dispatch
callback functions.

Buffers and buffer lists are passed using physical addresses to avoid virtual-to- physical address
translation costs.

Alignment restrictions are placed on the operation data (that is, the CpaCySymbpOpData structure)
passed to the Data Plane API. The operation data must be at least 8-byte aligned, contiguous, resi-
dent, DMA-accessible memory.

Only asynchronous invocation is supported, that is, synchronous invocation is not supported.

There is no support for cryptographic partial packets. If support for partial packets is required, the
traditional Intel® QAT APIs should be used.

Since thread safety is not supported, statistic counters on the Data Plane APIs are not atomic.

The default instance (CPA_INSTANCE_HANDLE_SINGLE) is not supported by the Data
Plane APIs. The specific handle should be obtained using the instance discovery func-

96

Supported APIs

Programmer's Guide Intel

tions (cpaCyGetNumInstances(), cpaCyGetInstances(), cpaDcGetNumInstances(), cpaD-
cGetInstances()).

The submitted requests are always placed on the high-priority ring.

The data plane APIs are supported in both user space and polling mode in kernel space, but not
supportedin interrupt mode in kernel space.

71.2 Intel” QAT API Limitations

The followinglimitations apply when using the Intel® QAT APIs on the platforms describedin this manual:

For all services, the maximum size of a single perform requestis 4 GB.

Forall services, data structures that contain data required by the Intel® QAT Endpoint should be on
a 64-byte-aligned address to maximize performance. This alignment helps minimize latency when
transferring data from DRAM to an Intel® QAT Endpoint integrated in the PCH device.

For the key generation cryptographic API, the following limitations apply:

Table 43: Key Generation Cryptographic API Limitations

Secure Sockets Layer (SSL) key genera- | Maximum secret length is 512 bytes
tion op-data: Maximum userLabel length is 136 bytes
Maximum generatedkeyLenInBytesis 248

Transport Layer Security (TLS) key gen- | Secret length must be <128 bytes for TLS v1.0/1.1;
eration op-data: Secretlength must be <512 bytes for TLS v1.2
Secretlength must be <512 bytes for TLS v1.3
userLabel length must be <256 bytes

Maximum seed size is 64 bytes

Maximum generatedkeyLenInBytes is 248 bytes

Mask Generation Function (MGF) op- Maximum seed lengthis 255 bytes
data: Maximum maskLenInBytes is 65528

For the cryptographic service, SNOW 3G and KASUMI* operations are not supported when Cpa-
CySymPacketType is set to CPA_CY_SYM_PACKET_TYPE_PARTIAL. The error returned in this case is
CPA_STATUS_INVALID_PARAM.

For the cryptographic service, when using the asymmetric crypto APls, the buffer size passed to
the API should be rounded to the next power of 2, or the next 3- times a power of 2, for optimum
performance.

For the data compression service, the size of all stateful decompression requests have to be a mul-
tiple of two with the exception of the last request.

For the data compression service, the CpabDcFileType field in the CpabDcSessionSetup-
Data data structure is ignored (previously this was considered for semi-dynamic compres-
sion/decompression).

Supported APlIs 97

intel.

Programmer's Guide

» For static compression, the maximum expansion during compression is ceiling (9x7o-

tal_Input_Byte/8)+7 bytes. If CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS or
CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_NO_HDRS is selected, the maximum expansion dur-
ing compression is the input buffer size plus up to ceiling (Total_Input_Byte/65535)x5 bytes,
depending on whether the stored headers are selected.

Note: Due to the need for a skid pad and the way the checksum is calculated in the
stored block case to prevent compression overflow, an output buffer size of ceiling (9*To-
tal_Input_Byte/8) + 55 bytes needs to be supplied (even though the stored block output
size might be less).

The decompression service can report various error conditions, most of which arise from process-
ing dynamic Huffman code trees that are ill-formed. These soft error conditions are reported at
the Intel® QuickAssist Technology APl using the CpaDcReqStatus enumeration. At the point of soft
error, the hardware state will not be accurate to allow recovery. Therefore, in this case, the Intel®
QuickAssist Technology software rolls back to the previous known good state and reports that no
input has been processed and no output produced. This allows an application to correct the source
of the error and resubmit the request.

For example, if the following source and destination buffers were submitted to the Intel® QuickAs-
sist Technology:

J

pDstBuffer Data Length 18K

[

pSrcBuffer Data Length16K

Valid Deflate
Block

Valid Deflate
Block

Corrupt
Deflate Data

Consumed=0

The result would be:

o)
P

SrcBuffer Data Length16k

Produced=0

pDstBuffer Data

Lengthl18K

Valid Deflate
Block

Valid Deflate
Block

Corrupt
Deflate Data

Some uncompressed data

Consumed=0

Produced=0

= Behavior when build flag ICP_DC_RETURN_COUNTERS_ON_ERROR is defined. In some specialized ap-

plications, when a decompression soft error occurs, the application has no way of correcting the
source of the error and resubmitting the request. The session will need to be invalidated and
terminated. In this case it is more useful to the application to output the uncompressed data

98

Supported APIs

Programmer's Guide Intel

up to the point of soft error before terminating the session. There is a compile time build flag
(ICP_DC_RETURN_COUNTERS_ON_ERROR) to select this mode of operation. This is the behavior of de-
compression in case of soft error when this build flag is used.

If the following source and destination buffers were submitted to the Intel® QuickAssist Technology

API:
pSrcBuffer Data Length16K pDstBuffer Data Length 18K
Valid Deflate Valid Deflate Corrupt
Block Block Deflate Data
Consumed=0 Produced =0

The result would be:

pSrcBuffer Data Lengthl6K pDstBuffer Data Length 18K
Valid Deflate Valid Deflate Corrupt Some uncompressed data
Block Block Deflate Data (atleast the data from the valid deflate blocks)
Consumed = 8K Produced =12K

Warning: ltisimportant to note in this case:
— The consumed value returned in the CpabcRgResults structure is not reliable.

— No further requests can be submitted on this session.

7.2 Additional APIs

Note: Notall Additional APIs are supported with all versions of the software package/hardware config-
uration.

There are anumber of additional APIs that can serve for optimization and other uses outside of the Intel®
QuickAssist Technology services.

Supported APlIs 99

Intel Programmer's Guide

7.2.1 Dynamic Instance Allocation Functions

These functions are intended for the dynamic allocation of instances in user space. The user can use
these functions to allocate/free instances defined in the [DYN] section of the configuration file.

These functions are useful if the user needs to dynamically allocate/free cryptographic (CY) or Data
Compression (DC) instances at runtime. This is in contrast to statically specifying the number of CY or
DC instances at configuration time, where the number of instances cannot be changed unless the user
modifies the . conf file and restarts the acceleration service.

The advantage of using these functions is that the number of CY/DC instances can be changed on-
demand at runtime. The disadvantage is that runtime performance is impacted if the number of CY/DC
instances is changed frequently.

If the user space application knows the number of instances to be used before starting, then the user can
define Number<Service>Instancesinthe [User Process] section of the configuration file.

If the user space application can only know the number of instances at runtime, or wants to change the
number at runtime, then the user can call the Dynamic Instance Allocation functions to allocate/free in-
stances dynamically. The Number<Service>Instancesinthe [DYN] section ofthe.conffile(s) definesthe
maximum number of instances that can be allocated by user processes.

This can be useful when sharing instances among multiple applications at runtime. The maximum num-
ber of instances in a system is known in advance and it is possible to distribute them statically between
applications using the configuration files. Once the driver is started, however, this cannot be changed. If,
for example, there are 32 CY instances and we need to provision 16 processes, we can statically assign
two CY instances per process. This can be a problem when a process needs more instances at any given
time. With dynamic instance allocation, we can create a pool of instances that can be “shared” between
the processes.

Continuing the example above with 32 CY instances and 16 processes, we can assign statically one CY
instance to each process and create a pool of 16 [DYN] instances from the remainder. If at runtime one
process needs more acceleration power, it can allocate some more instances from the pool, say, for ex-
ample, eight, use them as appropriate and free them back to the pool when the work has been completed.
Thereafter, other processes can use these instances as needed.

All dynamicinstance allocation function definitions are located in: $1CP_R0OOT/quickassist/lookaside/
access_layer/include/icp_sal_user.h

Important: Dynamic Instance Allocation Functions are not currently supported with the QAT2.0 driver.

100 Supported APIs

Programmer's Guide Intel

7.2.1.1 icp_sal_userCyGetAvailableNumDynlnstances

Get the number of cryptographic instances that can be dynamically allocated using the
icp_sal_usercyInstancesAlloc function.

Syntax

CpaStatus icp_sal_userCyGetAvailableNumbDynInstances (Cpa32U *pNumCyInstances);

Parameters

*pNumCyInstances A pointerto the number of cryptographic instances available for dynamic al-
location.

Return Value

Theicp_sal_usercCyGetAvailableNumbynInstances function returns one of the following codes:

CPA_STATUS_SUCCESS A pointerto the number of cryptographic instances available for dynamic al-
location.
CPA_STATUS_FAIL Indicates a failure.

7.2.1.2 icp_sal_userDcGetAvailableNumDyninstances

Get the number of data compression instances that can be dynamically allocated using the
icp_sal_userbcInstancesAlloc function.

Syntax

CpaStatus icp_sal_userDcGetAvailableNumDynInstances (Cpa32U *pNumDcInstances);

Parameters

*pNumDcInstances A pointer to the number of data compression instances available for dy-
namic allocation.

Return Value

Theicp_sal_userbcGetAvailableNumDynInstances function returns one of the following codes:

CPA_STATUS_SUCCESS A pointer to the number of data compression instances available for dy-
namic allocation.
CPA_STATUS_FAIL Indicates a failure.

Supported APlIs 101

Intel Programmer's Guide

7.2.1.3 icp_sal_userCylnstancesAlloc

Allocate the specified number of Cryptographic (CY) instances from the amount specified in the [DYN]
section of the configuration file. The numCyInstances parameter specifies the number of CY instances
to allocate and must be less than or equal to the value of the NumbercCyInstances parameterin the [DYN]
section of the configuration file.

Syntax
CpaStatus icp_sal_usercCyInstancesAlloc(Cpa32u numCyInstances, CpaInstanceHandle
*pCyInstances);
Parameters
numCyInstances The number of CY instances to allocate.
*pCyInstances A pointer to the CY instances.

Return Value

Theicp_sal_usercCyInstancesAlloc functionreturns one of the following codes:

CPA_STATUS_SUCCESS Successfully allocated the specified number of CY instances.
CPA_STATUS_FAIL Indicates a failure.

7.2.1.4 icp_sal_userDclnstancesAlloc

Allocate the specified number of Data Compression (DC) instances from the amount specified in the
[DYN] section of the configuration file. The numbcInstances parameter specifies the number of dc in-
stances to allocate and must be less than or equal to the value of the NumberbcInstances parameterin
the [DYN] section of the configuration file.

Syntax
CpaStatus icp_sal_userbcInstancesAlloc(Cpa32u numbcInstances, CpaInstanceHandle
*pDcInstances);
Parameters
numbcInstances The number of DC instances to allocate.
*pDcInstances A pointer to the DC instances.

Return Value

Theicp_sal_userbcInstancesAlloc function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully allocated the specified number of DC instances.
CPA_STATUS_FAIL Indicates a failure.

102 Supported APIs

Programmer's Guide Intel

7.2.1.5 icp_sal_userCyFreelnstances

Free the specified number of Cryptographic (CY) instances from the amount specified in the [DYN] sec-
tion of the configuration file. The numCyInstances parameter specifies the number of CY instances to
free.

Syntax
CpaStatus icp_sal_userCyFreeInstances(Cpa32U numCyInstances, CpaInstanceHandle
*pCyInstances);
Parameters
numCyInstances The number of CY instances to free.
*pCyInstances A pointer to the CY instances.

Return Value

The icp_sal_usercCyFreeInstances function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully freed the specified number of CY instances.
CPA_STATUS_FAIL Indicates a failure.

7.2.1.6 icp_sal_userDcFreelnstances

Free the specified number of Data Compression (DC) instances from the amount specified in the [DYN]
section of the configuration file. The numbcInstances parameter specifies the number of DC instances
to free.

Syntax
CpaStatus icp_sal_userDcFreeInstances(Cpa32U numbcInstances, CpaInstanceHandle
*pDcInstances);
Parameters
numDcInstances The number of DC instances to free.
*pDcInstances A pointer to the DC instances to free.

Return Value

Theicp_sal_userbcFreeInstances function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully freed the specified number of DC instances.
CPA_STATUS_FAIL Indicates a failure.

Supported APlIs 103

Intel Programmer's Guide

7.2.1.7 icp_sal_userCyGetAvailableNumDyninstancesByDevPkg

Get the number of cryptographic instances that can be dynamically allocated.
Syntax

CpaStatus 1dicp_sal_usercCyGetAvailableNumDynInstancesByDevPkg(Cpa32U *pNumCyInstances,
Cpa32u devPkgiD);

Parameters
pNumCyInstances A pointerto the number of cryptographic instances available for dynamic al-
location.
devPkgID The device ID of the device of interest (same as accellD in other APIs) If -1
then selects from all devices.

Return Value

The icp_sal_userCyGetAvailableNumDynInstancesByDevPkg function returns one of the following
codes:

CPA_STATUS_SUCCESS Successfully retrieved the number of cryptographic instances available for
dynamic allocation.
CPA_STATUS_FAIL Indicates a failure.

7.2.1.8 icp_sal_userDcGetAvailableNumDyninstancesByDevPkg

Get the number of data compression instances that can be dynamically allocated.
Syntax

CpaStatus icp_sal_userbDcGetAvailableNumDynInstancesByDevPkg(Cpa32U *pNumDcInstances,
Cpa32u devPkgiD);

Parameters
*pNumDcInstances A pointer to the number of data compression instances available for dy-
namic allocation.
devPkgID The device ID of the device of interest (same as accellD in other APIs) If -1
then selects from all devices.

Return Value

The icp_sal_userDcGetAvailableNumDynInstancesByDevPkg function returns one of the following
codes:

CPA_STATUS_SUCCESS Successfully freed the specified number of DC instances.
CPA_STATUS_FAIL Indicates a failure.

104 Supported APIs

Programmer's Guide Intel

7.2.1.9 icp_sal_userCylnstancesAllocByDevPkg

Allocate the specified number of Cryptographic (CY) instances from the amount specified in the [DYN]
section of the configuration file. The numCyInstances parameter specifies the number of CY instances
to allocate and must be less than or equal to the value of the NumbercCyInstances parameterin the [DYN]
section of the configuration file.

Syntax

CpaStatus icp_sal_usercyInstancesAllocByDevPkg(Cpa32U numCyInstances, CpaInstanceHandle
*pCyInstances, devPkgID);

Parameters
numCyInstances The number of CY instances to allocate.
*pCyInstances A pointer to the CY instances.
devpPkgID The device ID of the device of interest (same as accellD in other APIs) If -1
then selects from all devices.

Return Value

The icp_sal_usercCyInstancesAllocByDevPkg function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully allocated the specified number of CY instances.
CPA_STATUS_FAIL Indicates a failure.

7.2.1.10 icp_sal_userDcInstancesAllocByDevPkg

Allocate the specified number of Data Compression (DC) instances from the amount specified in the
[DYN] section of the configuration file. The numDcInstances parameter specifies the number of DC in-
stances to allocate and must be less than or equal to the value of the NumberbcInstances parameterin
the [DYN] section of the configuration file.

Syntax

CpaStatus icp_sal_userbcInstancesAllocByDevPkg(Cpa32U numbDcInstances, CpaInstanceHandle
*pDcInstances, Cpa32U devPkgID;

Parameters
numbcInstances The number of DC instances to allocate.
*pDcInstances A pointer to the DC instances.
devpPkgID The device ID of the device of interest (same as accellD in other APIs) If -1
then selects from all devices.

Return Value

Theicp_sal_userbcInstancesAllocByDevPkg function returns one of the following codes:

Supported APlIs 105

Intel Programmer's Guide

CPA_STATUS_SUCCESS Successfully allocated the specified number of DC instances.
CPA_STATUS_FAIL Indicates a failure.

7.2.1.11 icp_sal_userCyGetAvailableNumDyninstancesByPkgAccel

Get the number of cryptographic instances that can be dynamically allocated.
Syntax

CpaStatus icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel(Cpa32U *pNumCyInstances,
Cpa32u devPkgID, Cpa32U accelerator_number);

Parameters
pNumCyInstances A pointerto the number of cryptographic instances available for dynamic al-
location.
devpPkgID The device ID of the device of interest (same as accellD in other APls) If -1

then selects from all devices.
accelerator_number Accelerator Engine to use. As O is the only valid value on C62x device, this
APlissameasasicp_sal_userCyInstancesAllocByDevPkg

Return Value

The icp_sal_usercyGetAvailableNumDynInstancesByPkgAccel function returns one of the following
codes:

CPA_STATUS_SUCCESS Successfully retrieved the number of cryptographic instances available for
dynamic allocation.
CPA_STATUS_FAIL Indicates a failure.

7.2.112 icp_sal_userCylnstancesAllocByPkgAccel

Allocates the specified number of Cryptographic (CY) instances from the amount specified in the [DYN]
section of the configuration file. The numCyInstances parameter specifies the number of CY instances
to allocate and must be less than or equal to the value of the NumberCyInstances parameter returned by
acalltotheicp_sal_usercyInstancesAllocByPkgAccel function.

Syntax

CpaStatus icp_sal_usercCyInstancesAllocByPkgAccel(Cpa32U numCyInstances, CpaInstanceHan-
dle *pCyInstances, Cpa32U devPkgID, Cpa32U accelerator_number);

Parameters

106 Supported APIs

Programmer's Guide Intel

numCyInstances The number of CY instances to allocate.
*pCyInstances A pointer to the CY instances.
devPkgID The device ID of the device of interest (same as accellD in other APIs) If -1

then selects from all devices
accelerator_number Accelerator Engine to use. As O is the only valid value on C62x device, this
APlissameasasicp_sal_userCyInstancesAllocByDevPkg

Return Value

Theicp_sal_userCyInstancesAllocByPkgAccel function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully allocated the specified number of CY instances.
CPA_STATUS_FAIL Indicates a failure.

7.2.2 IOMMU Remapping Functions

These functions are intended for OMMU remapping operations.

All IOMMU remapping function definitions are located in: $ICP_ROOT/quickassist/lookaside/
access_layer/include/icp_sal_iommu.h

7.2.2.1 icp_sal_iommu_get_remap_size

Returns the page_size rounded for OMMU remapping.
Syntax
size_t icp_sal_iommu_get_remap_size(size_t size);

Parameters

] size \ The minimum required page size.

Return Value

Theicp_sal_iommu_get_remap_size functionreturns the page_size rounded for OMMU remapping.

Supported APlIs 107

Intel Programmer's Guide

7.2.2.2 icp_sal_iommu_map

Adds an entry to the IOMMU remapping table.
Syntax

CpaStatus icp_sal_iommu_map(Cpab4uU phaddr, Cpa64uU iova, size_t size);

Parameters
phaddr Host physical address.
iova Guest physical address.
size Size of the remapped region.

Return Value

The icp_sal_iommu_map function returns one of the following codes:

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates a failure.

7.2.2.3 icp_sal_iommu_unmap

Removes an entry from the IOMMU remapping table.
Syntax

CpaStatus icp_sal_iommu_unmap(Cpa64u iova, size_t size);

Parameters
iova Guest physical address.
size Size of the remapped region.

Return Value

The icp_sal_iommu_unmap function returns one of the following codes:

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates a failure.

108 Supported APIs

Programmer's Guide Intel

7.2.2.4 1I0MMU Remapping Function Usage

These functions are required when the user wants to access an acceleration service from the Physical
Function (PF) when SR-IOV is enabled in the driver. In this case, all I/O transactions from the device go
through DMA remapping hardware.

This hardware checks:
1. If the transaction is legitimate
2. What physical address the given I/O address needs to be translated to.
If the I/O address is not in the transaction table, it fails with a DMA Read error shown as follows:
= DRHD: Handling fault status reg 3.

* DMAR:[DMA Read] Request device [02:01.2] fault addr <ADDR> DMAR:[fault reason 06] PTE
Read access is not set.

To make this work, the user must add a 1:1 mapping as follows:

1. Getthe size required for a buffer.
int size = icp_sal_iommu_get_remap_size(size_of_data);

2. Allocate a buffer.
char *buff = malloc(size);

3. Get a physical pointer to the buffer.
buff_phys_addr = virt_to_phys(buff);

4. Add al:1 mapping to the IOMMU tables.
icp_sal_iommu_map(buff_phys_addr, buff_phys_addr, size;

5. Use the buffer to send data to the Intel® QAT Endpoint.

6. Before freeing the buffer, remove the IOMMU table entry.
icp_sal_iommu_unmap (buff_phys_addr, size);

7. Free the buffer.
free(buff);

The IOMMU remapping functions can be used in all contexts that the Intel® QAT APIs can be used, that
is, kernel and user space in a Physical Function (PF) Domain 0, as well as kernel and user spacein a Virtual
Machine (VM).

In the case of VM, the APIs will do nothing. In the PF Domain O case, the APIs will update the hardware
IOMMU tables.

Supported APlIs 109

Intel Programmer's Guide

7.2.3 Polling Functions

These functions are intended for retrieving response messages that are on the rings and dispatching the
associated callbacks.

All polling function definitions are located in: $ICP_ROOT/quickassist/lookaside/access_layer/
include/icp_sal_poll.h

7.2.3.1 icp_sal_pollBank

Poll all rings on the given Intel® QAT Endpoint on a given bank number to determine if any of the rings
contain response messages from the Intel® QAT Endpoint. The response_quota input parameter is per
ring.

Syntax

CpaStatus icp_sal_pollBank(Cpa32U accelId, Cpa32U bank_number, Cpa32U response_quota);

Parameters
accelid The device number associated with the Intel® QAT Endpoint. valid range is
0 to number of Intel® QAT Endpoints in the system.
bank_number The number of the memory bank on the Intel® QAT Endpoint that will be
polled for response messages. The valid rangeis O to 31.
response_quota The maximum number of responses to take from the ring in one call.

Return Value

The icp_sal_polliBank function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully polled a ring with data.
CPA_STATUS_RETRY Thereisnodataonanyringonany bankorthe banksare already being polled.
CPA_STATUS_FAIL Indicates a failure.

7.2.3.2 icp_sal_pollAlIBanks

Pollallbanks onthe given Intel® QAT Endpoint to determine if any of the rings contain response messages
from the Intel® QAT Endpoint. The response_quotainput parameter is per ring.

Syntax

CpaStatus icp_sal_polTAl1Banks(Cpa32U accelid, Cpa32U response_quota);

Parameters
accelid The device number associated with the Intel® QAT Endpoint. valid range is
0 to number of Intel® QAT Endpoints in the system.
response_quota The maximum number of responses to take from the ring in one call.

110 Supported APIs

Programmer's Guide Intel

Return Value

Theicp_sal_pol1Al1Banks function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully polled a ring with data.
CPA_STATUS_RETRY Thereisnodataonanyringonany bankorthe banks are already being polled.
CPA_STATUS_FAIL Indicates a failure.

7.2.3.3 icp_sal_CyPollinstance

Poll the Cryptographic (CY) logical instance associated with the instanceHandle to retrieve requests
that are on response rings associated with that instance and dispatch the associated callbacks. The re-
sponse_quota input parameter is the maximum number of responses to process in one call.

Note: Theicp_sal_cyPollInstance() functionisusedinconjunctionwiththe CyXIsPolledparameter
in the acceleration configuration file.

Syntax
CpaStatus icp_sal_cCyPollInstance(CpaInstanceHandle instanceHandle, Cpa32u
response_quota);
Parameters
instanceHandle The logical instance to poll for responses on the response ring.
response_quota The maximum number of responses to take from the ring in one call. When
setto O, all responses are retrieved.

Return Value

Theicp_sal_cyPollInstance functionreturns one of the following codes:

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the specified logical in-
stance.

CPA_STATUS_FAIL Indicates a failure.

Note: Aringisonly polledifit contains data.

Supported APlIs m

Intel Programmer's Guide

7.2.3.4 icp_sal_DcPollinstance

Poll the Data Compression (DC) logical instance associated with the instanceHandle to retrieve re-
quests that are on response rings associated with that instance and dispatch the associated callbacks.
The response_quota input parameter is the maximum number of responses to process in one call.

Note: Theicp_sal_bcPollinstance() functionisusedinconjunctionwiththe bcxIsPolled parameter
in the acceleration configuration file.

Syntax

CpaStatus icp_sal_bDcPolliInstance(CpaInstanceHandle instanceHandle, Cpa32u
response_quota);

Parameters
instanceHandle The logical instance to poll for responses on the response ring.
response_quota The maximum number of responses to take from the ring in one call. When
setto O, all responses are retrieved.

Return Value

Theicp_sal_bcPollInstance functionreturns one of the following codes:

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the specified logical in-
stance.

CPA_STATUS_FAIL Indicates a failure.

Note: Aringisonly polledifit contains data.

7.2.3.5 icp_sal_CyPollDplnstance

Poll a particular Cryptographic (CY) data path logical instance associated with the instanceHandle to
retrieve requests that are on the high-priority symmetric ring associated with that instance and dispatch
the associated callbacks. The response_quotainput parameteris the maximum number of responses to
process in one call.

Note: Thisfunctionisa Data Plane APIfunction and consequently the restrictions in Usage Constraints
on the Data Plane APIs apply.

Syntax

N2 Supported APIs

Programmer's Guide Intel

CpaStatus icp_sal_cCyPollDpInstance(CpaInstanceHandle instanceHandle, Cpa32u
response_quota) ;
Parameters
instanceHandle The logical instance to poll for responses on the response ring.
response_quota The maximum number of responses to take from the ring in one call. When
setto O, all responses are retrieved.

Return Value

The icp_sal_cypPollDpInstance function returns one of the following codes:

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are noresponses on the rings associated with the specified logical in-
stance.

CPA_STATUS_FAIL Indicates a failure.

7.2.3.6 icp_sal_DcPollDplInstance

Poll a particular Data Compression (DC) data path logical instance associated with the instanceHandle
to retrieve requests that are on the response ring associated with that instance. The response_quota
input parameter is the maximum number of responses to process in one call.

Note: Thisfunctionisa Data Plane API function and consequently the restrictions in Usage Constraints
on the Data Plane APIs apply.

Syntax
CpaStatus icp_sal_bDcPollDpInstance(CpaInstanceHandle instanceHandle, Cpa32u
response_quota) ;
Parameters
instanceHandle The logical instance to poll for responses on the response ring.
response_quota The maximum number of responses to take from the ring in one call. When
setto O, all responses are retrieved.

Return Value

Theicp_sal_bcPollDpInstance function returns one of the following codes:

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are noresponses on the rings associated with the specified logical in-
stance.

CPA_STATUS_FAIL Indicates a failure.

Supported APlIs 13

Intel Programmer's Guide

7.2.4 User Space Access Configuration Functions

Functions that allow the configuration of user space access to the Intel® QAT services from processes
running in user space.

All user space access configuration function definitions are located in $ICP_ROOT/quickassist/
lookaside/access_layer/include/icp_sal_user.h

7.2.4.1 icp_sal_userStart

Initializes user space access to an Intel® QAT Endpoint and starts the ProcessName section in the given
section of the configuration file. This function needs to be called prior to any call to Intel® QAT API func-
tion from the user space process. This functionis typically called only once in a user space process.

Note: Theicp_sal_userstartMultiProcess() functionis still supported, but the parameter 1im1i tbe-
VvAccess isignored because its value is set once in the configuration file and is not allowed to be specified
again in the function.

The configuration format allows the user to easily create a configuration for many user spaces processes.
The driver internally generates unique process names and a valid configuration for each process based
on the section name (pSectionName) and mode (1imi tbevAccess) provided.

For example, on a system with M number of devices, if all M configuration files contain:

[IPsec]
NumProcesses = N

LimitDevAccess 0

Then N internal sections are generated (each with instances on all devices) and /N processes can be
started atany giventime. Each processcancallicp_sal_userstart("IPsec") andthedriverdetermines
the unique name to use for each process.

Similarly, on an M device system, if all M configuration files contain:

[ssL]
NumProcesses = N

LimitDevAccess 1

Then MxN internal sections are generated (each with instances on one device only) and Mx/N processes
can be started atany giventime. Each process cancall icp_sal_userstart("ssL") and the driver deter-
mines the unique name to use for each process.

Referto Configuring Multiple Processes on a System with Multiple Inte/® QAT Endpoints for detailed ex-
ample.

Syntax

CpaStatus icp_sal_userStart(const char *pSectionName);

N4 Supported APIs

Programmer's Guide Intel

Parameters

| psectionName | The section name described in the configuration file.

Return Value

Theicp_sal_userstart function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully started user space access to the Intel” QAT Endpoint as de-
fined in the configuration file.
CPA_STATUS_FAIL Operation failed.

7.2.4.2 icp_sal_userStop

Closes user space access to the Intel® QAT Endpoint; stops the services that were running and frees the
allocated resources. Aftera successful call to this function, user space access to the Intel® QAT Endpoint
from a calling process is not possible. This function should be called once when the process is finished
using the Intel® QAT Endpoint and does not intend to use it again.

Syntax

CpaStatus icp_sal_userstop(void);
Parameters

None

Return Value

The icp_sal_userstop function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully stopped user space access to the Intel® QAT Endpoint.
CPA_STATUS_FAIL Operation failed.

7.2.5 Version Information Function

Afunctionthatallowstheretrieval of versioninformation related to the software and hardware being used.

The version information function definition is located in: $ICP_R0OOT/quickassist/Tookaside/
access_layer/include/icp_sal_versions.h.

Supported APlIs 15

Intel Programmer's Guide

7.2.5.1 icp_sal_getDevVersioninfo

Retrieves the hardware revision and information on the version of the software components being run on
agiven device.

Note: The icp_sal_userstart function must be called before calling this function. If not, calling this
function returns CPA_STATUS_INVALID_PARAMindicatinganerror. The icp_sal_usersStart functionisre-
sponsible for setting up the ADF user space component, which is required for this function to operate
successfully.

Syntax
CpaStatus icp_sal_getDevversionInfo(Cpa32u devid, icp_sal_dev_version_info_t
*pveriInfo);
Parameters
devid The ID (humber) of the device for which version information is to be re-
trieved.
*pVerInfo A pointer to a structure that holds the version information.

Return Value

The icp_sal_getDevversionInfo function returns one of the following codes:

CPA_STATUS_SUCCESS Operation finished successfully; version information retrieved.
CPA_STATUS_INVALID_PARAM | Invalid parameter passed to the function.
CPA_STATUS_RESOURCE System resource problem.

CPA_STATUS_FAIL Operation failed.

7.2.6 Reset Device Function

This APl can only be called in user-space.

The device can be reset using this API call. This will schedule a reset of the device. The device can also
be reset using the adf_ct1 utility, e.g., by callingadf_ct1 gat_dev0 reset.

16 Supported APIs

Programmer's Guide

intel

7.2.6.1 icp_sal_reset_device

Resets the device.

Syntax

CpaStatus 1icp_sal_reset_device(Cpa32U accelid);

Parameters

] accel1d

\ The device number.

Return Value

Theicp_sal_reset_device function returns one of the following codes:

CPA_STATUS_SUCCESS

Successful operation.

CPA_STATUS_FAIL

Indicates a failure.

7.2.7 Thread-Less APlIs

These APIs can be used when the QAT acceleration driver has been configured not to spawn threads.

These APIs can be used in the user space application.

7.2.7.1 icp_sal_poll_device_events

This reads any pending device events from icp_dev%d_csr and forwards to interested subsystems.

Syntax

CpaStatus icp_sal_poll_device_events(void);

Parameters
None

Return Value

Theicp_sal_poll_device_events function returns one of the following codes:

CPA_STATUS_SUCCESS

Successful operation.

CPA_STATUS_FAIL

Indicates a failure.

Supported APlIs

17

Intel Programmer's Guide

7.2.7.2 icp_sal_find_new_devices

This tries to connect to any available devices that the kernel driver has brought up and initialized for use
in user space process.

Syntax

CpaStatus icp_sal_find_new_devices(void);

Parameters

None

Return Value

The icp_sal_find_new_devices function returns one of the following codes:

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates a failure.

7.2.8 Compress and Verify (CnV) Related APIs

APIs documented in this section are used for Compress and Verify. These APIs can be used in the user
space application.

7.2.8.1 icp_sal_get_dc_error

This APl allows the application to return the number of errors that occurred a particular number of times
during the lifetime of a process.

Syntax

Cpab4U icp_sal_get_dc_error(Cpa8S dcError);

Parameters

| dcError | Compression Error code exposed by CpaDcRegstatus enumin cpa_dc.h |

Return Value

Theicp_sal_get_dc_errorfunctionreturnsa 64 bit unsignedinteger representing how many times the
error type specified by Cpa8s dcError occurred in the current process.

18 Supported APIs

Programmer's Guide Intel

7.2.8.2 icp_sal_dc_simulate_error

This APl injects a simulated compression error for a defined number of compression or decompres-
sion requests. The simulated compression errors can only be applied to the traditional APIs. It must
be called prior the APIs that perform the request. In the case of a simulated Compress and Ver-
ify error for a single request, the application would call icp_sal_dc_simulate_error() API as such:
icp_sal_dc_simulate_error(l, CPA_DC_VERIFY_ERROR);

Syntax

CpaStatus icp_sal_dc_simulate_error(Cpa8U numerrors, Cpa8S dcError);

Parameters
numerrors Number of simulated compression or decompression errors desired.
dcError Desired error code to be returned by the compression or decompression
APIL.

Return Value

Theicp_sal_dc_simulate_error function returns one of the following codes:

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates that an invalid error type was assigned to dcError parameter.

7.2.9 Heartbeat APIs

These APIscheck firmware/hardware status fora given device and are used as part of the Heartbeat func-
tionality.

7.2.9.1 icp_sal_check_device

This function checks the status of the firmware/hardware for a given device and is used as part of the
Heartbeat functionality.

Syntax
CpasStatus icp_sal_check_device(Cpa32U accelID);

Parameters

accelID \ The device ID.

Return Value

The icp_sal_check_device function returns one of the following codes:

Supported APlIs 119

Intel Programmer's Guide

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates a failure.

7.2.9.2 icp_sal_check_all_devices

This function checks the status of the firmware/hardware for all devices and is used as part of the Heart-
beat functionality.

Syntax

CpaStatus icp_sal_check_all_devices(void);
Parameters

None

Return Value

The icp_sal_check_all1_devices function returns one of the following codes:

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates a failure.

7.2.9.3 icp_sal_heartbeat_simulate_failure

This function simulates heartbeat failure for a specific device.
Syntax
CpaStatus icp_sal_heartbeat_simulate_failure(Cpa32U accelID);

Parameters

] accelID \ The device ID.

Return Value

Theicp_sal_heartbeat_simulate_failure function returns one of the following codes:

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates a failure.

120 Supported APIs

Programmer's Guide Intel

7.2.10 Device Polling APlIs

APIs documented in this section are used for polling devices.

7.2.10.1 icp_sal_poll_device_events

This function polls for device reset events.

Syntax

CpaStatus icp_sal_poll_device_events(void);
Parameters

None

Return Value

Theicp_sal_poll_device_events function returns one of the following codes:

CPA_STATUS_SUCCESS Successful operation.
CPA_STATUS_FAIL Indicates a failure.

Note: The events are sent to each instance that has registered a callback function. The callbacks are
registered using cpaCyInstanceSetNotificationCband cpabcInstanceSetNotificationcCh.

7.2.10.2 cpaCylnstanceSetNotificationCb

Cryptographic instances use this function to register for device event notifications.
Syntax

CpaStatus cpacCyInstanceSetNotificationCb(const CpaInstanceHandle instanceHandle, const
CpaCyInstanceNotificationCbFunc pinstanceNotificationCb, void *pcCallbackTag);

Parameters
instanceHandle Instance handle.
pinstanceNotificationCb | Instance notification callback function pointer.
*pCallbackTag Opaque value provided by user.

Return Value

The cpaCyInstanceSetNotificationCb functionreturns one of the following codes:

Supported APlIs 121

intel.

Programmer's Guide

CPA_STATUS_SUCCESS

The function was successful.

CPA_STATUS_FAIL

Indicates a failure.

CPA_STATUS_INVALID_PARAM

Invalid parameter passed in.

CPA_STATUS_UNSUPPORTED

Functionis not supported.

The signature for the callback functionis:

typedef void (*CpaCyInstanceNotificationCbFunc)(
const CpaInstanceHandle instanceHandle,
void * pcCallbackTag,
const CpaInstanceEvent instanceEvent);

Parameter:

{

} CpaInstanceEvent;

typedef enum _CpaInstanceEvent

CPA_INSTANCE_EVENT_RESTARTING = O,
CPA_INSTANCE_EVENT_RESTARTED,
CPA_INSTANCE_EVENT_FATAL_ERROR

7.210.3 cpaDclnstanceSetNotificationCb

Data compression instances use this function to register for device event notifications.

Syntax

CpaStatus cpabDcInstanceSetNotificationCb(const CpaInstanceHandle instanceHandle, const
CpabcInstanceNotificationCbFunc pinstanceNotificationCb, void *pCallbackTag);

Parameters

instanceHandle

Instance handle.

pinstanceNotificationcCb

Instance notification callback function pointer.

*pCallbackTag

Opaque value provided by user.

Return Value

The cpabcInstanceSetNotificationCb function returns one of the following codes:

CPA_STATUS_SUCCESS

The function was successful.

CPA_STATUS_FAIL

Indicates a failure.

CPA_STATUS_INVALID_PARAM

Invalid parameter passed in.

CPA_STATUS_UNSUPPORTED

Function is not supported.

The signature for the callback functionis:

122

Supported APIs

Programmer's Guide Intel

typedef void (*CpabDcInstanceNotificationCbFunc)(
const CpaInstanceHandle instanceHandle,
void * pcCallbackTag,
const CpaInstanceEvent instanceEvent);

Parameter:

typedef enum _CpaInstanceEvent

{
CPA_INSTANCE_EVENT_RESTARTING = O,
CPA_INSTANCE_EVENT_RESTARTED,
CPA_INSTANCE_EVENT_FATAL_ERROR

} CpaInstanceEvent;

7.2.11 Congestion Management APls

Congestion Management or Back-pressure mechanism APls are intended to handle the cases when the
device is busy. These APIs ensures there is enough space on the ring before submitting a request.

Applications can query the appropriate ring on each instance and select any instance with enough space
without creating any Opbata structures.

All these API definitions are located in: $ICP_ROOT/quickassist/lookaside/access_layer/include/
icp_sal_congestion_mgmt.h.

Important: Congestion Management APIs are not currently supported with the QAT 2.0 driver.

7.211.1 icp_sal_SymGetinflightRequests

This functionis used to fetch in-flight and max in-flight request counts for the given symmetric instance
handle.

Syntax

CpaStatus icp_sal_SymGetInflightRequests(CpaInstanceHandle instanceHandle, Cpa32u
*maxInflightRequests, Cpa32U *numInflightRequests);

Parameters

instanceHandle Symmetric instance handle.
*maxInflightRe- A pointer to the max in-flight request count.
quests

*numInflightRe- A pointer to the current in-flight request count.
quests

Return Value

Supported APlIs 123

Intel Programmer's Guide

The icp_sal_symGetInflightRequests function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully retrieved the request counts.
CPA_STATUS_INVALID_PARAM | Invalid parameter passed to the function.
CPA_STATUS_FAIL Indicates a failure.

7.211.2 icp_sal_AsymGetinflightRequests

This functionis usedto fetch in-flight and max in-flight request counts for the given asymmetric instance
handle.

Syntax

CpaStatus icp_sal_AsymGetInflightRequests(CpaInstanceHandle instanceHandle, Cpa32U
*maxInflightRequests, Cpa32u *numInflightRequests);

Parameters
instanceHandle Asymmetric instance handle.
*maxInflightRe- A pointer to the max in-flight request count.
quests
*numInflightRe- A pointer to the current in-flight request count.
quests

Return Value

The icp_sal_AsymGetInflightRequests function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully retrieved the request counts.
CPA_STATUS_INVALID_PARAM | Invalid parameter passed to the function.
CPA_STATUS_FAIL Indicates a failure.

7.211.3 icp_sal_dp_SymGetinflightRequests

This data plane functionis usedto fetch in-flight and maxin-flight request counts for the given symmetric
instance handle.

Syntax

CpaStatus 1dcp_sal_dp_SymGetInflightRequests(CpaInstanceHandle instanceHandle, Cpa32U
*maxInflightRequests, Cpa32u *numInflightRequests);

Parameters

124 Supported APIs

Programmer's Guide Intel

instanceHandle Symmetric instance handle.
*maxInflightRe- A pointer to the max in-flight request count.
quests

*numInflightRe- A pointer to the current in-flight request count.
quests

Return Value

Theicp_sal_dp_symGetInflightRequests function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully retrieved the request counts.
CPA_STATUS_INVALID_PARAM | Invalid parameter passed to the function.
CPA_STATUS_FAIL Indicates a failure.

7.2.12 Service Specific Polling APIs

These service specific polling APIs areintended forretrieving response messages that are on the specific
ring and dispatching the associated callback.

All these API definitions are located in: $ICP_ROOT/quickassist/lookaside/access_layer/include/
icp_sal_poll.h

7.212.1 icp_sal_CyPollISymRing

Poll the symmetric logical instance associated with the instanceHandle to retrieve requests that are
on the response rings associated with that instance and dispatch the associated callbacks. The re-
sponse_quota input parameter is the maximum number of responses to process in one call.

Syntax
CpaStatus icp_sal_CyPollsymRing(CpaInstanceHandle instanceHandle, Cpa32u
response_quota) ;
Parameters
instanceHandle Instance handle to poll for responses on the response ring.
response_quota The maximum number of messages that will be read in one polling. Setting
the response quota to zero means that all messages on the ring will be read.

Return Value

Theicp_sal_cyPol1symRing function returns one of the following codes:

Supported APlIs 125

Intel Programmer's Guide

CPA_STATUS_SUCCESS Successfully polled a ring with data.

CPA_STATUS_INVALID_PARAM | Invalid parameter passed to the function.

CPA_STATUS_RETRY There are no responses on the rings associated with the instance.
CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_RESTARTING Device restarting. Resubmit the request.

7.212.2 icp_sal_CyPollAsymRing

Poll the asymmetric logical instance associated with the instanceHandle to retrieve requests that are
on the response rings associated with that instance and dispatch the associated callbacks. The re-
sponse_quota input parameter is the maximum number of responses to process in one call.

Syntax
CpaStatus icp_sal_CyPollAsymRing(CpaInstanceHandle instanceHandle, Cpa32u
response_quota) ;
Parameters
instanceHandle Instance handle to poll for responses on the response ring.
response_quota The maximum number of messages that will be read in one polling. Setting
the response quota to zero means that all messages on the ring will be read.

Return Value

The icp_sal_cyPol1AsymRing function returns one of the following codes:

CPA_STATUS_SUCCESS Successfully polled a ring with data.

CPA_STATUS_INVALID_PARAM | Invalid parameter passed to the function.

CPA_STATUS_RETRY There are no responses on the rings associated with the instance.
CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_RESTARTING Device restarting. Resubmit the request.

7.2.13 Check Device Availability APls

7.2.13.1 icp_sal_userlsQatAvailable

This APl allows an application to establish if there is any active QAT device present on system, without
calling internal libadf APIs or without a dependency on icp_sal_userstart()

Syntax

CpaBoolean icp_sal_userisQatAvailable(void);

Parameters

126 Supported APIs

Programmer's Guide Intel

None
Return Value

Theicp_sal_userIsQatAvailable function returns one of the following codes:

CPA_TRUE Indicates that there is at least one active device.

CPA_FALSE Indicates that there are no active devices.

Supported APlIs 127

8 Virtualization

8.1 Virtualization Deployment Model for Intel” QAT 2.0

Two different methods of virtualization are supported as shown in the below image.

Gues VM Guest/ VM Guest/VM Guest/VM
Application Appliation Applicetion Appliation
(B USL) (& USLY {8 USL) {8 USLY

¥ v ¥ v
QAT QAT QAT VF QATVF
Driver Driver Driver Dirivear
i i
i ¥
] I
] I
L !
PF/VF PF/VE
COMmmMms COMmms
i ;
QAT PF [I
Driver ndl
HDSWMM H:lStﬁMM
VT-d | | WT-d I
v
v v w w ¥ ¥

¥
QAT FF QAT FF OAT FF VF = VF |

Physical Device direct assignment

Single Root 10V (SR-10V)

128

Programmer's Guide Intel

8.2 Physical Device Direct Assignment

The hardware exposes one Physical Function (PF) per QAT Endpoint to the host. Number of QAT End-
points per platformis included in the Dimensions.

One or more PFs may be passed to a single virtual machine.

There is no sharing of the PF.

Note: Hot plugging of Physical Functions (PFs) is not supported. To ensure the device functions cor-
rectly after being added, please restart the virtual machine.

8.3 Single Root IOV (SR-IOV)

When SR-IOV isenabled, the hardware exposes one Physical Function (PF) and n Virtual Functions(VFs)
per QAT Endpoint to the host, where nis defined in Dimensions. Number of QAT Endpoints per platform
is alsoincluded in the Dimensions.

One or more VFs can be passed through to different guests/VMs

For details on enabling SR-IOV refer to the Virtualization Deployment Guide.

8.4 Reducing Number of VFs per Endpoint

Note: Reducing number of VFs perendpointis supported starting with QAT Gen 4.

When the acceleration software is installed for SR-IOV use case, all VFs are enabled. In some instances,
itis not desirable to enable all VFs.

The following commands can be used to limit VFs exposed per PF.

1. Disable all VFs on a specific device (76:00.0 in this example):

echo 0 | sudo tee /sys/bus/pci/devices/0000:76:00.0/sriov_numvfs

2. Enable number of desired VFs for specific device (4 VFs on 76:00.0 in this example):

echo 4 | sudo tee /sys/bus/pci/devices/0000:76:00.0/sriov_numvfs

Important:

= This changeis not persistent. After areboot, all VFs are exposed per PF.

Virtualization 129

intel.

» Restarting the QAT service will also result in all VFs being exposed per PF.

Programmer's Guide

After reducing the number of VFs per PF, it is possible that the mapping of QAT VF to configuration file
has changed. This mapping is very important especially when there are different services enabled with
each PF/VF configuration, remembering that to enable a service in a VF requires the same service to
be enabled in the PF. The configuration file for the VF can be determined by examining the gat_service
output.

For example, in the following output:

Checking status of all devices.

There is 100 QAT acceleration device(s) in the system:

gat_dev0 - type: 4xxx, inst_id: 0, node_id: 0, bsf: 0000:6b:00.0, #accel: 1
—#engines: 9 state: up

gat_devl - type: 4xxx, inst_id: 1, node_id: 0, bsf: 0000:70:00.0, #accel: 1
—#engines: 9 state: up

gat_dev2 - type: 4xxx, inst_id: 2, node_id: 0, bsf: 0000:75:00.0, #accel: 1
—#engines: 9 state: up

gat_dev3 - type: 4xxx, inst_id: 3, node_id: 0, bsf: 0000:7a:00.0, #accel: 1
—#engines: 9 state: up

gat_dev4 - type: 4xxx, inst_id: 4, node_id: 1, bsf: 0000:e8:00.0, #accel: 1
—#engines: 9 state: up

gat_dev5 - type: 4xxx, inst_id: 5, node_id: 1, bsf: 0000:ed:00.0, #accel: 1
—#engines: 9 state: up

gat_dev6 - type: 4xxx, inst_id: 6, node_id: 1, bsf: 0000:f2:00.0, #accel: 1
—#engines: 9 state: up

gat_dev7 - type: 4xxx, inst_id: 7, node_id: 1, bsf: 0000:f7:00.0, #accel: 1
—#engines: 9 state: up

gat_dev8 - type: 4xxxvf, inst_id: 80, node_id: 0, bsf: 0000:6b:00.1, #accel: 1
—#engines: 1 state: up

gat_dev9 - type: 4xxxvf, dinst_id: 81, node_id: 0, bsf: 0000:6b:00.2, #accel: 1
—#engines: 1 state: up

gat_devl0 - type: 4xxxvf, inst_id: 82, node_id: 0, bsf: 0000:6b:00.3, #accel: 1
—#engines: 1 state: up

gat_devll - type: 4xxxvf, dinst_id: 83, node_id: 0, bsf: 0000:6b:00.4, #accel: 1
—#engines: 1 state: up

gat_devl2 - type: 4xxxvf, dinst_id: 84, node_id: 0, bsf: 0000:70:00.1, #accel: 1
—#engines: 1 state: up

gat_devl3 - type: 4xxxvf, inst_id: 85, node_id: 0, bsf: 0000:70:00.2, #accel: 1
—#engines: 1 state: up

gat_devl4 - type: 4xxxvf, dinst_id: 86, node_id: 0, bsf: 0000:70:00.3, #accel: 1
—#engines: 1 state: up

gat_devl5 - type: 4xxxvf, dnst_id: 87, node_id: 0, bsf: 0000:70:00.4, #accel: 1
—#engines: 1 state: up

gat_devl6 - type: 4xxxvf, inst_id: 88, node_id: 0, bsf: 0000:75:00.1, #accel: 1
—#engines: 1 state: up

gat_devl7 - type: 4xxxvf, dinst_id: 89, node_id: 0, bsf: 0000:75:00.2, #accel: 1
—#engines: 1 state: up

gat_devl8 - type: 4xxxvf, inst_id: 90, node_id: 0, bsf: 0000:75:00.3, #accel: 1
—#engines: 1 state: up

gat_devl9 - type: 4xxxvf, inst_id: 91, node_id: 0, bsf: 0000:75:00.4, #accel: 1
—#engines: 1 state: up

130

Virtualization

Programmer's Guide Intel

The configuration file name will be /etc/4xxxvf_dev<x>.conf where xisinst_id.

For gat_dev?, the configuration file is /etc/4xxxvf_dev81.conf

Virtualization 131

9 Secure Architecture Considerations

This section describes the potential threats identified as part of the secure architecture analysis of the
Intel® Quick Assist Technology acceleration complex and the actions that can be taken to protect against
these threats. This chapter concentrates on the acceleration complex. First, the terminology covering
the main threat categories and mechanisms, attacker privilege and deployment models are presented.
Then, some common mitigation actions that can be applied to many of these threat categories and
mechanisms are discussed. Finally, more specific threat/attack vectors, including attacks against spe-
cific services of the PCH device are described.

9.1 Terminology

Each of the potential threat/attack vectors discussed may be described in terms of the following:
= Threat Categories
= Attack Mechanism
= Attacker Privilege

* Deployment Models

9.1.1 Threat Categories

System threats can be classified into the categories in the following table.

Table 44: Threat Categories

Category Nature of Threat and Examples

Exposure of Data Attacker reads data to which they should not have read access.
Attacker reads cryptographic keys.

Modification of Data Attacker overwrites data to which they should not have write access.
Attacker overwrites cryptographic keys.

Denial of Service Attacker causes application or driver software (running on an |A core)
to fail or terminate.

Attacker causes Intel” QuickAssist Accelerator firmware to hang, tem-
porarily impeding service.

continues on next page

132

Programmer's Guide

intel.

Table 44 — continued from previous page

Category

Nature of Threat and Examples

Attacker causes excessive use of resource (IA core, Intel” QuickAssist
Accelerator firmware thread, silicon slice, PCle* bandwidth, and so on),
thereby reducing availability of the service to legitimate client.

9.1.2 Attack Mechanism

Attack Mechanisms and Examples

Some of the mechanisms by which an attacker can carry out an attack are listed in the following table.

Table 45: Attack Mechanism

Mechanism

Examples

Contrived Packet Stream

Attacker crafts a packet stream that exploits known vulnerabilities in
the software, firmware, or hardware. This could include vulnerabilities
such as buffer overflow bugs, lack of parameter validation, and so on.

Compromised Application
Software

Attacker modifies the application code calling the Intel® QuickAssist
Technology API to exploit known vulnerabilities in the driver/hardware.

Application Malware

In an environment where an attacker may be able to run their own ap-
plication, separate from the main application software, they may invoke
the Intel® QuickAssist Technology API to exploit known vulnerabilities
in the driver/hardware.

Compromised |A driver soft-
ware

Attacker modifies the A driver to exploit known vulnerabilities in the
driver/hardware.

Defect

ltis also possible that the attackis not malicious, but rather an uninten-
tional defect.

9.1.3 Attacker Privilege

The following table describes the privileges that an attacker may have. The table describes the case of a

non-virtualized system.

Table 46: Attacker Privilege

Privilege

Comments

Physical access

There is no attempt to protect against threats, such as signal probes,
where the attacker has physical access to the system. Customers can
protect their systems using physical locks, tamper-proof enclosures,
Faraday cages, and so on.

Loggedin as privileged user

There is no attempt to protect against threats where the attacker is
logged inasa privileged user. Customers can protect their systems us-
ing strong, frequently changed passwords, and so on.

continues on next page

Secure Architecture Considerations

133

Intel Programmer's Guide

Table 46 — continued from previous page

Privilege Comments

Logged in as unprivileged | If the attackerislogged into a platform as an unprivileged user, it is im-

user portant to ensure that they cannot use the services of the PCH to ac-
cess (read or write) any data to which they would not otherwise have
access.

Ability to send packets In almost all deployments, attackers have the ability to send arbitrary
packets from the network into the system. It is assumed that threats
(for example, denial of service attacks) may arrive in this way.

9.1.4 Deployment Models

Some of the possible deployment models are given in the following table.

Table 47: Deployment Models

Deployment Model Examples
System with no untrusted users

* Network security appliance
= Serverin data center

System with potentially untrusted users
= Serverin data center

9.2 Threat/Attack Vectors

A thorough analysis has been conducted by considering each of the threat cateqgories, attack mecha-
nisms, attacker privilege levels, and deployment models. As a result, the following threats have been
identified. Also described are the steps a user of the PCH chipset can take to mitigate against each
threat. Some general practices that mitigate many of the common threats are considered first. There-
after, threats on specific services and mitigation against those threats are described.

9.2.1 General Mitigation

The following mitigation techniques are generic to different threats and attack vectors:

= Ensure that all software running on the platform that has access to Intel® Quick Assist Technology
devices is within the trust boundary of the platform owner. This mitigation includes software run-
ning in virtual machines and containers.

* Intel® follows Secure Coding guidelines, including performing code reviews and running static anal-
ysis on its driver software and firmware, to ensure its compliance with security guidelines. It is

134 Secure Architecture Considerations

Programmer's Guide Intel

recommended that customers follow similar guidelines when developing application code. This
should include the use of tools such as static analysis, fuzzing, and so on.

* Ensure each hardware component, including the PCH chipset, processor, and DRAM, is physically
secured from attackers. This can include such examples as physical locks, tamper proofing, and
Faraday cages (to prevent side-channel attacks via electromagnetic radiation).

* Ensurethatnetwork services notrequired onthe module are not operatingandthat the correspond-
ing network ports are locked down.

= Use strong passwords to protect against dictionary and other attacks on administrative and other
login accounts.

9.2.2 General Threats

General threats include the following:
= DMA
= Intentional Modification of IA Driver
= Modlification of the QAT Configuration File
= Malicious Application Code

= Denial of Service

9.2.21 DMA

Threat: The PCH can perform Direct Memory Access (DMA, the copying of data) between defined
memory locations. Once an attacker has sufficient privilege to invoke the Intel® QuickAssist Technology
API, or to write to/read from the hardware rings used by the driver to communicate with the device, they
can send requests to the Intel® QuickAssist Accelerator to perform such DMA, passing arbitrary physical
memory addresses as the source and/or destination addresses, thereby exposing or modifying regions
of memory to which they would otherwise not have access.

Mitigation 1: Ensure that Intel® Input-Output Memory Management Unit (IOMMU) is enabled. This will
force USDM to create QuickAssist IOMMU domain and all memory allocated by USDM will be mapped
into this domain, hence malicious user or error in user application cannot read or write memory outside
this domain which mitigates the risk. However because there is only single domain, there is no protection
between individual Virtual Functions(VFs) or applications. This design is done for simplicity of memory
manager and if needed, VFIO-PClI should be used to create individual domains per VF.

Mitigation 2: Ensure that only trusted users are granted permissions to access the Intel® QuickAssist
Technology API, or to write to and read from the hardware rings. Specifically, the PCH configuration file
describes logical instances of acceleration services and the set of hardware rings to be used for each
such instance. User processes can ask the kernel driver to map these rings into their address spaces.
To access a given device (identified by the number in the filenames below), the user must be granted
read/write access to the following files, which may be in /dev:

Secure Architecture Considerations 135

Intel Programmer's Guide

* ui0<0..N>(where <0. .N> are the gat uio device numbers)
[qat:’:

* usdm_drv

9.2.2.2 Intentional Modification of |A Driver

Threat: An attacker can potentially modify the IA driver to behave maliciously. This may lead to a denial
of service of Intel® Quick Assist Technology services.

Mitigation: The driver object/executable file on disk should be protected using the normal file protection
mechanisms so that it is writable only by trusted users, for example, a privileged user or an administrator.
Specifically, the Intel® QuickAssist Technology kernel objects and libraries should not be writeable by
user. If the gat user group is being used to provide access to Intel® Quick Assist Technology services,
then this group should not have write permission to the binaries.

9.2.2.3 Modification of the QAT Configuration File

Threat: The QAT configuration file is read at initialization time by the driver and specifies what instances
of each service (cryptographic, data compression) should be created, and which rings each service in-
stance will use. Modifying this file could lead to denial of service by deleting required instances or could
be usedtoattempt to create additional instances that the attacker could subsequently attempt to access
for malicious purposes.

Mitigation: The configuration file should be protected using the normal file protection mechanisms so
that itis writable only by trusted users, for example, a privileged user or an administrator.

Note: By default, the configuration file is stored in the /etc directory and may be named something like,
c6xxx_dev0.conf . Its default permissions are that it is readable and writeable only by root user and gat

group.

9.2.2.4 Malicious Application Code

Threat: Anattacker who can gainaccess to the Intel® QuickAssist Technology APl may be able to exploit
the following features of the API:

= Buffers passed to the APl have a specified length of up to 32 bits. By specifying excessive lengths,
an attacker may be able to cause denial of service by overwriting data beyond the end of a buffer.

= Buffer lists passed to the API consist of a scatter gather list (array of buffers). An attacker may in-
correctly specify the number of buffers, causing denial of service due to the reading or writing of
incorrect buffers.

136 Secure Architecture Considerations

Programmer's Guide Intel

Mitigation: Platformm management caninclude the Rate Limiting feature to mitigate against Noisy Neigh-
bors. Only trusted users and applications should be allowed to access the Intel® QuickAssist Technology
API, as described in General Mitigations.

9.2.2.5 Denial of Service

Threat: An attacker may construct a service request that does not conform to the specification, result-
ing in low of service due to service timeouts, halting of Quick Assist service or undesired platform level
conditions.

Mitigation: The current generation of Intel® Quick Assist Technology has been designed for perfor-
mance, providing direct access to hardware via PCle* MMIO space. Misuse of hardware registers is to
be avoided, and the threat against intentional misuse must be mitigated by ensuring all software on the
platform is trusted.

An attacker may attempt to contrive a packet stream that monopolizes the acceleration services, thereby
denying service to legitimate users. This may consist of one or more of the following:

» Sending packets that are compressed (for example, using IPComp) or encrypted (for example, us-
ing IPsec), thereby reducing the availability of these services to legitimate traffic.

= Sending excessively large packets, causing some latency for legitimate packets.

= Sendingsmall packetsata high packet rate, causing extra bandwidth utilization on the PCl Express*
bus connecting the device to the processor.

Mitigation: Proper monitoring of Device Usage (DU) and the construction of Service Level Agreements
(SLA) are now available as part of the Rate Limiting feature.

9.2.3 Threats Specific to Cryptographic Service

Threats against the cryptographic service include:

9.2.3.1 Reading Cryptographic Keys

Threat: Cryptographic keys are stored in DRAM. An attacker who can determine where these are stored
could read the DRAM to get access to the keys or could write the DRAM to use keys known by the at-
tacker, thereby compromising the confidentiality of data protected by these keys. Some cryptographic
keys have long lives. The impact of an attacker obtaining the key may exist for the lifetime of the key itself.

Mitigation: DRAM s consideredinside the cryptographic boundary (as defined by FIPS140-2). The nor-
mal memory protection schemes provided by the Intel® architecture processor and memory controller,
and by the operating system, prevent unauthorized access to these memory regions.

Secure Architecture Considerations 137

10 Revision History

Document Description Date
Version
007 Updated SLA Units for PKE December 2024
006 Updated Integrity Checksum details November 2024
005 Removed S-I0OV References April 2024
004 Updates for 1.1.40 Release March 2024
003 RSA-1024 added as Opt-in. June 2023
002 Note added about using SR-IOV and S-IOV simultaneously | May 2023

on same PF (not supported).
001 Initial Release February 2023

138

	About this Document
	Conventions and Terminology

	Architecture
	Infrastructure
	Queues and Queue Pairs
	Queues Pairs
	Queue Bundles

	Service Instances
	Configurable Items (via config file)

	Memory Management
	Shared Virtual Memory
	SVM Kernel Requirements

	DMA-able Memory
	Memory Type Determination
	Buffer Formats
	Flat Buffers
	Scatter-Gather List (SGL) Buffers

	Huge Pages

	Modes of Operation
	Calling Semantics
	Asynchronous (Polled)
	Asynchronous (Interrupts)
	Synchronous
	Pros And Cons

	Load Balancing
	Per Endpoint
	Across Endpoints
	Load Sharing Criteria

	Dimensions

	Debugability
	Overview of Intel® QAT debugfs entries
	Entries in /sys/kernel/debug/qat_*
	Memory driver queries (qae_mem_slabs)

	Heartbeat
	Heartbeat Operation
	Initialization
	Heartbeat Monitoring
	Resetting a Failed Device
	Function Signatures

	Incorporating Heartbeat into Intel® QAT Applications
	Restart Sequence
	Status of Packets in Flight (Crypto Applications Only)
	Determining Device ID
	Testing Heartbeat
	Simulated Heartbeat Failure Configuration
	Simulating Heartbeat Failure
	System Virtual Files
	Heartbeat Polling Frequencies

	Handling Device Failures in a Virtualized Environment
	Incorporating Dummy Responses into an Intel® QAT Application

	Telemetry
	Telemetry Usage
	Out-Of-Tree
	In-Tree

	Telemetry Control
	Telemetry Commands
	Selecting Ring Pairs
	Out-Of-Tree

	Device Level Telemetry Values
	Ring Pair Level Telemetry Values

	Monitoring Telemetry - Text Based
	Out-Of-Tree
	In-Tree

	Rate Limiting
	Service Level Agreement (SLA)
	SLA Units
	SLA Manager Application
	SLA Commands

	Power Management
	Configuration
	Out-of-Tree
	In-Tree

	Usage
	Considerations

	Reliability, Availability, and Stability (RAS)
	RAS Usage
	AER Errors

	Acceleration Driver
	Controlling the Driver
	qat_service
	qat_service Usage

	adf_ctl
	adf_ctl Usage
	Examples

	Application Payload Memory Allocation
	Services
	Thread Specific USDM

	Return Codes
	Linux* Device Driver Operations Return Codes

	Configuration Files
	Configuration File Overview
	General Section
	ServicesEnabled
	Performance Considerations

	ServicesProfile
	General Default Configuration Parameters

	Concurrent Requests
	Power Management Parameters
	Shared Virtual Memory (SVM) Parameters
	SVMEnabled
	ATEnabled

	Logical Instances Section
	[KERNEL] Section
	User Process [xxxxx] Sections
	Cryptographic Logical Instance Parameters
	Data Compression Logical Instance Parameters
	Setting the Core Affinity Parameter for a Logical Instance

	Maximum Number of Process Calculations
	Increasing the Maximum Number of Processes/Instances
	Invalid Configurations
	Configuring Instances for Virtual Functions

	Configuring Multiple Intel® QuickAssist Technology Endpoints in a System
	Configuring Multiple Processes on a System with Multiple Intel® QAT Endpoints
	Sample Configuration Files

	Services
	Data Compression
	Compression Features
	Compression Limitations
	Compression Session Setup
	Decompression Session Setup
	Deflate Decompression
	LZ4 Decompression
	LZ4 Decompression Limitations
	Multi-frame decompression support

	Performance Considerations
	Flush Flags
	Checksums
	LZ4s Compressed Data Block format
	LZ4 Compression Support

	Compress-and-Verify
	Compress and Verify Error log in Sysfs
	Compress and Verify and Recover (CnVnR)

	Dynamic Compression
	Maximum Expansion with Auto Select Best Feature (ASB)
	Maximum Compression Expansion
	No Session API
	Compression Levels
	Compression Status Codes
	Intel® QuickAssist Technology Compression API Errors
	Compression API Errors

	Overflows Errors
	Traditional API Overflow Exception
	Data Plane API Overflow Error
	Handling Overflow Errors
	Compression Overflows in a Virtual Environment
	Avoiding Compression Overflow Exceptions

	Integrity Checksums
	Verify HW Integrity CRC’s

	Data Compression Applications
	Compression for Storage
	Data Deduplication and WAN Acceleration

	Cryptographic Services
	Introduction
	Supported Cipher Algorithms
	Supported Hash/Authenticate Algorithms
	Supported Public Key Algorithms

	Cryptography Applications
	IPsec and SSL VPNs
	Encrypted Storage
	Web Proxy Appliances

	Supported APIs
	Intel QuickAssist Technology APIs
	Cryptographic and Data Compression API Descriptions
	Data Plane APIs Overview
	IA Cycle Count Reduction When Using Data Plane APIs
	Usage Constraints on the Data Plane APIs

	Intel® QAT API Limitations

	Additional APIs
	Dynamic Instance Allocation Functions
	icp_sal_userCyGetAvailableNumDynInstances
	icp_sal_userDcGetAvailableNumDynInstances
	icp_sal_userCyInstancesAlloc
	icp_sal_userDcInstancesAlloc
	icp_sal_userCyFreeInstances
	icp_sal_userDcFreeInstances
	icp_sal_userCyGetAvailableNumDynInstancesByDevPkg
	icp_sal_userDcGetAvailableNumDynInstancesByDevPkg
	icp_sal_userCyInstancesAllocByDevPkg
	icp_sal_userDcInstancesAllocByDevPkg
	icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel
	icp_sal_userCyInstancesAllocByPkgAccel

	IOMMU Remapping Functions
	icp_sal_iommu_get_remap_size
	icp_sal_iommu_map
	icp_sal_iommu_unmap
	IOMMU Remapping Function Usage

	Polling Functions
	icp_sal_pollBank
	icp_sal_pollAllBanks
	icp_sal_CyPollInstance
	icp_sal_DcPollInstance
	icp_sal_CyPollDpInstance
	icp_sal_DcPollDpInstance

	User Space Access Configuration Functions
	icp_sal_userStart
	icp_sal_userStop

	Version Information Function
	icp_sal_getDevVersionInfo

	Reset Device Function
	icp_sal_reset_device

	Thread-Less APIs
	icp_sal_poll_device_events
	icp_sal_find_new_devices

	Compress and Verify (CnV) Related APIs
	icp_sal_get_dc_error
	icp_sal_dc_simulate_error

	Heartbeat APIs
	icp_sal_check_device
	icp_sal_check_all_devices
	icp_sal_heartbeat_simulate_failure

	Device Polling APIs
	icp_sal_poll_device_events
	cpaCyInstanceSetNotificationCb
	cpaDcInstanceSetNotificationCb

	Congestion Management APIs
	icp_sal_SymGetInflightRequests
	icp_sal_AsymGetInflightRequests
	icp_sal_dp_SymGetInflightRequests

	Service Specific Polling APIs
	icp_sal_CyPollSymRing
	icp_sal_CyPollAsymRing

	Check Device Availability APIs
	icp_sal_userIsQatAvailable

	Virtualization
	Virtualization Deployment Model for Intel® QAT 2.0
	Physical Device Direct Assignment
	Single Root IOV (SR-IOV)
	Reducing Number of VFs per Endpoint

	Secure Architecture Considerations
	Terminology
	Threat Categories
	Attack Mechanism
	Attacker Privilege
	Deployment Models

	Threat/Attack Vectors
	General Mitigation
	General Threats
	DMA
	Intentional Modification of IA Driver
	Modification of the QAT Configuration File
	Malicious Application Code
	Denial of Service

	Threats Specific to Cryptographic Service
	Reading Cryptographic Keys

	Revision History

