

Intel® Arc™ A-Series Graphics and Intel Data Center GPU Flex Series

Open-Source Programmer's Reference Manual

For the discrete GPUs code named "Alchemist" and "Arctic Sound-M"

Volume 10: Copy Engine

March 2023, Revision 1.0

ii Doc Ref # IHD-OS-ACM-Vol 10-3.23

Notices and Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Code names are used by Intel to identify products, technologies, or services that are in development and

not publicly available. These are not "commercial" names and not intended to function as trademarks

Customer is responsible for safety of the overall system, including compliance with applicable safety-

related requirements or standards.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by

this document, with the sole exceptions that a) you may publish an unmodified copy and b) code

included in this document is licensed subject to Zero-Clause BSD open source license (0BSD). You may

create software implementations based on this document and in compliance with the foregoing that are

intended to execute on the Intel product(s) referenced in this document. No rights are granted to create

modifications or derivatives of this document.

The products described may contain design defects or errors known as errata which may cause the

product to deviate from published specifications. Current characterized errata are available on request.

You may not use or facilitate the use of this document in connection with any infringement or other legal

analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free

license to any patent claim thereafter drafted which includes subject matter disclosed herein.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising

from course of performance, course of dealing, or usage in trade.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers

must not rely on the absence or characteristics of any features or instructions marked "reserved" or

"undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for

conflicts or incompatibilities arising from future changes to them. The information here is subject to

change without notice. Do not finalize a design with this information.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its

subsidiaries. Other names and brands may be claimed as the property of others.

Doc Ref # IHD-OS-ACM-Vol 10-3.23 iii

Table of Contents

Copy Engine .. 1

Blitter (BLT) Command Streamer ... 2

Blitter Engine Command Streamer (BCS) ... 2

Software Control Bit Definitions .. 8

Registers for Blitter Engine Command Streamer .. 8

BLT Engine .. 8

Classical BLT Engine Functional Description ... 9

Fast Copy Engine ... 33

BLT Instruction Overview .. 34

BLT Engine State .. 34

Device Cache Coherency: Render & Texture Caches .. 35

Verbatim Copy operation ... 36

BLT Engine Instructions ... 36

2D (XY) BLT Instructions .. 40

BLT Engine Instruction Field Definitions ... 44

Doc Ref # IHD-OS-ACM-Vol 10-3.23 1

Copy Engine

Copy Engine or BLT Engine is an engine that runs in parallel with Render Engine, Compute Engine and

Media Engine. It is capable of moving blocks of data from one location (source) in the memory to

another location (destination) in the memory. It can also fill up a specified location in the memory with

fixed data. Copy Engine can perform pre-defined logical or bitwise operation on source, destination and

another fixed data called pattern data and write to the destination confined by a clip rectangle. Copy

Engine can be divided into two categories:

1. Classical BLT Engine - Can perform basic Copy and Fill operations as well as bit-wise operations. It

is low performance.

2. Fast Copy Engine - performs basic copy and fill operations. It is high performance. It can also

support compute specific copy operations other than the regular 2D operations.

Fast Copy Engine supports only few high performance commands, whereas Classical BLT Engine, which

is also known as Legacy Blitter, supports all others command, including some very complex commands

involving bit-wise/logical operations.

2 Doc Ref # IHD-OS-ACM-Vol 10-3.23

Blitter (BLT) Command Streamer

Blitter Command Streamer is the BLT engine command streamer where scheduler submits workloads for

the BLT engine. Blitter Command streamer supports execution of the generic functions plus BLT engine

commands. Each BLT Engine has its own independent command streamer.

Blitter Engine Command Streamer (BCS)

The BCS (Blitter Command Streamer) unit primarily serves as the software programming interface

between the O/S driver and the Blitter Engine. It is responsible for fetching, decoding, and dispatching of

data packets (Blitter Commands) to the front-end interface module of Blitter Engine.

Logic Functions Included

• MMIO register programming interface.

• DMA action for fetching of ring data from

memory.

• Management of the Head pointer for the Ring

Buffer.

• Decode of ring data and sending it to the blit

engine.

• Handling of user interrupts.

• Flushing the Blitter Engine.

• Handle NOP.

• DMA action for fetching of execlists from memory.

• Handling of ring context switch interrupt.

The BCS unit only claims memory mapped I/O cycles that are targeted to its range of 0x22000 to

0x224FF. The Blitter, Render and Media Engines use semaphore to synchronize their operations.

BCS operates completely independent of the other render and media command streams.

The simple sequence of events is as follows: a ring (say PRB0) is programmed by a memory-mapped

register write cycle. The DMA inside BCS is kicked off. The DMA fetches commands from memory based

on the starting address and head pointer. The DMA requests cache lines from memory (one cacheline CL

at a time). There is guaranteed space in the DMA FIFO (8 CL deep) for data coming back from memory.

The DMA control logic has copies of the head pointer and the tail pointer. The DMA increments the head

pointer after making requests for ring commands. Once the DMA copy of the head pointer becomes

equal to the tail pointer, the DMA stops requesting.

The parser starts executing once the DMA FIFO has valid commands. All the commands have a header

DWord packet. Based on the encoding in the header packet, the command may be targeted towards Blit

Engine or the command parser. After execution of every command, the actual head pointer is updated.

The ring is considered empty when the head pointer becomes equal to the tail pointer.

Doc Ref # IHD-OS-ACM-Vol 10-3.23 3

Context Management

Copy Engine Register State Context

Register State Context

EXECLIST CONTEXT

EXECLIST CONTEXT(PPGTT Base)

ENGINE CONTEXT

Description MMIO Offset/Command Unit Dw Count DW Offset

CSFE Execlist Context BCSFE 192 0

MI_BATCH_BUFFER_END CSEND 1 00C0

NOOP CSEND 127 00C1

 DW 320

 K Bytes 1.28

Copy Engine Power Context

This section lists the power context image of Copy Engine across generations.

Blitter Engine Power Context

The table below captures the data from BCS power context save/restored by PM. Address offset in the

below table is relative to the starting location of BCS in the overall power context image managed by PM.

BCS Power Context Image

Description # of DW Address Offset(PWR) CSFE/CSBE

CSFE Power Context with Display 192 0 CSFE

NOOP BCS 1 00D0 CSBE

Load_Register_Immediate header 0x1100_1003 BCS 1 00D1 CSBE

GAB MODE REGISTER 0x220a0 BCS 2 00D4 CSBE

NOOP BCS 8 00D6 CSBE

NOOP BCS 1 00DE CSBE

MI_BATCH_BUFFER_END BCS 1 00DF CSBE

4 Doc Ref # IHD-OS-ACM-Vol 10-3.23

Blitter Command Formats

2D Commands

The 2D commands include various flavors of BLT operations, along with commands to set up BLT engine

state without actually performing a BLT. Most commands are of fixed length, though there are a few

commands that include a variable amount of "inline" data at the end of the command (in case of legacy

Blitter command).

All the following commands are defined in Blitter Instructions.

2D Command Map

Opcode

(28:22) Command

00h Reserved

01h XY_SETUP_BLT

02h Reserved

03h XY_SETUP_CLIP_BLT

04h-10h Reserved

11h XY_SETUP_MONO_PATTERN_SL_BLT

12h-23h Reserved

24h XY_PIXEL_BLT

25h XY_SCANLINES_BLT

26h XY_TEXT_BLT

27h-30h Reserved

31h XY_TEXT_IMMEDIATE_BLT

32h-3Fh Reserved

40h COLOR_BLT

41h XY_BLOCK_COPY_BLT

42h XY_FAST_COPY_BLT

43h SRC_COPY_BLT

44h XY_FAST_COLOR_BLT

45h-47h Reserved

48h XY_CTRL_SURF_COPY_BLT

49h-4Fh Reserved

50h XY_COLOR_BLT

51h XY_PAT_BLT

52h XY_MONO_PAT_BLT

53h XY_SRC_COPY_BLT

Doc Ref # IHD-OS-ACM-Vol 10-3.23 5

Opcode

(28:22) Command

54h XY_MONO_SRC_COPY_BLT

55h XY_FULL_BLT

56h XY_FULL_MONO_SRC_BLT

57h XY_FULL_MONO_PATTERN_BLT

58h XY_FULL_MONO_PATTERN_MONO_SRC_BLT

59h XY_MONO_PAT_FIXED_BLT

71h XY_MONO_SRC_COPY_IMMEDIATE_BLT

72h XY_PAT_BLT_IMMEDIATE

73h XY_SRC_COPY_CHROMA_BLT

74h XY_FULL_IMMEDIATE_PATTERN_BLT

75h XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BL

76h XY_PAT_CHROMA_BLT

77h XY_PAT_CHROMA_BLT_IMMEDIATE

78h-7Fh Reserved

Blitter Command Header Format

Type Bits

 31:29 28:24 23 22 21:0

Memory

 Interface

 (MI)

000 Opcode

 00h - NOP

 0Xh - Single DWord Commands

 1Xh - Two+ DWord Commands

 2Xh - Store Data Commands

 3Xh - Ring/Batch Buffer Cmds

 Identification No./DWord Count

 Command Dependent Data

 5:0 - DWord Count

 5:0 - DWord Count

 5:0 - DWord Count

Reserved 001

Reserved 011

Type Bits

 31:29 28:22 21:9 8:0

Blitter (2D) 010 Command Opcode Command Dependent Data Dword Count

6 Doc Ref # IHD-OS-ACM-Vol 10-3.23

Logical Context Support

The following are the Logical Context Support Registers:

Register

BB_ADDR - Batch Buffer Head Pointer Register

BB_ADDR_UDW - Batch Buffer Upper Head Pointer Register

SBB_ADDR - Second Level Batch Buffer Head Pointer Register

SBB_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Register

SYNC_FLIP_STATUS - Wait For Event and Display Flip Flags Register

SYNC_FLIP_STATUS_1 - Wait For Event and Display Flip Flags Register 1

SYNC_FLIP_STATUS_2 - Wait For Event and Display Flip Flags Register 2

CXT_EL_OFFSET - Exec-List Context Offset

BB_START_ADDR_UDW - Batch Buffer Start Upper Head Pointer Register

BB_ADDR_DIFF - Batch Address Difference Register

WAIT_FOR_RC6_EXIT - Control Register for Power Management

SBB_STATE - Second Level Batch Buffer State Register

BB_OFFSET - Batch Offset Register

RING_BUFFER_HEAD_PREEMPT_REG - RING_BUFFER_HEAD_PREEMPT_REG

BB_PREEMPT_ADDR - Batch Buffer Head Pointer Preemption Register

BB_PREEMPT_ADDR_UDW - Batch Buffer Upper Head Pointer Preemption Register

SBB_PREEMPT_ADDR - Second Level Batch Buffer Head Pointer Preemption Register

SBB_PREEMPT_ADDR_UDW - Second Level Batch Buffer Upper Head Pointer Preemption Register

MI_PREDICATE_RESULT_1 - Predicate Rendering Data Result 1

MI_PREDICATE_RESULT_2 - Predicate Rendering Data Result 2

INDIRECT_CTX - Indirect Context Pointer

INDIRECT_CTX_OFFSET - Indirect Context Offset Pointer

BB_PER_CTX_PTR - Batch Buffer Per Context Pointer

Mode Registers

The following table describes the Mode Registers.

Registers

BCS_CXT_SIZE - BCS Context Sizes

MI_MODE - Mode Register for Software Interface

INSTPM - Instruction Parser Mode Register

EXCC - Execute Condition Code Register

IDLEDLY - Idle Switch Delay

SEMA_WAIT_POLL - Semaphore Polling Interval on Wait

RESET_CTRL - Reset Control Register

HWS_PGA - Hardware Status Page Address Register

Doc Ref # IHD-OS-ACM-Vol 10-3.23 7

MI Commands for Blitter Engine

This chapter describes the formats of the "Memory Interface" commands, including brief descriptions of

their use. The functions performed by these commands are discussed fully in the Memory Interface

Functions Device Programming Environment chapter.

This chapter describes MI Commands for the blitter graphics processing engine. The term "for Blitter

Engine" in the title has been added to differentiate this chapter from a similar one describing the MI

commands for the Media Decode Engine and the Rendering Engine.

The commands detailed in this chapter are used across products. However, slight changes may be

present in some commands (i.e., for features added or removed), or some commands may be removed

entirely. Refer to the Preface chapter for product specific summary.

Commands

MI_NOOP

MI_ARB_ON_OFF

MI_BATCH_BUFFER_START

The following table lists the non-privileged registers that can be written to from a non-secure batch

buffer executed from Render Command Streamer.

User Mode Non-Privileged Registers

MMIO Name MMIO Offset Size in DWords

BCS_GPR 22600h 32

BCS_SWCTRL 22200h 32

Commands

MI_BATCH_BUFFER_END

MI_CONDITIONAL_BATCH_BUFFER_END

MI_DISPLAY_FLIP

MI_LOAD_SCAN_LINES_EXCL

MI_LOAD_SCAN_LINES_INCL

MI_FLUSH_DW

MI_REPORT_HEAD

MI_STORE_DATA_IMM

MI_ATOMIC

MI_COPY_MEM_MEM

MI_LOAD_REGISTER_REG

MI_LOAD_REGISTER_MEM

MI_STORE_REGISTER_MEM

MI_SUSPEND_FLUSH

MI_USER_INTERRUPT

MI_WAIT_FOR_EVENT

MI_SEMAPHORE_SIGNAL

8 Doc Ref # IHD-OS-ACM-Vol 10-3.23

Commands

MI_SEMAPHORE_WAIT

MI_FORCE_WAKEUP

Software Control Bit Definitions

Registers in the range 22XX are not protected from the load register immediate instruction if the

command is executed in the non-secure batch buffer.

BCS_SWCTRL - BCS SW Control

Registers for Blitter Engine Command Streamer

These are the Registers for the Blitter Engine Command Streamer.

Also see the Observability section for related information.

GAB_MODE - Mode Register for GAB

BLT Engine

Introduction

2D Rendering can be divided into 2 categories: classical BLTs, described here, and 3D BLTs. 3D BLTs are

operations which can take advantage of the 3D drawing engine's functionality and access patterns.

Functions such as Alpha BLTs, arithmetic (bilinear) stretch BLTs, rotations, transposing pixel maps, color

space conversion, and DIBs are all considered 3D BLTs and are covered in the 3D rendering section. DIBs

can be thought of as an indexed texture which uses the texture palette for performing the data

translation. All drawing engines have swappable context. The same hardware can be used by multiple

driver threads where the current state of the hardware is saved to memory and the appropriate state is

loaded from memory on thread switches.

All operands for both 3D and classical BLTs can be in graphics aperture or cacheable system memory.

Some operands can be immediate which are sent through the command stream. Immediate operands

are: patterns, monochrome sources, DIB palettes, and DIB source operands. All non-monochrome

operands which are not tiled have a stride granularity of a double-word (4 bytes).

The classical BLT commands support both linear addressing and X, Y coordinates with and without

clipping. All X1 and Y1 destination and clipping coordinates are inclusive, while X2 and Y2 are exclusive.

Currently, only destination coordinates can be negative. The source and clipping coordinates must be

positive. If clipping is disabled, but a negative destination coordinate is specified, the negative coordinate

is clipped to 0. Linear address BLT commands must supply a non-zero height and width. If either height

or width = 0, then no accesses occur.

Doc Ref # IHD-OS-ACM-Vol 10-3.23 9

Classical BLT Engine Functional Description

The graphics controller provides a hardware-based BLT engine to off load the work of moving blocks of

graphics data from the host CPU. Although the BLT engine is often used simply to copy a block of

graphics data from the source to the destination, it also has the ability to perform more complex

functions. The BLT engine is capable of receiving three different blocks of graphics data as input as

shown in the figure below. The source data may exist in the frame buffer or the Graphics aperture. The

pattern data always represents an 8x8 block of pixels that can be located in the frame buffer, Graphics

aperture, or passed through a command packet. The pattern data must be located in linear memory. The

data already residing at the destination may also be used as an input. The destination data can also be

located in the frame buffer or graphics aperture.

10 Doc Ref # IHD-OS-ACM-Vol 10-3.23

Block Diagram and Data Paths of the BLT Engine

The BLT engine may use any combination of these three different blocks of graphics data as operands, in

both bit-wise logical operations to generate the actual data to be written to the destination, and in per-

pixel write-masking to control the writing of data to the destination. It is intended that the BLT engine

will perform these bit-wise and per-pixel operations on color graphics data that is at the same color

depth that the rest of the graphics system has been set. However, if either the source or pattern data is

monochrome, the BLT engine has the ability to put either block of graphics data through a process called

"color expansion" that converts monochrome graphics data to color. Since the destination is often a

location in the on-screen portion of the frame buffer, it is assumed that any data already at the

destination will be of the appropriate color depth.

Basic BLT Functional Considerations

Color Depth Configuration and Color Expansion

The graphics system and BLT engine can be configured for color depths of 8, 16, and 32 bits per pixel.

The configuration of the BLT engine for a given color depth dictates the number of bytes of graphics

data that the BLT engine will read and write for each pixel while performing a BLT operation. It is

assumed that any graphics data already residing at the destination which is used as an input is already at

the color depth to which the BLT engine is configured. Similarly, it is assumed that any source or pattern

data used as an input has this same color depth, unless one or both is monochrome. If either the source

or pattern data is monochrome, the BLT engine performs a process called "color expansion" to convert

such monochrome data to color at the color depth to which the BLT engine has been set.

During "color expansion" the individual bits of monochrome source or pattern data that correspond to

individual pixels are converted into 1, 2, or 4 bytes (whichever is appropriate for the color depth to which

the BLT engine has been set). If a given bit of monochrome source or pattern data carries a value of 1,

then the byte(s) of color data resulting from the conversion process are set to carry the value of a

specified foreground color. If a given bit of monochrome source or pattern data carries a value of 0, the

resulting byte(s) are set to the value of a specified background color or not written if transparency is

selected.

The BLT engine is set to a default configuration color depth of 8, 16, or 32 bits per pixel through BLT

command packets. Whether the source and pattern data are color or monochrome must be specified

using command packets. Foreground and background colors for the color expansion of both

monochrome source and pattern data are also specified through the command packets. The source

foreground and background colors used in the color expansion of monochrome source data are

specified independently of those used for the color expansion of monochrome pattern data.

Graphics Data Size Limitations

The BLT engine is capable of transferring very large quantities of graphics data. Any graphics data read

from and written to the destination is permitted to represent a number of pixels that occupies up to

65,536 scan lines and up to 32,768 bytes per scan line at the destination. The maximum number of pixels

that may be represented per scan line's worth of graphics data depends on the color depth.

Doc Ref # IHD-OS-ACM-Vol 10-3.23 11

Any source data used as an input must represent the same number of pixels as is represented by any

data read from or written to the destination, and it must be organized so as to occupy the same number

of scan lines and pixels per scan line.

The actual number of scan lines and bytes per scan line required to accommodate data read from or

written to the destination are set in the destination width & height registers or using X and Y coordinates

within the command packets. These two values are essential in the programming of the BLT engine,

because the engine uses these two values to determine when a given BLT operation has been completed.

Bit-Wise Operations

The BLT engine can perform any one of 256 possible bit-wise operations using various combinations of

the three previously described blocks of graphics data that the BLT engine can receive as input.

The choice of bit-wise operation selects which of the three inputs will be used, as well as the particular

logical operation to be performed on corresponding bits from each of the selected inputs. The BLT

engine automatically foregoes reading any form of graphics data that has not been specified as an input

by the choice of bit-wise operation. An 8-bit code written to the raster operation field of the command

packets chooses the bit-wise operation. The following table lists the available bit-wise operations and

their corresponding 8-bit codes.

Bit-Wise Operations and 8-Bit Codes (00-3F)

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

00 writes all 0's 20 D and (P and (notS))

01 not(D or (P or S))) 21 not(S or(D xor P))

02 D and (not(P or S)) 22 D and (notS)

03 not(P or S) 23 not(S or (P and (notD)))

04 S and (not(D or P)) 24 (S xor P) and (D xor S)

05 not(D or P) 25 not(P xor (D and (not(S and P))))

06 not(P or (not(D xor S))) 26 S xor (D or (P and S))

07 not(P or (D and S)) 27 S xor (D or (not(P xor S)))

08 S and (D and (notP)) 28 D and (P xor S)

09 not(P or (D xor S)) 29 not(P xor (S xor (D or (P and S))))

0A D and (notP) 2A D and (not(P and S))

0B not(P or (S and (notD))) 2B not(S xor ((S xor P) and (P xor D)))

0C S and (notP) 2C S xor (P and (D or S))

0D not(P or (D and (notS))) 2D P xor (S or (notD))

0E not(P or (not(D or S))) 2E P xor (S or (D xor P))

0F notP 2F not(P and (S or (notD)))

10 P and (not(D or S)) 30 P and (notS)

11 not(D or S) 31 not(S or (D and (notP)))

12 not(S or (not(D xor P))) 32 S xor (D or (P or S))

12 Doc Ref # IHD-OS-ACM-Vol 10-3.23

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

13 not(S or (D and P)) 33 notS

14 not(D or (not(P xor S))) 34 S xor (P or (D and S))

15 not(D or (P and S)) 35 S xor (P or (not(D xor S)))

16 P xor (S xor (D and (not(P and S)))) 36 S xor (D or P)

17 not(S xor ((S xor P) and (D xor S))) 37 not(S and (D or P))

18 (S xor P) and (P xor D) 38 P xor (S and (D or P))

19 not(S xor (D and (not(P and S)))) 39 S xor (P or (notD))

1A P xor (D or (S and P)) 3A S xor (P or (D xor S))

1B not(S xor (D and (P xor S))) 3B not(S and (P or (notD)))

1C P xor (S or (D and P)) 3C P xor S

1D not(D xor (S and (P xor D))) 3D S xor (P or (not(D or S)))

1E P xor (D or S) 3E S xor (P or (D and (notS)))

1F not(P and (D or S)) 3F not(P and S)

Notes:

S = Source Data

 P = Pattern Data

 D = Data Already Existing at the Destination

Bit-Wise Operations and 8-bit Codes (40 - 7F)

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

40 P and (S and (notD)) 60 P and (D xor S)

41 not(D or (P xor S)) 61 not(D xor (S xor (P or (D and S))))

42 (S xor D) and (P xor D) 62 D xor (S and (P or D))

43 not(S xor (P and (not(D and S)))) 63 S xor (D or (notP))

44 S and (notD) 64 S xor (D and (P or S))

45 not(D or (P and (notS))) 65 D xor (S or (notP))

46 D xor (S or (P and D)) 66 D xor S

47 not(P xor (S and (D xor P))) 67 S xor (D or (not(P or S)))

48 S and (D xor P) 68 not(D xor (S xor (P or (not(D or S)))))

49 not(P xor (D xor (S or (P and D)))) 69 not(P xor (D xor S))

4A D xor (P and (S or D)) 6A D xor (P and S)

4B P xor (D or (notS)) 6B not(P xor (S xor (D and (P or S))))

4C S and (not(D and P)) 6C S xor (D and P)

4D not(S xor ((S xor P) or (D xor S))) 6D not(P xor (D xor (S and (P or D))))

4E P xor (D or (S xor P)) 6E S xor (D and (P or (notS)))

4F not(P and (D or (notS))) 6F not(P and (not(D xor S)))

Doc Ref # IHD-OS-ACM-Vol 10-3.23 13

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

50 P and (notD) 70 P and (not(D and S))

51 not(D or (S and (notP))) 71 not(S xor ((S xor D) and (P xor D)))

52 D xor (P or (S and D)) 72 S xor (D or (P xor S))

53 not(S xor (P and (D xor S))) 73 not(S and (D or (notP)))

54 not(D or (not(P or S))) 74 D xor (S or (P xor D))

55 notD 75 not(D and (S or (notP)))

56 D xor (P or S) 76 S xor (D or (P and (notS)))

57 not(D and (P or S)) 77 not(D and S)

58 P xor (D and (S or P)) 78 P xor (D and S)

59 D xor (P or (notS)) 79 not(D xor (S xor (P and (D or S))))

5A D xor P 7A D xor (P and (S or (notD)))

5B D xor (P or (not(S or D))) 7B not(S and (not(D xor P)))

5C D xor (P or (S xor D)) 7C S xor (P and (D or (notS)))

5D not(D and (P or (notS))) 7D not(D and (not(P xor S)))

5E D xor (P or (S and (notD))) 7E (S xor P) or (D xor S)

5F not(D and P) 7F not(D and (P and S))

Notes:

S = Source Data

 P = Pattern Data

 D = Data Already Existing at the Destination

Bit-Wise Operations and 8-bit Codes (80 - BF)

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

80 D and (P and S) A0 D and P

81 not((S xor P) or (D xor S)) A1 not(P xor (D or (S and (notP))))

82 D and (not(P xor S)) A2 D and (P or (notS))

83 not(S xor (P and (D or (notS)))) A3 not(D xor (P or (S xor D)))

84 S and (not(D xor P)) A4 not(P xor (D or (not(S or P))))

85 not(P xor (D and (S or (notP)))) A5 not(P xor D)

86 D xor (S xor (P and (D or S))) A6 D xor (S and (notP))

87 not(P xor (D and S)) A7 not(P xor (D and (S or P)))

88 D and S A8 D and (P or S)

89 not(S xor (D or (P and (notS)))) A9 not(D xor (P or S))

8A D and (S or (notP)) AA D

8B not(D xor (S or (P xor D))) AB D or (not(P or S))

8C S and (D or (notP)) AC S xor (P and (D xor S))

14 Doc Ref # IHD-OS-ACM-Vol 10-3.23

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

8D not(S xor (D or (P xor S))) AD not(D xor (P or (S and D)))

8E S xor ((S xor D) and (P xor D)) AE D or (S and (notP))

8F not(P and (not(D and S))) AF D or (notP)

90 P and (not(D xor S)) B0 P and (D or (notS))

91 not(S xor (D and (P or (notS)))) B1 not(P xor (D or (S xor P)))

92 D xor (P xor (S and (D or P))) B2 S xor ((S xor P) or (D xor S))

93 not(S xor (P and D)) B3 not(S and (not(D and P)))

94 P xor (S xor (D and (P or S))) B4 P xor (S and (notD))

95 not(D xor (P and S)) B5 not(D xor (P and (S or D)))

96 D xor (P xor S) B6 D xor (P xor (S or (D and P)))

97 P xor (S xor (D or (not(P or S)))) B7 not(S and (D xor P))

98 not(S xor (D or (not(P or S)))) B8 P xor (S and (D xor P))

99 not(D xor S) B9 not(D xor (S or (P and D)))

9A D xor (P and (notS)) BA D or (P and (notS))

9B not(S xor (D and (P or S))) BB D or (notS)

9C S xor (P and (notD)) BC S xor (P and (not(D and S)))

9D not(D xor (S and (P or D))) BD not((S xor D) and (P xor D))

9E D xor (S xor (P or (D and S))) BE D or (P xor S)

9F not(P and (D xor S)) BF D or (not(P and S))

Notes:

S = Source Data

 P = Pattern Data

 D = Data Already Existing at the Destination

Bit-Wise Operations and 8-bit Codes (C0 - FF)

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

C0 P and S E0 P and (D or S)

C1 not(S xor (P or (D and (notS)))) E1 not(P xor (D or S))

C2 not(S xor (P or (not(D or S)))) E2 D xor (S and (P xor D))

C3 not(P xor S) E3 not(P xor (S or (D and P)))

C4 S and (P or (notD)) E4 S xor (D and (P xor S))

C5 not(S xor (P or (D xor S))) E5 not(P xor (D or (S and P)))

C6 S xor (D and (notP)) E6 S xor (D and (not(P and S)))

C7 not(P xor (S and (D or P))) E7 not((S xor P) and (P xor D))

C8 S and (D or P) E8 S xor ((S xor P) and (D xor S))

C9 not(S xor (P or D)) E9 not(D xor (S xor (P and (not(D and S)))))

Doc Ref # IHD-OS-ACM-Vol 10-3.23 15

Code Value Written to Bits at Destination Code Value Written to Bits at Destination

CA D xor (P and (S xor D)) EA D or (P and S)

CB not(S xor (P or (D and S))) EB D or (not(P xor S))

CC S EC S or (D and P)

CD S or (not(D or P)) ED S or (not(D xor P))

CE S or (D and (notP)) EE D or S

CF S or (notP) EF S or (D or (notP))

D0 P and (S or (notD)) F0 P

D1 not(P xor (S or (D xor P))) F1 P or (not(D or S))

D2 P xor (D and (notS)) F2 P or (D and (notS))

D3 not(S xor (P and (D or S))) F3 P or (notS)

D4 S xor ((S xor P) and (P xor D)) F4 P or (S and (notD))

D5 not(D and (not(P and S))) F5 P or (notD)

D6 P xor (S xor (D or (P and S))) F6 P or (D xor S)

D7 not(D and (P xor S)) F7 P or (not(D and S))

D8 P xor (D and (S xor P)) F8 P or (D and S)

D9 not(S xor (D or (P and S))) F9 P or (not(D xor S))

DA D xor (P and (not(S and D))) FA D or P

DB not((S xor P) and (D xor S)) FB D or (P or (notS))

DC S or (P and (notD)) FC P or S

DD S or (notD) FD P or (S or (notD))

DE S or (D xor P) FE D or (P or S)

DF S or (not(D and P)) FF writes all 1's

Notes:

S = Source Data

 P = Pattern Data

 D = Data Already Existing at the Destination

Per-Pixel Write-Masking Operations

The BLT engine is able to perform per-pixel write-masking with various data sources used as pixel masks

to constrain which pixels at the destination are to be written to by the BLT engine. As shown in the figure

below, either monochrome source or monochrome pattern data may be used as pixel masks. Color

pattern data cannot be used. Another available pixel mask is derived by comparing a particular color

range per color channel to either the color already specified for a given pixel at the destination or source.

16 Doc Ref # IHD-OS-ACM-Vol 10-3.23

Block Diagram and Data Paths of the BLT Engine

The command packets can specify the monochrome source or the monochrome pattern data as a pixel

mask. When this feature is used, the bits that carry a value of 0 cause the bytes of the corresponding

pixel at the destination to not be written to by the BLT engine, thereby preserving whatever data was

originally carried within those bytes. This feature can be used in writing characters to the display, while

also preserving the pre-existing backgrounds behind those characters. When both operands are in the

transparent mode, the logical AND of the 2 operands are used for the write enables per pixel.

Doc Ref # IHD-OS-ACM-Vol 10-3.23 17

The 3-bit field, destination transparency mode, within the command packets can select per-pixel write-

masking with a mask based on the results of color comparisons. The monochrome source background

and foreground are range compared with either the bytes for the pixels at the destination or the source

operand. This operation is described in the BLT command packet and register descriptions.

When the Source and Destination Locations Overlap

It is possible to have BLT operations in which the locations of the source and destination data overlap.

This frequently occurs in BLT operations where a user is shifting the position of a graphical item on the

display by only a few pixels. In these situations, the BLT engine must be programmed so that destination

data is not written into destination locations that overlap with source locations before the source data at

those locations has been read. Otherwise, the source data will become corrupted. The XY commands

determine whether there is an overlap and perform the accesses in the proper direction to avoid data

corruption.

The following figure shows how the source data can be corrupted when a rectangular block is copied

from a source location to an overlapping destination location. The BLT engine typically reads from the

source location and writes to the destination location starting with the left-most pixel in the top-most

line of both, as shown in step (a). As shown in step (b), corruption of the source data has already started

with the copying of the top-most line in step (a) -- part of the source that originally contained lighter-

colored pixels has now been overwritten with darker-colored pixels. More source data corruption occurs

as steps (b) through (d) are performed. At step (e), another line of the source data is read, but the two

right-most pixels of this line are in the region where the source and destination locations overlap, and

where the source has already been overwritten as a result of the copying of the top-most line in step (a).

Starting in step (f), darker-colored pixels can be seen in the destination where lighter-colored pixels

should be. This errant effect occurs repeatedly throughout the remaining steps in this BLT operation. As

more lines are copied from the source location to the destination location, it becomes clear that the end

result is not what was originally intended.

18 Doc Ref # IHD-OS-ACM-Vol 10-3.23

Source Corruption in BLT with Overlapping Source and Destination Locations

The BLT engine can alter the order in which source data is read and destination data is written when

necessary to avoid source data corruption problems when the source and destination locations overlap.

The command packets provide the ability to change the point at which the BLT engine begins reading

and writing data from the upper left-hand corner (the usual starting point) to one of the other three

corners. The BLT engine may be set to read data from the source and write it to the destination starting

at any of the four corners of the panel.

Doc Ref # IHD-OS-ACM-Vol 10-3.23 19

The XY command packets perform the necessary comparisons and start at the proper corner of each

operand which avoids data corruption.

Correctly Performed BLT with Overlapping Source and Destination Locations

The following figure illustrates how this feature of the BLT engine can be used to perform the same BLT

operation as was illustrated in the figure above, while avoiding the corruption of source data. As shown

in the figure below, the BLT engine reads the source data and writes the data to the destination starting

with the right-most pixel of the bottom-most line. By doing this, no pixel existing where the source and

destination locations overlap will ever be written to before it is read from by the BLT engine. By the time

the BLT operation has reached step (e) where two pixels existing where the source and destination

locations overlap are about to be over written, the source data for those two pixels has already been

read.

20 Doc Ref # IHD-OS-ACM-Vol 10-3.23

Suggested Starting Points for Possible Source and Destination Overlap Situations

The figure above shows the recommended lines and pixels to be used as starting points in each of 8

possible ways in which the source and destination locations may overlap. In general, the starting point

should be within the area in which the source and destination overlap.

Doc Ref # IHD-OS-ACM-Vol 10-3.23 21

Basic Graphics Data Considerations

Contiguous vs. Discontinuous Graphics Data

Graphics data stored in memory, particularly in the frame buffer of a graphics system, has organizational

characteristics that often distinguish it from other varieties of data. The main distinctive feature is the

tendency for graphics data to be organized in a discontinuous block of graphics data made up of

multiple sub-blocks of bytes, instead of a single contiguous block of bytes.

Representation of On-Screen Single 6-Pixel Line in the Frame Buffer

The figure above shows an example of contiguous graphics data -- a horizontal line made up of six

adjacent pixels within a single scan line on a display with a resolution of 640x480. Presuming that the

graphics system driving this display has been set to 8 bits per pixel and that the frame buffer's starting

address of 0h corresponds to the upper left-most pixel of this display, then the six pixels that make this

horizontal line starting at coordinates (256, 256) occupies the six bytes starting at frame buffer address

28100h, and ending at address 28105h.

In this case, there is only one scan line's worth of graphics data in this single horizontal line, so the block

of graphics data for all six of these pixels exists as a single, contiguous block comprised of only these six

bytes. The starting address and the number of bytes are the only pieces of information that a BLT engine

would require to read this block of data.

The simplicity of the above example of a single horizontal line contrasts sharply to the example of

discontinuous graphics data depicted in the figure below. The simple six-pixel line of the figure above is

now accompanied by three more six-pixel lines placed on subsequent scan lines, resulting in the 6x4

block of pixels shown.

22 Doc Ref # IHD-OS-ACM-Vol 10-3.23

Representation of On-Screen 6x4 Array of Pixels in the Frame Buffer

Since there are other pixels on each of the scan lines on which this 6x4 block exists that are not part of

this 6x4 block, what appears to be a single 6x4 block of pixels on the display must be represented by a

discontinuous block of graphics data made up of 4 separate sub-blocks of six bytes apiece in the frame

buffer at addresses 28100h, 28380h, 28600h, and 28880h. This situation makes the task of reading what

appears to be a simple 6x4 block of pixels more complex. However, there are two characteristics of this

6x4 block of pixels that help simplify the task of specifying the locations of all 24 bytes of this

discontinuous block of graphics data: all four of the sub-blocks are of the same length, and the four sub-

blocks are separated from each other at equal intervals.

The BLT engine is designed to make use of these characteristics of graphics data to simplify the

programming required to handle discontinuous blocks of graphics data. For such a situation, the BLT

engine requires only four pieces of information: the starting address of the first sub-block, the length of

a sub-block, the offset (in bytes), pitch, of the starting address of each subsequent sub-block, and the

quantity of sub-blocks.

Source Data

The source data may exist in the frame buffer or elsewhere in the graphics aperture where the BLT

engine may read it directly, or it may be provided to the BLT engine by the host CPU through the

command packets. The block of source graphics data may be either contiguous or discontinuous and

may be either in color (with a color depth that matches that to which the BLT engine has been set) or

monochrome.

Doc Ref # IHD-OS-ACM-Vol 10-3.23 23

The source select bit in the command packets specifies whether the source data exists in the frame buffer

or is provided through the command packets. Monochrome source data is always specified as being

supplied through an immediate command packet.

If the color source data resides within the frame buffer or elsewhere in the graphics aperture, then the

Source Address Register, specified in the command packets is used to specify the address of the source.

In cases where the host CPU provides the source data, it does so by writing the source data to ring buffer

directly after the BLT command that requires the data or uses an IMMEDIATE_INDIRECT_BLT command

packet which has a size and pointer to the operand in Graphics aperture.

The block of bytes sent by the host CPU through the command packets must be quadword-aligned and

the source data contained within the block of bytes must also be aligned.

To accommodate discontinuous source data, the source and destination pitch registers can be used to

specify the offset in bytes from the beginning of one scan line's worth source data to the next. Otherwise,

if the source data is contiguous, then an offset equal to the length of a scan line's worth of source data

should be specified.

Monochrome Source Data

The opcode of the command packet specifies whether the source data is color or monochrome. Since

monochrome graphics data only uses one bit per pixel, each byte of monochrome source data typically

carries data for 8 pixels which hinders the use of byte-oriented parameters when specifying the location

and size of valid source data. Some additional parameters must be specified to ensure the proper

reading and use of monochrome source data by the BLT engine. The BLT engine also provides additional

options for the manipulation of monochrome source data versus color source data.

The various bit-wise logical operations and per-pixel write-masking operations were designed to work

with color data. In order to use monochrome data, the BLT engine converts it into color through a

process called color expansion, which takes place as a BLT operation is performed. In color expansion the

single bits of monochrome source data are converted into one, two, or four bytes (depending on the

color depth) of color data that are set to carry value corresponding to either the foreground or

background color that have been specified for use in this conversion process. If a given bit of

monochrome source data carries a value of 1, then the byte(s) of color data resulting from the

conversion process will be set to carry the value of the foreground color. If a given bit of monochrome

source data carries a value of 0, then the resulting byte(s) will be set to the value of the background

color. The foreground and background colors used in the color expansion of monochrome source data

can be set in the source expansion foreground color register and the source expansion background color

register.

The BLT Engine requires that the bit alignment of each scan line's worth of monochrome source data be

specified. Each scan line's worth of monochrome source data is word aligned but can actually start on

any bit boundary of the first byte. Monochrome text is special cased, and it is bit or byte packed, where

in bit packed there are no invalid pixels (bits) between scan lines. There is a 3-bit field which indicates the

starting pixel position within the first byte for each scan line, Mono Source Start.

Note that the Monosource surface start Base Address, should always be Cache Line (64byte) aligned.

24 Doc Ref # IHD-OS-ACM-Vol 10-3.23

The BLT engine also provides various clipping options for use with specific BLT commands (BLT_TEXT)

with a monochrome source. Clipping is supported through: Clip rectangle Y addresses or coordinates

and X coordinates along with scan line starting and ending addresses (with Y addresses) along with X

starting and ending coordinates.

The maximum immediate source size is 128 bytes.

Pattern Data

The color pattern data must exist within the frame buffer or Graphics aperture where the BLT engine may

read it directly or it can be sent through the command stream. The pattern data must be located in linear

memory.

Note also that the Color Pattern surface start Base Address, should always be Cache Line (64byte)

aligned.

Monochrome pattern data is supplied by the command packet when it is to be used. As shown in figure

below, the block of pattern graphics data always represents a block of 8x8 pixels. The bits or bytes of a

block of pattern data may be organized in the frame buffer memory in only one of three ways,

depending upon its color depth which may be 8, 16, or 32 bits per pixel (whichever matches the color

depth to which the BLT engine has been set), or monochrome.

The maximum color pattern size is 256 bytes.

Pattern Data -- Always an 8x8 Array of Pixels

Doc Ref # IHD-OS-ACM-Vol 10-3.23 25

The Pattern Address Register is used to specify the address of the color pattern data at which the block

of pattern data begins. The three least significant bits of the address written to this register are ignored,

because the address must be in terms of quadwords. This is because the pattern must always be located

on an address boundary equal to its size. Monochrome patterns take up 8 bytes, or a single quadword of

space, and are loaded through the command packet that uses it. Similarly, color patterns with color

depths of 8, 16, and 32 bits per pixel must start on 64-byte, 128-byte and 256-byte boundaries,

respectively. The next 3 figures show how monochrome, 8bpp, 16bpp, and 32bpp pattern data ,

respectively, is organized in memory.

8bpp Pattern Data -- Occupies 64 Bytes (8 quadwords)

26 Doc Ref # IHD-OS-ACM-Vol 10-3.23

16bpp Pattern Data -- Occupies 128 Bytes (16 quadwords)

32bpp Pattern Data -- Occupies 256 Bytes (32 quadwords)

The opcode of the command packet specifies whether the pattern data is color or monochrome. The

various bit-wise logical operations and per-pixel write-masking operations were designed to work with

color data. In order to use monochrome pattern data, the BLT engine is designed to convert it into color

through a process called "color expansion" which takes place as a BLT operation is performed. In color

expansion, the single bits of monochrome pattern data are converted into one, two, or four bytes

(depending on the color depth) of color data that are set to carry values corresponding to either the

foreground or background color that have been specified for use in this process. The foreground color is

used for pixels corresponding to a bit of monochrome pattern data that carry the value of 1, while the

Doc Ref # IHD-OS-ACM-Vol 10-3.23 27

background color is used where the corresponding bit of monochrome pattern data carries the value of

0. The foreground and background colors used in the color expansion of monochrome pattern data can

be set in the Pattern Expansion Foreground Color Register and Pattern Expansion Background Color

Register.

Destination Data

BLT Programming Examples

Pattern Fill -- A Very Simple BLT

In this example, a rectangular area on the screen is to be filled with a color pattern stored as pattern data

in off-screen memory. The screen has a resolution of 1024x768 and the graphics system has been set to

a color depth of 8 bits per pixel.

On-Screen Destination for Example Pattern Fill BLT

28 Doc Ref # IHD-OS-ACM-Vol 10-3.23

As shown in the figure above, the rectangular area to be filled has its upper left-hand corner at

coordinates (128, 128) and its lower right-hand corner at coordinates (191, 191). These coordinates

define a rectangle covering 64 scan lines, each scan line's worth of which is 64 pixels in length -- in other

words, an array of 64x64 pixels. Presuming that the pixel at coordinates (0, 0) corresponds to the byte at

address 00h in the frame buffer memory, the pixel at (128, 128) corresponds to the byte at address

20080h.

Pattern Data for Example Pattern Fill BLT

As shown in figure above, the pattern data occupies 64 bytes starting at address 100000h. As always, the

pattern data represents an 8x8 array of pixels.

The BLT command packet is used to select the features to be used in this BLT operation and must be

programmed carefully. The vertical alignment field should be set to 0 to select the top-most horizontal

row of the pattern as the starting row used in drawing the pattern starting with the top-most scan line

covered by the destination. The pattern data is in color with a color depth of 8 bits per pixel, so the

dynamic color enable should be asserted with the dynamic color depth field should be set to 0. Since this

BLT operation does not use per-pixel write-masking (destination transparency mode), this field should be

set to 0. Finally, the raster operation field should be programmed with the 8-bit value of F0h to select the

bit-wise logical operation in which a simple copy of the pattern data to the destination takes place.

Selecting this bit-wise operation in which no source data is used as an input causes the BLT engine to

automatically forego either reading source data from the frame buffer.

The Destination Pitch Register must be programmed with number of bytes in the interval from the start

of one scan line's worth of destination data to the next. Since the color depth is 8 bits per pixel and the

horizontal resolution of the display is 1024, the value to be programmed into these bits is 400h, which is

equal to the decimal value of 1024.

Bits [31:3] of the Pattern Address Register must be programmed with the address of the pattern data.

Doc Ref # IHD-OS-ACM-Vol 10-3.23 29

Similarly, bits [31:0] of the Destination Address Register must be programmed with the byte address at

the destination that will be written to first. In this case, the address is 20080h, which corresponds to the

byte representing the pixel at coordinates (128, 128).

This BLT operation does not use the values in the Source Address Register or the Source Expansion

Background or Foreground Color Registers.

The Destination Width and Height Registers (or the Destination X and Y Coordinates) must be

programmed with values that describe to the BLT engine the 64x64 pixel size of the destination location.

The height should be set to carry the value of 40h, indicating that the destination location covers 64 scan

lines. The width should be set to carry the value of 40h, indicating that each scan line's worth of

destination data occupies 64 bytes. All of this information is written to the ring buffer using the PAT_BLT

(or XY_PAT_BLT) command packet.

Results of Example Pattern Fill BLT

30 Doc Ref # IHD-OS-ACM-Vol 10-3.23

The figure above shows the end result of performing this BLT operation. The 8x8 pattern has been

repeatedly copied ("tiled") into the entire 64x64 area at the destination.

Drawing Characters Using a Font Stored in System Memory

In this example BLT operation, a lowercase letter "f" is to be drawn in black on a display with a gray

background. The resolution of the display is 1024x768, and the graphics system has been set to a color

depth of 8 bits per pixel.

On-Screen Destination for Example Character Drawing BLT

The figure above shows the display on which this letter "f" is to be drawn. As shown in this figure, the

entire display has been filled with a gray color. The letter "f" is to be drawn into an 8x8 region on the

display with the upper left-hand corner at the coordinates (128, 128).

Doc Ref # IHD-OS-ACM-Vol 10-3.23 31

Source Data in System Memory for Example Character Drawing BLT

The figure above shows both the 8x8 pattern making up the letter "f" and how it is represented

somewhere in the host's system memory -- the actual address in system memory is not important. The

letter "f" is represented in system memory by a block of monochrome graphics data that occupies 8

bytes. Each byte carries the 8 bits needed to represent the 8 pixels in each scan line's worth of this

graphics data. This type of pattern is often used to store character fonts in system memory.

During this BLT operation, the host CPU will read this representation of the letter "f" from system

memory, and write it to the BLT engine by performing memory writes to the ring buffer as an immediate

monochrome BLT operand following the BLT_TEXT command. The BLT engine will receive this data

through the command stream and use it as the source data for this BLT operation. The BLT engine will be

set to the same color depth as the graphics system -- 8 bits per pixel, in this case. Since the source data

in this BLT operation is monochrome, color expansion must be used to convert it to an 8 bpp color

depth. To ensure that the gray background behind this letter "f" is preserved, per-pixel write masking will

be performed, using the monochrome source data as the pixel mask.

The BLT Setup and Text_immediate command packets are used to select the features to be used in this

BLT operation. Only the fields required by these two command packets must be programmed carefully.

The BLT engine ignores all other registers and fields. The source select field in the Text_immediate

command must be set to 1, to indicate that the source data is provided by the host CPU through the

command packet. Finally, the raster operation field should be programmed with the 8-bit value CCh to

select the bit-wise logical operation that simply copies the source data to the destination. Selecting this

bit-wise operation in which no pattern data is used as an input, causes the BLT engine to automatically

forego reading pattern data from the frame buffer.

The Setup Pattern/Source Expansion Foreground Color Register to specify the color with which the letter

"f" will be drawn. There is no Source address. All scan lines of the glyph are bit packed, and the clipping

is controlled by the ClipRect registers from the SETUP_BLT command and the Destination Y1, Y2, X1, and

32 Doc Ref # IHD-OS-ACM-Vol 10-3.23

X2 registers in the TEXT_BLT command. Only the pixels that are within (inclusive comparisons) the clip

rectangle are written to the destination surface.

The Destination Pitch Register must be programmed with a value equal to the number of bytes in the

interval between the first bytes of each adjacent scan line's worth of destination data. Since the color

depth is 8 bits per pixel and the horizontal resolution of the display is 1024 pixels, the value to be

programmed into these bits is 400h, which is equal to the decimal value of 1024. Since the source data

used in this BLT operation is monochrome, the BLT engine will not use a byte-oriented pitch value for the

source data.

Since the source data is monochrome, color expansion is required to convert it to color with a color

depth of 8 bits per pixel. Since the Setup Pattern/Source Expansion Foreground Color Register is selected

to specify the foreground color of black to be used in drawing the letter "f", this register must be

programmed with the value for that color. With the graphics system set for a color depth of 8 bits per

pixel, the actual colors are specified in the RAMDAC palette, and the 8 bits stored in the frame buffer for

each pixel actually specify the index used to select a color from that palette. This example assumes that

the color specified at index 00h in the palette is black, and therefore bits [7:0] of this register should be

set to 00h to select black as the foreground color. The BLT engine ignores bits [31:8] of this register

because the selected color depth is 8 bits per pixel. Even though the color expansion being performed

on the source data normally requires that both the foreground and background colors be specified, the

value used to specify the background color is not important in this example. Per-pixel write-masking is

being performed with the monochrome source data as the pixel mask, which means that none of the

pixels in the source data that will be converted to the background color will ever be written to the

destination. Since these pixels will never be seen, the value programmed into the Pattern/Source

Expansion Background Color Register to specify a background color is not important.

The Destination Width and Height Registers are not used. The Y1, Y2, X1, and X2 are used to describe to

the BLT engine the 8x8 pixel size of the destination location. The Destination Y1 and Y2 address (or

coordinate) registers must be programmed with the starting and ending scan line address (or Y

coordinates) of the destination data. This address is specified as an offset from the start of the frame

buffer of the scan line at the destination that will be written to first. The destination X1 and X2 registers

must be programmed with the starting and ending pixel offsets from the beginning of the scan line.

This BLT operation does not use the values in the Pattern Address Register, the Source Expansion

Background Color Register, or the Source Expansion Foreground Color Register.

Doc Ref # IHD-OS-ACM-Vol 10-3.23 33

Results of Example Character Drawing BLT

The preceding shows the end result of performing this BLT operation. Only the pixels that form part of

the actual letter "f" have been drawn into the 8x8 destination location on the display, leaving the other

pixels within the destination with their original gray color.

Fast Copy Engine

Fast Copy Engine is capable of performing sub-resource copy or fill operation saturating the full memory

bandwidth. It is a resource processor that can copy from a source of arbitrary format. Fast Copy Engine is

capable of understanding the concept of resource and sub-resources. It can support data transfer

between overlapping surfaces. It can support state-full compression and decompression. Copy Engine

supports both linear as well as tiled memory and operate on both system as well as local memory (when

it is not a UMA system). In case of UMA system there is just a single memory.

Fast Copy Engine can be used for paging in or paging out resources to and from GPU. It also supports

Fast Clear and regular clear operation of AUX enabled surfaces. It can be used to perform resolve

operation on compressed surfaces. Copy Engines can operate on 2D surfaces defined using pixel

coordinates as well as linear surfaces defined using virtual addresses.

Fast Copy Engine performance scales with number of memory slices in the system.

Copy workloads are submitted to the appropriate copy engines by the software through copy queues.

BLT command streamers parses the commands and submits them to Fast Copy Engine. Copy Engines are

split into two parts:

1. Copy Engine Front-end - splits an incoming command/BLIT into smaller commands/sub-blits

2. Copy Engine Back-end - it takes sub-blits and performs actual cachline read/write operations

34 Doc Ref # IHD-OS-ACM-Vol 10-3.23

Performance scaling of the Fast Copy Engine is achieved by increasing the number of copies of Back-end

(Sub-copy Engine) attached to the single front-end of the fast copy engine. Fast copy engine can handle

sub-blit level dependencies (producer consumer relationship). Software may have to insert appropriate

flushes between commands to handle some dependencies not supported by copy engine hardware, as

defined at a later section.

BLT Instruction Overview

There are two blitter back-ends behind the single engine viz. Classical Blitter or Legacy Blitter Engine and

Fast Copy Engine. Each of which operates on a separate mutually exclusive set of instructions.

Commands for both the back-ends can be submitted to the same Blitter Command Streamer and based

on the command it is passed on to the appropriate back end and executed there.

Each instruction consists of multiple dwords, where first dword is the header, which can identify the type

of instruction, instruction opcode, length of instruction etc. Header may contain additional instruction

fields as well. Fields may sometime need more than one dword.

Most of the instructions can operate independently without state other than some Legacy Blitter

commands involving clip rectangles that programs some BRs (Blitter Registers) before executing those

commands.

There are specific MMIO based config registers that configures how Legacy Blitter or Fast Copy Engine is

expected to operate.

Legacy Blitter uses cache, so unless a flush is inserted after an instruction there is no guarantee of final

data reaching the memory.

The flush is common for both the backends. Once a flush is sent command streamer stops sending

further commands to the back-ends and back-ends ensure that when the current commands being

processed by the back-ends are completed flush done are sent to blitter command streamer.

The actual commands have been listed out in a later section.

BLT Engine State

Most of the BLT instructions are state-free, which means that all states required to execute the command

is within the instruction. If clipping is not used, then there is no shared state for many of the BLT

instructions. This allows the BLT Engine to be shared by many drivers with minimal synchronization

between the drivers.

Instructions which share state are:

All instructions that are X,Y commands and use the Clipping Rectangle by asserting the Clip Enable field

All XY_Setup Commands (XY_SETUP_BLT and XY_SETUP_MONO_PATTERN_SL_BLT, XY_SETUP_CLIP_BLT)

load the shared state for the following commands:

XY_PIXEL_BLT (Negative Stride (=Pitch) Not Allowed)

XY_SCANLINES_BLT

XY_TEXT_BLT (Negative Stride (=Pitch) Not Allowed)

Doc Ref # IHD-OS-ACM-Vol 10-3.23 35

XY_TEXT_IMMEDIATE_BLT (Negative Stride (=Pitch) Not Allowed)

State registers that are saved & restored in the Logical Context:

BR1+ Setup Control (Solid Pattern Select, Clipping Enable, Mono Source

Transparency Mode, Mono Pattern Transparency Mode, Color Depth[1:0],

Raster Operation[7:0], & Destination Pitch[15:0]) + 32bpp Channel

Mask[1:0], Mono / Color Pattern

BR05 Setup Background Color

BR06 Setup Foreground Color

BR07 Setup Pattern Base Address

BR09 Setup Destination Base Address

BR20 DW0 for a Monochrome Pattern

BR21 DW1 for a Monochrome Pattern

BR24 ClipRectY1'X1

BR25 ClipRectY2'X2

The definition of each of the above registers which are part of logical context and are saved and restored

during context save and restore are found in "BLT Engine Instruction Field Definitions" section.

Device Cache Coherency: Render & Texture Caches

Software must initiate cache flushes to enforce coherency between the render and texture caches, i.e.,

both the render and texture caches must be flushed before a BLT destination surface can be reused as a

texture source. Color sources and destinations use the render cache, while patterns and monochrome

sources use the texture cache.

Copy Engine Fast Clear Support

Copy Engine can be used to perform Fast Clear operation on a destination surface provided the surface

is mapped to CCS. A CCS cacheline is mapped to 4x4KB of main surface. The surfaces must begin on

16KB virtual address boundaries, and these surfaces must be padded to 16KB granularity. Fast Clear

operation using copy engine can't be performed when BPP is 96. Fast Clear rectangles must be

128Bx1 aligned for linear and 32Bx4 aligned for tiled surfaces. Width of the Fast Clear rectangle must be

integral multiple of 128 for linear and 32 for tiled surfaces. Height of the Fast Clear rectangle for tiled

surfaces must be multiple of 4. Surfaces smaller than 128B cannot be Fast Cleared by Copy Engine.

Sometimes Fast Clear rectangles may have to be padded to get the right size and shape for Fast Clear to

work.

If software wants to use the Fast Clear capability of the copy engine it can do so by setting up the top

left and bottom right coordinate of the surface in the XY_FAST_COLOR_BLT command and setting special

operation mode to the kind of Fast Clear the software intends to accomplish. Appropriately aligned

blocks in any sub-resource can be fast cleared. Mip-tails can't be fast cleared unless they are 128B

aligned and not smaller than the minimum Fast Clearable surface. If the resource type is 3D and tiling

selected is Tile64, fast clear works only if the CCS update granularity is 4 bit.

36 Doc Ref # IHD-OS-ACM-Vol 10-3.23

In case of irregular surfaces only the appropriately aligned part of the surface can be Fast Cleared using

Copy Engine Fast Clear. Rest of the parts of the surface can be cleared using regular clear operation.

Copy Engine Hardware performs Fast Clear operation by updating the CCS cacheline with appropriate

data. It can either initialize the CCS cache with all zero or all one data.

Fast Clear is not supported when it is used over Xelink.

Verbatim Copy operation

Verbatim Copy is the special copy operation defined for compressed surface copy where both the main

surface data and the associated CCS data are moved as it is from one location to another. During this

operation main surface data copy and CCS data copy are performed sequentially. Driver needs to use

two separate commands, XY_FAST_COPY_BLT to copy the main surface data and

XY_CTRL_SURF_COPY_BLT to copy the CCS surface, together for verbatim copy. In case of regular

compressed data access from Copy Engine, read data from source is always made available to copy

engine as fully decompressed data and Copy Engine writes fully decompressed data back to memory and

if destination compression is required this data is again compressed and written to memory. The

compressed write causes both CCS and main surface write data to be modified. In case of verbatim copy

"data read" operation from source the data does not decompress before sending to Copy Engine. Driver

needs to set "Enable Compressed Surface Read" bit in the XY_FAST_COPY_BLT command to enable this

special operation. In case of verbatim copy "data write" operation to destination surface this "raw"

compressed data is sent out and this flow can be enabled by driver by setting the "Enable Compressed

Surface Write" bit in the XY_FAST_COPY_BLT command.

These two commands must be used in a pair and the sequence in which the two commands must be

used during verbatim copy operation varies based on whether it is being used for swap-in (moving data

from local memory to system memory) or swap-out (moving data from system memory to local memory)

operation for compressed data. In case of swap-out operation the sequence required is

XY_FAST_COPY_BLT followed by XY_CTRL_SURF_COPY_BLT. In case of swap-in operation the sequence

required is XY_CTRL_SURF_COPY_BLT followed by XY_FAST_COPY_BLT.

During verbatim copy the copy rectangles used for XY_CTRL_SURF_COPY_BLT and XY_FAST_COPY_BLT

must be same. They must also use same BPP and pitch. Using base address X1, X2, Y1, Y2 from

XY_FAST_COPY_BLT command start address and range is calculated.

BLT Engine Instructions

The Instruction Target field is used as an opcode by the BLT Engine state machine to qualify the control

bits that are relevant for executing the instruction. The descriptions for each DWord and bit field are

contained in the BLT Engine Instruction Field Definition section. Each DWord field is described as a

register, but none of these registers can be written or read through a memory mapped location; they are

internal state only.

Doc Ref # IHD-OS-ACM-Vol 10-3.23 37

BLT Programming Restrictions

Overlapping Source/Destination BLTs:

For all products negative pitch programming is allowed only when the source and destination surfaces

are of the same type: linear source to linear destination copy, or tiled source to tiled destination copy.

This is a must requirement. In such cases:

• Both the pitches must be programmed to be a negative value, if the source and destination

surfaces are overlapping.

• Either of the pitches can be programmed to a negative value if required to do mirroring, but only if

the complete source and destination surfaces are not overlapping anywhere on the surfaces.

Description

For the XY_FAST_COPY_BLT and XY_BLOCK_COPY_BLT instruction, these restrictions apply:

When two sequential fast copy blits have different source surfaces, but their destinations refer to the same

destination surface and therefore destinations overlap, a Flush must be inserted between the two blits.

For two sequential fast copy blits when the source of the second blit is the destination of the first blit or they

overlap a Flush must be inserted between the two blits.

The pitch length for Linear Surfaces is OWord-aligned (16-byte multiple), as the BSpec says.

(For Tiled surfaces, the pitch length is always Cacheline aligned (64-byte multiple), as Tile surface pitches must be a

multiple of Tile widths, which are always cacheline aligned).

For XY_FAST_COPY_BLT command (X1, X2) and (Y1, Y2) must be programmed different values so that start

pixel/end pixel and start line/end line do not coincide.

Legacy Blits:

The following condition must be avoided when programming the BLT engine: Linear surfaces with a

cache line in scan line Y for the source stream overlapping with a cache line in scan line Y-1 for the dest

stream (=> non-aligned surface pitches). The cache coherency rules combined with the Blitter data

consumption rules result in UNDEFINED operation.

All reserved fields must be programmed to 0s.

When using monosource or text data (bit/byte/word aligned): Do not program pixel widths greater than

32,745 pixels.

The other way to do this is driver should always program a dummy 3D.

NON-PIPELINE state following the BLT commands:

For Monosource and Color Pattern surfaces, and also linear color source and destination surfaces, the

start Base Address programmed should always be Cache Line (64 byte) aligned.

38 Doc Ref # IHD-OS-ACM-Vol 10-3.23

Programming Note

Context: Fast Copy Blitter + Frame Buffer Compression

Fast Copy, Block Copy and Fast Color workloads targeting the Front Buffer with FBC enabled is not supported.

Programming Note

Context: XY_FAST_COPY_BLT command programming restriction

XY_FAST_COPY_BLT command's (X1, Y1), (X2, Y2) must be programmed such way so that neither W nor H of the

surface to copy are "0".

Programming Note

Context: Blitter

Support for Tile-Yf format has been removed, so Blitter should not be programmed to support Tile-Yf for source or

destination tiling.

Programming Note

Context: XY_BLOCK_COPY_BLT and XY_FAST_COLOR_BLT commands

MSAA compression is not supported by Copy Engine, so it is illegal to program "Number of Multisamples" in the

command to any value greater than 1.

Programming Note

Context: XY_BLOCK_COPY_BLT usage restriction for resolve operation

When XY_BLOCK_COPY_BLT command is used to resolve a compressed surface, it must be ensured that the

surfaces are compression block aligned. If the surfaces to be resolved are split into multiple BLITs for any reason it

must be ensured that they are split based on CCS cacheline alignment. For 128B compression block size this

alignment means the BLITs must be 16384 bytes aligned.

Programming Note

Context: XY_CTRL_SURF_COPY_BLT command

If XY_CTRL_SURF_COPY_BLT command is either preceded by or succeeded by XY_FAST_COPY_BLT,

XY_BLOCK_COPY_BLT or XY_FAST_COLOR_BLT command and there is address overlap between the commands

software must insert explicit flush between them as Copy Engine cannot track address overlap between Control

Surface Copy command and other copy commands.

Copy Engine can't detect address overlap between successive XY_CTRL_SURF_COPY_BLT commands and hence

can't sequence them when producer consumer relationship is involved, so software must insert explicit flush

between such commands.

Doc Ref # IHD-OS-ACM-Vol 10-3.23 39

Programming Note

Context: Blitter (XY_BLOCK_COPY_BLT, XY_FAST_COLOR_BLT commands)

X offset, Y offset and (X1, Y1), (X2, Y2) values must be programmed so that X coordinate values when added to X

offset remains within the surface boundary (16384 pixels). Similarly

Y coordinate values when added to Y offset must remain within the surface boundary (16384 lines).

Copy operation between two overlapping surfaces are supported only when the base address and pitch of both the

source and destination surfaces are identical, irrespective of the surface formats.

Programming Note

Context:

Programming Restrictions for XY_BLOCK_COPY_BLT and XY_FAST_COLOR_BLT commands for

when compression is enabled.

 *Note: Whenever source or destination of a copy operation is System Memory and data is compressed, the copy

operation needs to be verbatim copy, where main surface and the associated metadata (AUX) must be copied

separately as it is to their respective location treating them as uncompressed data.

3D Copy operations Destination

System Memory Local Memory

Compressed Decompressed Compressed Decompressed

Source System Memory Compressed Valid* Invalid Valid* Invalid

Decompressed Invalid Valid Valid Valid

Local Memory Compressed Valid* Valid Valid Valid

Decompressed Invalid Valid Valid Valid

Media Copy operations Destination

System Memory Local Memory

Compressed Decompressed Compressed Decompressed

Source System Memory Compressed Valid* Invalid Valid* Invalid

Decompressed Invalid Valid Invalid Valid

Local Memory Compressed Valid* Valid Valid Valid

Decompressed Invalid Valid Invalid Valid

40 Doc Ref # IHD-OS-ACM-Vol 10-3.23

2D (XY) BLT Instructions

Most BLT instructions (prefixed with "XY_") use 2D X,Y coordinate specifications vs. lower-level linear

addresses These instructions also support simple 2D clipping against a clip rectangle. The top and left

Clipping coordinates are inclusive. The bottom and right coordinates are exclusive. The BLT Engine

performs a trivial reject for all CLIP BLT instructions before performing any accesses.

Negative destination and source coordinates are supported. In the case of negative source coordinates,

the destination X1 and Y1 are modified by the absolute value of the negative source coordinate before

the destination clip checking and final drawing coordinates are calculated. The absolute value of the

source negative coordinate is added to the corresponding destination coordinate. The BLT engine

clipping also checks for (DX2 [or = DX1) or (DY2 [or = DY1) after this calculation and if true, then the

BLT is totally rejected.

Source and destination pitches have the additional explanation given next. The below statements are

applicable for pitch field in all of the Blit commands:

1. For Linear surfaces, the pitch is programmed in bytes. For Tiled surfaces the pitch programmed is

in Dwords count.

2. For Tiled surfaces this pitch is of 512Byte granularity for Tile-X: This means the tiled-x surface pitch

can be (512, 1024, 1536, 2048...)/4 (in Dwords).

3. For Tiled surfaces this pitch is of 128B granularity for Tile-Y/Yf and of 512B granularity for Tile-Ys:

This means the tiled-y surface pitch can be (128, 256, 384, 512...)/4 (in Dwords).

4. Another way to indicate this is, for tiled surfaces, the pitch is programmed in Dwords and is an

integral multiple of the tile width.

BLT Instructions

Instructions

XY_BLOCK_COPY_BLT

XY_FAST_COPY_BLT

XY_FAST_COLOR_BLT

XY_CTRL_SURF_COPY_BLT

XY_COLOR_BLT

XY_FULL_BLT

XY_FULL_IMMEDIATE_PATTERN_BLT

XY_FULL_MONO_PATTERN_BLT

XY_FULL_MONO_PATTERN_MONO_SRC_BLT

XY_FULL_MONO_SRC_BLT

XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT

XY_MONO_PAT_BLT

XY_MONO_PAT_FIXED_BLT

XY_MONO_SRC_COPY_BLT

XY_MONO_SRC_COPY_IMMEDIATE_BLT

XY_PAT_BLT

Doc Ref # IHD-OS-ACM-Vol 10-3.23 41

Instructions

XY_PAT_BLT_IMMEDIATE

XY_PAT_CHROMA_BLT

XY_PAT_CHROMA_BLT_IMMEDIATE

XY_PIXEL_BLT

XY_SCANLINES_BLT

XY_SETUP_BLT

XY_SETUP_CLIP_BLT

XY_SETUP_MONO_PATTERN_SL_BLT

XY_SRC_COPY_BLT

XY_SRC_COPY_CHROMA_BLT

XY_TEXT_BLT

XY_TEXT_IMMEDIATE_BLT

Some Equalities & Inequalities for Source Clipping

42 Doc Ref # IHD-OS-ACM-Vol 10-3.23

DX1, DY1, CX1, and CY1 are inclusive, while DX2, DY2, CX2, and CY2 are exclusive.

Destination pixel address = (Destination Base Address + (Destination Y coordinate * Destination pitch) +

(Destination X coordinate * bytes per pixel)).

Source pixel address = (Source Base Address + (Source Y coordinate * Source pitch) + (Source X

coordinate * bytes per pixel)).

Since there is 1 set of Clip Rectangle registers, the Interrupt Ring BLT commands either MUST NEVER

enable clipping with this command and never use the XY_Pixel_BLT, XY_Scanline_BLT, nor XY_Text_BLT

commands or it must use context switching. The Interrupt rings can also use the non-clipped, linear

address commands specified before this section.

The base addresses plus the X and Y coordinates determine if there is an overlap between the source and

destination operands. If the base addresses of the source and destination are the same and the Source

X1 is less than Destination X1, then the BLT Engine performs the accesses in the X-backwards access

pattern. There is no need to look for an actual overlap. If the base addresses are the same and Source Y1

is less than Destination Y1, then the scan line accesses are performed backwards.

Doc Ref # IHD-OS-ACM-Vol 10-3.23 43

44 Doc Ref # IHD-OS-ACM-Vol 10-3.23

BLT Engine Instruction Field Definitions

This section describes the BLT Engine instruction fields. These descriptions are in the format of register

descriptions. These registers are internal and are not readable. Some of these registers are state that is

saved and restored for supporting separate software threads.

Register

BR00 - BLT Opcode and Control

BR01 - Setup BLT Raster OP, Control, and Destination Offset

BR05 - Setup Expansion Background Color

BR06 - Setup Expansion Foreground Color

BR07 - Setup Blit Color Pattern Address Lower Order Address bits

BR30 - Setup Blit Color Pattern Address Higher Order Address

BR09 - Destination Address Lower Order Address Bits

BR27 - Destination Address Higher Order Address

BR11 - BLT Source Pitch (Offset)

BR12 - Source Address Lower order Address bits

BR28 - Source Address Higher order Address

BR13 - BLT Raster OP, Control, and Destination Pitch

BR14 - Destination Width and Height

BR15 - Color Pattern Address Lower order Address bits

BR29 - Color Pattern Address Higher order Address

BR16 - Pattern Expansion Background and Solid Pattern Color

BR17 - Pattern Expansion Foreground Color

BR18 - Source Expansion Background and Destination Color

BR19 - Source Expansion Foreground Color

