

Intel® UHD Graphics Open Source

Programmer's Reference Manual

For the 2021 11th Generation Intel Core™ Processors,

Intel Xeon® Processors, and Intel 500 Series Chipsets

based on the "Rocket Lake" Platform

Volume 1: Preface

July 2022, Revision 1.0

ii Doc Ref # IHD-OS-RKL-Vol 1-7.22

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Code names are used by Intel to identify products, technologies, or services that are in development and

not publicly available. These are not "commercial" names and not intended to function as trademarks

Customer is responsible for safety of the overall system, including compliance with applicable safety-

related requirements or standards.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by

this document, with the sole exceptions that a) you may publish an unmodified copy and b) code

included in this document is licensed subject to Zero-Clause BSD open-source license (0BSD). You may

create software implementations based on this document and in compliance with the foregoing that are

intended to execute on the Intel product(s) referenced in this document. No rights are granted to create

modifications or derivatives of this document.

The products described may contain design defects or errors known as errata which may cause the

product to deviate from published specifications. Current characterized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other legal

analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free

license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising

from course of performance, course of dealing, or usage in trade.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its

subsidiaries. Other names and brands may be claimed as the property of others.

Doc Ref # IHD-OS-RKL-Vol 1-7.22 iii

Table of Contents

Release Notes ... 1

About This Programmer’s Reference Manual .. 2

A Public View of the PRM ... 2

In Multiple PDF Files ... 2

Without Cross-book Links .. 2

Searching Across Multiple PDF Files... 2

Organization of the Programmer’s Reference Manual ... 8

Reserved Bits and Software Compatibility ... 10

Terminology ... 11

Doc Ref # IHD-OS-RKL-Vol 1-7.22 1

Release Notes

This Programmer’s Reference Manual (PRM) contains content that applies to Rocket Lake only. See the

Intel® Iris® Xe and UHD Graphics Open-Source Programmer's Reference Manual for the 2020-2021 11th

Generation Intel Xeon®, Core™, Celeron®, Pentium® Gold Processors based on the "Tiger Lake" Platform

for content that applies to both Tiger Lake and Rocket Lake.

2 Doc Ref # IHD-OS-RKL-Vol 1-7.22

About This Programmer’s Reference Manual

This Preface serves as an Introduction to the Programmer’s Reference Manual (PRM) for the Graphics

Processing Unit (GPU) included on the Rocket Lake series of chips. The PRM includes both narrative

content that explains conceptually how the different modules of the GPU work, and a comprehensive

Command Reference that describes named memory addresses/registers, commands, structures and

enumerations, at the bit-level.

A Public View of the PRM

For each major chip series, Intel publicly releases a version of the PRM for the Open Source development

community and developers at large. For those releases, we release the PRM in Portable Document

Format (PDF).

In Multiple PDF Files

Due to file size constraints in generating PDF output, the PRM is generated in multiple PDF files. The

organization of those files reflects the major components of the GPU. Both the narrative content and the

Command Reference had to be partitioned into multiple PDF files.

Without Cross-book Links

Cross-book hyperlinks could not reasonably be included for the PDF. Instead, those links have been

disabled and colored dark red and display in a serif font for easy recognition. This is an example:

RING_BUFFER_TAIL – Ring Buffer Tail

RING_BUFFER_HEAD – Ring Buffer Head

Searching Across Multiple PDF Files

You can quickly access the detailed explanation for each named memory address, command, structure or

enumerator utilizing the Advanced Search capabilities in Acrobat Reader.

To maximize the efficiency of the search, make sure to place all PRM PDFs in a single folder, or at least

the four Command Reference PDFs in a single folder.

Doc Ref # IHD-OS-RKL-Vol 1-7.22 3

Let’s walk through an example PDF search, you might be reading the Command Stream Programming

module PDF file and encounter the page illustrated below.

To view the detailed explanation of one of the listed registers, for this example, we will use

RING_BUFFER_TAIL …

1. Simply select Search or Advanced Search from the Edit menu, depending on the version of

Acrobat you might be using. (If you are using some other PDF Reader, it probably will also have

advanced search capabilities.)

4 Doc Ref # IHD-OS-RKL-Vol 1-7.22

A search dialog box then displays.

2. Select the All PDF Documents in radio button, click the pull-down list box, then select Browse

for Location…

Doc Ref # IHD-OS-RKL-Vol 1-7.22 5

3. Browse to and select the folder containing the pertinent PDF files and click OK.

4. The Browse for Folder dialog closes and the focus shifts back to the original Search dialog. Enter

the word or phrase from the red, serif text in the What word or phrase would you like to

search for? text box and click Search.

6 Doc Ref # IHD-OS-RKL-Vol 1-7.22

As matches are found, they will be listed. When the search is complete, the dialog will appear

similar to the following:

Doc Ref # IHD-OS-RKL-Vol 1-7.22 7

5. Click the most relevant result and the PDF file containing that result will open at the correct page.

8 Doc Ref # IHD-OS-RKL-Vol 1-7.22

Organization of the Programmer’s Reference Manual

The Intel® Graphics PRM is organized into the following content areas:

Command Reference provides a tabular graphical interface tool for searching for and displaying

command opcodes, registers, structures, and instructions.

GPU Overview introduces the GPU and its subsystems. This includes high level descriptions of its

hardware pipelines, command formats, register maps, and supported memory/surface formats.

Configurations tracks the evolution of the graphics architecture and provides generational information

for many basic architectural attributes.

Memory Views covers the Graphics Memory Interface, including memory interface functions, tiling, the

physical graphics memory, page faults and error handling, memory types, common video and non-video

surface formats, and other information related to the memory interface.

The GuC micro-controller is a scheduler for the graphics engines. This section describes the following

GuC register functions:

Functions

Interrupt register functions

DMA register functions

Shim register functions

Command Stream Programming describes the programming interfaces for Command Streamer, which

manages the use of the 3D and Media pipelines. It performs switching between pipelines and forwarding

command streams to the currently active pipeline. It also manages the allocation of the Unified Return

Buffer (URB) and helps support the Constant URB Entry (CURBE) function. It includes the following topics:

Topic

Command Formats

Blitter Engine Command Interface

Render Engine Command Interface

Video Codec Engine Command Interface

Video Enhancement Engine Command Interface

Preemption

Command Streamer (CS) ALU Programming

Resource Streamer

Doc Ref # IHD-OS-RKL-Vol 1-7.22 9

Media describes the VDBOX and VEBOX engines and registers. Also covered are HEVC, HCP and SFC.

Media VDBOX covers the Multi-Format Codec (MFX) Engine, the hardware fixed-function pipeline that

includes both multi-format decoding (MFD) and multi-format encoding (MFC).

Media VEBOX discusses the Video Enhancement pipeline, an independent pipe that manages image

enhancement functions. Topics include denoise filtering, deinterlacing, color processing, auto contrast

enhancement, the capture pipe, output statistics, and video enhancement engine functions.

HEVC covers the High Efficiency Video Coding (HEVC) Codec Pipeline (HCP), which is a fixed function

hardware video codec pipeline responsible for encoding and decoding HEVC streams, with a target

resolution of 4kx2k at 60 frames per second.

3D/GPGPU Engine includes the following topics:

• Command stream backend processing

• L3 cache

• Shared Local Memory (SLM)

• Messaging

• Shared functions for the 3D pipeline

• 3D fixed functions

• GPGPU Pipeline processing via both fixed functions and programmable GPU cores

• Execution units

Blitter discusses the BLock Image Transferer Engine for 2D graphics processing.

Display describes display engine registers, including display HD audio configuration and programming.

It includes VGA and extended VGA registers, CPU display registers, North display engine registers, and

South display engine registers. The Display section explains audio codec verbs, display audio

configuration registers, and the display audio controller registers.

Memory Mapped I/O (MMIO) includes information on Slice Registers and Die Recovery.

SFC discusses the commands sent to the Scalar and Format Converter (SFC) pipeline from the Media

VEBOX and Media VDBOX

Workarounds provides software workarounds for known issues with the GPU.

10 Doc Ref # IHD-OS-RKL-Vol 1-7.22

Reserved Bits and Software Compatibility

In many register, instruction, and memory layout descriptions, certain bits are marked as "Reserved."

When bits are marked as reserved, it is essential for compatibility with future devices that the software

treat these bits as having a future, though unknown, effect. The behavior of reserved bits should be

regarded as undefined and unpredictable. Software should follow the guidelines listed below in dealing

with reserved bits:

1. Do not depend on the states of any reserved bits when testing values of registers that contain such

bits.

2. Mask out the reserved bits before testing.

3. Do not depend on the states of any reserved bits when storing to an instruction or to a register.

4. When loading a register or formatting an instruction, always load the reserved bits with the values

indicated in the documentation (if any), or reload them with the values previously read from the

register.

Doc Ref # IHD-OS-RKL-Vol 1-7.22 11

Terminology

Term Abbr. Definition

Adjacency -- One can consider a single line object as existing in a strip of connected

lines. The neighboring line objects are called "adjacent objects", with

the non-shared endpoints called the "adjacent vertices." The same

concept can be applied to a single triangle object, considering it as

existing in a mesh of connected triangles. Each triangle shares edges

with three other adjacent triangles, each defined by a non-shared

adjacent vertex. Knowledge of these adjacent objects/vertices is

required by some object processing algorithms (e.g., silhouette edge

detection). See 3D Pipeline.

Application IP AIP Application Instruction Pointer. This is part of the control registers for

exception handling for a thread. Upon an exception, hardware moves

the current IP into this register and then jumps to System Instruction

Pointer (SIP).

Architectural Register

File

ARF A collection of architecturally visible registers for a thread such as

address registers, accumulator, flags, notification registers, IP, null, etc.

Binding Table -- Memory-resident list of pointers to surface state blocks (also in

memory).

Binding Table Pointer BTP Pointer to a binding table, specified as an offset from the Surface State

Base Address register.

Blitter BLT Block Image Transferrer

Bypass Mode -- Mode where a given fixed function (FF) unit is disabled and forwards

data down the pipeline unchanged. Not supported by all FF units.

Byte B A numerical data type of 8 bits, B represents a signed byte integer.

Child Thread -- A branch-node or a leaf-node thread that is created by another thread.

It is a kind of thread associated with the media fixed function pipeline.

A child thread is originated from a thread (the parent) executing on an

EU and forwarded to the Thread Dispatcher by the TS unit. A child

thread may or may not have child threads depending on whether it is a

branch-node or a leaf-node thread. All pre-allocated resources such as

URB and scratch memory for a child thread are managed by its parent

thread. See also Parent Thread.

Clip Space -- A 4-dimensional coordinate system within which a clipping frustum is

defined. Object positions are projected from Clip Space to NDC space

via "perspecitive divide" by the W coordinate, and then viewport

mapped into Screen Space.

Clipper -- 3D fixed function unit that removes invisible portions of the drawing

sequence by discarding (culling) primitives or by "replacing" primitives

with one or more primitives that replicate only the visible portion of the

original primitive.

Color Calculator CC Part of the Data Port shared function, the color calculator performs

fixed-function pixel operations (e.g., blending) before writing a result

pixel into the render cache.

12 Doc Ref # IHD-OS-RKL-Vol 1-7.22

Term Abbr. Definition

Command -- Directive fetched from a ring buffer in memory by the Command

Streamer and routed down a pipeline. Should not be confused with

instructions which are fetched by the instruction cache subsystem and

executed on an EU.

Command Streamer CS or CSI Functional unit of the Graphics Processing Engine that fetches

commands, parses them, and routes them to the appropriate pipeline.

Constant URB Entry CURBE A UE that contains "constant" data for use by various stages of the

pipeline.

Control Register CR The read-write registers are used for thread mode control and

exception handling for a thread.

Data Port DP Shared function unit that performs a majority of the memory access

types on behalf of SNB+ programs. The Data Port contains the render

cache and the constant cache and performs all memory accesses

requested by SNB+ programs except those performed by the Sampler.

See DataPort.

Degenerate Object -- Object that is invisible due to coincident vertices or because it does not

intersect any sample points (usually due to being tiny or a very thin

sliver).

Destination -- Describes an output or write operand.

Destination Size -- The number of data elements in the destination of a SIMD instruction.

Destination Width -- The size of each of (possibly) many elements of the destination of a

SIMD instruction.

Domain Shader DS An API-supplied program that shades vertices using domain points.

Also refers to the FF unit that dispatches threads to "shade" (calculate

attributes for) vertices based on domain points.

Double Quad word

(DQword)

DQ A fundamental data type, DQ represents 16 bytes.

Double word (DWord) D or DW A fundamental data type, D or DW represents 4 bytes.

Drawing Rectangle -- A screen-space rectangle within which 3D primitives are rendered. An

object's screen-space positions are relative to the Drawing Rectangle

origin. See Strips and Fans.

Dual Sub-slice DSS The collection of Execution Units (EU) that have a common set of

shared function units, such as sampler, dataport, and pixel port.

End of Block EOB A 1-bit flag in the non-zero DCT coefficient data structure indicating

the end of an 8x8 block in a DCT coefficient data buffer.

End Of Thread EOT A message sideband signal on the Output message bus signifying that

the message requester thread is terminated. A thread must have at

least one SEND instruction with the EOT bit in the message descriptor

field set to properly terminate.

Exception -- Type of (normally rare) interruption to EU execution of a thread's

instructions. An exception occurrence causes the EU thread to begin

executing the System Routine, which is designed to handle exceptions.

Doc Ref # IHD-OS-RKL-Vol 1-7.22 13

Term Abbr. Definition

Execution Channel -- Single lane of a SIMD operand.

Execution Size ExecSize Execution Size indicates the number of data elements processed by an

SIMD instruction. It is one of the instruction fields and can be changed

per instruction.

Execution Unit EU An EU is a multi-threaded processor within the multi-processor system.

Each EU is a fully-capable processor containing instruction fetch and

decode, register files, source operand swizzle and SIMD ALU, etc. An EU

is also referred to as a core.

Execution Unit Identifier EUID The 4-bit field within a thread state register (SR0) that identifies the row

and column location of the EU where a thread is located. A thread can

be uniquely identified by the EUID and TID.

Execution Width ExecWidth The width of each of several data elements that may be processed by a

single SIMD instruction.

Fixed Function FF Function of the pipeline that is performed by dedicated (vs.

programmable) hardware.

Fixed Function ID FFID Unique identifier for a fixed function unit.

Gateway GW See Message Gateway.

General Register File GRF Large read/write register file shared by all the EUs for operand sources

and destinations. This is the most commonly used read-write register

space organized as an array of 256-bit registers for a thread.

General State Base

Address

-- The Graphics Address of a block of memory-resident "state data", which

includes state blocks, scratch space, constant buffers, and kernel

programs. The contents of this memory block are referenced via offsets

from the contents of the General State Base Address register. See

Graphics Processing Engine.

Geometry Shader GS Fixed-function unit between the vertex shader and the clipper that (if

enabled) dispatches "geometry shader" threads on its input primitives.

Application-supplied geometry shaders normally expand each input

primitive into several output primitives to perform 3D modeling

algorithms such as fur/fins.

Graphics Address -- The GPE virtual address of some memory-resident object. This virtual

address gets mapped by a GTT or PGTT to a physical memory address.

Note that many memory-resident objects are referenced not with

Graphics Addresses, but instead with offsets from a "base address

register".

Graphics Processing

Engine

GPE Collective name for the Subsystem, the 3D and Media pipelines, and

the Command Streamer.

Guardband GB Region that may be clipped against to make sure objects do not exceed

the limitations of the renderer's coordinate space.

Horizontal Stride HorzStride The distance in element-sized units between adjacent elements of a

region-based GRF access.

14 Doc Ref # IHD-OS-RKL-Vol 1-7.22

Term Abbr. Definition

Immediate floating point

vector

VF A numerical data type of 32 bits, an immediate floating point vector of

type VF contains 4 floating point elements with 8 bits each. The 8-bit

floating point element contains a sign field, a 3-bit exponent field and a

4-bit mantissa field. It may be used to specify the type of an immediate

operand in an instruction.

Immediate integer vector V A numerical data type of 32 bits, an immediate integer vector of type V

contains 8 signed integer elements with 4 bits each. The 4-bit integer

element is in 2's complement form. It may be used to specify the type

of an immediate operand in an instruction.

Index Buffer IB Buffer in memory containing vertex indices.

Intel Architecture IA

Instance -- In the context of the VF unit, an instance is one of a sequence of sets of

similar primitive data. Each set has identical vertex data but may have

unique instance data that differentiates it from other sets in the

sequence.

Instruction -- Data in memory directing an EU operation. Instructions are fetched

from memory, stored in a cache, and executed on one or more cores.

Not to be confused with commands which are fetched and parsed by

the command streamer and dispatched down the 3D or Media pipeline.

Instruction Pointer IP The address (really an offset) of the instruction currently being fetched

by an EU. Each EU has its own IP.

Instruction Set

Architecture

ISA The ISA describes the instructions supported by an EU.

Instruction State Cache ISC On-chip memory that holds recently-used instructions and state

variable values.

Interface Descriptor -- Media analog of a State Descriptor.

Intermediate Z IZ Completion of the Z (depth) test at the front end of the

Windower/Masker unit when certain conditions are met (no alpha, no

pixel-shader computed Z values, etc.).

Inverse Discrete Cosine

Transform

IDCT The stage in the video decoding pipe between IQ and MC.

Inverse Quantization IQ A stage in the video decoding pipe between IS and IDCT.

JIT -- Just-in-time compiler, aka "jitter".

Kernel -- A sequence of instructions that is logically part of the driver or

generated by the jitter. Differentiated from a Shader which is an

application supplied program that is translated by the jitter to

instructions.

Logical Ring Context

Area

LRCA Memory area used to store contents of registers and state information

required for initiating and resuming communication between software

application and hardware graphics pipeline via Ring Buffers.

Doc Ref # IHD-OS-RKL-Vol 1-7.22 15

Term Abbr. Definition

Least Significant Bit LSB The bit with the lowest bit position within a group of bits, which could

be a bit group, DWord, field, instruction, memory range, register, or

structure. For example, bit 0 of a DWord.

MathBox -- See Extended Math Unit

Media -- Term for operations such as video decode and encode that are

normally performed by the Media pipeline.

Media Pipeline -- Fixed function stages dedicated to media and "generic" processing,

sometimes referred to as the generic pipeline.

Memory-mapped

Input/Output

MMIO A methord for performing input/output between the CPU/GPU and

peripheral devices.

Message -- Messages are data packages transmitted from a thread to another

thread, another shared function, or another fixed function. Message

passing is the primary communication mechanism of the architecture.

Message Gateway -- Shared function that enables thread-to-thread message

communication/synchronization, used solely by the Media pipeline.

Most Significant Bit MSB The bit with the highest bit position within a group of bits, which could

be a bit group, DWord, field, instruction, memory range, register, or

structure. For example, bit 31 of a DWord.

Motion Compensation MC Part of the video decoding pipe.

Motion Picture Expert

Group

MPEG MPEG is the international standard body JTC1/SC29/WG11 under

ISO/IEC that has defined audio and video compression standards such

as MPEG-1, MPEG-2, and MPEG-4.

Motion Vector Field

Selection

MVFS A four-bit field selecting reference fields for the motion vectors of the

current macroblock.

Multiple Render Targets MRT Multiple independent surfaces that may be the target of a sequence of

3D or Media commands that use the same surface state.

Normalized Device

Coordinates

NDC Clip Space Coordinates that have been divided by the Clip Space "W"

component.

Object -- A single triangle, line, or point.

OpenGL OGL Open Graphics Library. A graphics API specification associated with

Linux.

Parent Thread -- A thread corresponding to a root-node or a branch-node in thread

generation hierarchy. A parent thread may be a root thread or a child

thread depending on its position in the thread generation hierarchy.

Pipeline Stage -- An abstracted element of the 3D Pipeline, providing functions

performed by a combination of the corresponding hardware FF unit

and the threads spawned by that FF unit.

Pipelined State Pointers PSP Pointers to state blocks in memory that are passed down the pipeline.

Pixel Shader PS Shader that is supplied by the application, translated by the jitter and is

dispatched to the EU by the Windower (conceptually) once per pixel.

Point -- A drawing object characterized only by position coordinates and width.

16 Doc Ref # IHD-OS-RKL-Vol 1-7.22

Term Abbr. Definition

Primitive -- Synonym for object: triangle, rectangle, line, or point.

Primitive Topology -- A composite primitive such as a triangle strip or a line list. Also includes

the objects triangle, line, and point as degenerate cases.

Provoking Vertex -- The vertex of a primitive topology from which vertex attributes that are

constant across the primitive are taken.

Quad Quad word

(QQword)

QQ A fundamental data type, QQ represents 32 bytes.

Quad Word (QWord) QW A fundamental data type, QW represents 8 bytes.

Rasterization -- Conversion of an object represented by vertices into the set of pixels

that make up the object.

Region-based

addressing

-- Collective term for the register addressing modes available in the EU

instruction set that permit discontiguous register data to be fetched

and used as a single operand.

Render Cache RC Cache in which pixel color and depth information is written before

being written to memory, and where prior pixel destination attributes

are read in preparation for blending and Z test.

Render Target RT A destination surface in memory where render results are written.

Render Target Array

Index

-- Selector of which of several render targets the current operation is

targeting.

Resource Streamer RS Functional unit of the Graphics Processing Engine that examines the

commands in the ring buffer in an attempt to pre-process certain long

latency items for the remainder of the graphics processing.

Root Thread -- A root-node thread. A thread corresponds to a root-node in a thread

generation hierarchy. It is a kind of thread associated with the media

fixed function pipeline. A root thread is originated from the VFE unit

and forwarded to the Thread Dispatcher by the TS unit. A root thread

may or may not have child threads. A root thread may have scratch

memory managed by TS. A root thread with children has its URB

resource managed by the VFE.

Sampler -- Shared function that samples textures and reads data from buffers on

behalf of EU programs.

Scratch Space -- Memory allocated to the subsystem that is used by EU threads for data

storage that exceeds their register allocation, persistent storage,

storage of mask stack entries beyond the first 16, etc.

Shader -- A program supplied by the application in a high level shader language,

and translated to instructions by the jitter.

Shared Function SF Function unit that is shared by EUs. EUs send messages to shared

functions, that consume the data and may return results. Example

Sampler and Data Port.

Shared Function ID SFID Unique identifier used by kernels and shaders to target shared

functions and to identify their returned messages.

Doc Ref # IHD-OS-RKL-Vol 1-7.22 17

Term Abbr. Definition

Single Instruction

Multiple Data

SIMD A parallel processing architecture that exploits data parallelism at the

instruction level. It can also be used to describe the instructions in such

an architecture or to describe the amount of data parallelism in a

particular instruction (SIMD8 for example).

Source -- Describes an input or read operand.

Spawn -- To initiate a thread for execution on an EU. Done by the thread spawner

as well as most FF units in the 3D Pipeline.

Sprite Point -- Point object using full range texture coordinates. Points that are not

sprite points use the texture coordinates of the point's center across the

entire point object.

State Descriptor -- Blocks in memory that describe the state associated with a particular FF,

including its associated kernel pointer, kernel resource allowances, and

a pointer to its surface state.

State Register SR The read-only registers containing the state information of the current

thread, including the EUID/TID, Dispatcher Mask, and System IP.

State Variable SV An individual state element that can be varied to change the way given

primitives are rendered or media objects processed. On state variables

persist only in memory and are cached as needed by

rendering/processing operations except for a small amount of non-

pipelined state.

Stream Output -- A term for writing the output of a FF unit directly to a memory buffer

instead of, or in addition to, the output passing to the next FF unit in

the pipeline. Currently only supported for the Geometry Shader (GS) FF

unit.

Strips and Fans SF Fixed function unit whose main function is to decompose primitive

topologies such as strips and fans into primitives or objects.

Sub-Register -- Subfield of a SIMD register. A SIMD register is an aligned fixed size

register for a register file or a register type. For example, a GRF register,

r2, is a 256-bits wide, 256-bit aligned register. A sub-register, r2.3:d, is

the fourth dword of GRF register r2.

Subsystem -- The name given to the resources shared by the FF units, including

shared functions and EUs.

Surface -- A rendering operand or destination, including textures, buffers, and

render targets.

Surface State Base

Pointer

-- Base address used when referencing binding table and surface state

data.

Synchronized Root

Thread

-- A root thread that is dispatched by TS upon a 'dispatch root thread'

message.

System IP SIP There is one global System IP register for all the threads. From a

thread's point of view, this is a virtual read only register. Upon an

exception, hardware performs some bookkeeping and then jumps to

SIP.

18 Doc Ref # IHD-OS-RKL-Vol 1-7.22

Term Abbr. Definition

System Routine -- Sequence of instructions that handles exceptions. SIP is programmed to

point to this routine, and all threads encountering an exception will call

it.

Thread -- An instance of a kernel program executed on an EU. The life cycle for a

thread starts from the executing the first instruction after being

dispatched from Thread Dispatcher to an EU to the execution of the last

instruction - a send instruction with EOT that signals the thread

termination. Threads in the system may be independent from each

other or communicate with each other through Message Gateway share

function.

Thread Dispatcher TD, TDL Functional unit that arbitrates thread initiation requests from Fixed

Functions units and instantiates the threads on EUs.

Thread Identifier TID The field within a thread state register (SR0) that identifies which thread

slots on an EU a thread occupies. A thread can be uniquely identified by

the EUID and TID.

Thread Payload -- Before a thread starting execution, some amount of data is pre-loaded

into the thread's GRF (starting at r0). This data is typically a combination

of control information provided by the spawning entity (FF Unit) and

data read from the URB.

Thread Spawner TS The second and the last fixed function stage of the media pipeline that

initiates new threads on behalf of generic/media processing.

Topology -- See Primitive Topology.

Unified Return Buffer URB The on-chip memory managed/shared by Fixed Functions in order for a

thread to return data that will be consumed either by a Fixed Function

or other threads.

Unsigned Byte integer UB A numerical data type of 8 bits.

Unsigned Double Word

integer

UD A numerical data type of 32 bits. It may be used to specify the type of

an operand in an instruction.

Unsigned Word integer UW A numerical data type of 16 bits. It may be used to specify the type of

an operand in an instruction.

Unsynchronized Root

Thread

-- A root thread that is automatically dispatched by TS.

URB Dereference --

URB Entry UE URB Entry: A logical entity stored in the URB (such as a vertex),

referenced via a URB Handle.

URB Entry Allocation Size -- Number of URB entries allocated to a Fixed Function unit.

URB Fence Fence Virtual, movable boundaries between the URB regions owned by each

FF unit.

URB Handle -- A unique identifier for an URB entry that is passed down a pipeline.

URB Reference --

Doc Ref # IHD-OS-RKL-Vol 1-7.22 19

Term Abbr. Definition

Variable Length Decode VLD
The first stage of the video decoding pipe that consists mainly of bit-

wide operations.

Vertex Buffer VB Buffer in memory containing vertex attributes.

Vertex Cache VC Cache of Vertex URB Entry (VUE) handles tagged with vertex indices.

See the VS chapter for details on this cache.

Vertex Fetcher VF The first FF unit in the 3D Pipeline responsible for fetching vertex data

from memory. Sometimes referred to as the Vertex Formatter.

Vertex Header -- Vertex data required for every vertex appearing at the beginning of a

Vertex URB Entry.

Vertex ID -- Unique ID for each vertex that can optionally be included in vertex

attribute data sent down the pipeline and used by kernel/shader

threads.

Vertex Shader VS An API-supplied program that calculates vertex attributes. Also refers to

the FF unit that dispatches threads to "shade" (calculate attributes for)

vertices.

Vertex URB Entry VUE An URB entry that contains data for a specific vertex.

Vertical Stride VertStride The distance in element-sized units between 2 vertically-adjacent

elements of a region-based GRF access.

Video Front End VFE The first fixed function in the generic pipeline; performs fixed-function

media operations.

Viewport VP

Windower IZ WIZ Term for Windower/Masker that encapsulates its early ("intermediate")

depth test function.

Windower/Masker WM Fixed function triangle/line rasterizer.

Word W A numerical data type of 16 bits, W represents a signed word integer.

