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SW/HW System Interface 

HW Graphics Virtualization 

Graphics virtualization allows multiple Virtual Machines (VMs) to access high-quality, high-performance 

graphics, with minimal software overhead. The graphics virtualization feature adds hardware and 

firmware to improve performance and enable VMMs to support Intel(R) HD Graphics, Iris0x2122 

graphics, and Iris0x2122 Pro graphics in a standard way, eliminating special requirements that could be 

barriers to adoption. 

Introduction 

Intel platforms have supported Virtualization Technology for Directed I/O (VT-d) since 2007. In the 

original VT-d model, graphics is exposed as a single device that can be assigned to only one VM, thus 

limiting how workloads are submitted to hardware. Such limitations can degrade performance for all 

VMs, except the one that owns the graphics hardware. 

The figure below shows the new concept of graphics virtualization, where each VM can access fully 

accelerated graphics capabilities. 

 



 

    

2   Doc Ref # IHD-OS-ACM-Vol 13-3.23 

Fully Virtualized Graphics - Conceptual View 

The capability depicted above requires the following infrastructure: 

• Graphics hardware that exposes multiple hardware interfaces, for assignment to different VMs; 

• Resources to submit the graphics workload: 

o Memory (aperture) allowing each VM to submit workload and associated data surfaces; 

o A graphics translation table (GTT) to manage aperture pages; 

o Some MMIO registers exposed to each VM; 

• A signaling mechanism to invoke the hardware to execute the workload; 

• A signaling mechanism for the hardware to convey relevant information by sending interrupts; 

• A mechanism to display the output produced by the execution of the workload. 

The figure below shows the proposed hardware interface used to allow multiple software stacks to each 

get their own "graphics device." 

 

Hardware Interface 

Display Output from a Virtualized Environment 

There are several possible ways to display content from a virtualized graphics environment: 

• Rely on the virtual machine monitor (VMM) or PF driver to composite rendered surfaces from 

different VMs; 

• Assign a display engine exclusively to a virtual function (VF), preferably a trusted VF from the 

VMM perspective, and use the corresponding planes/pipes to output data; 

• Assign a display pipe or plane to a VF. 

For In-Vehicle Infotainment (IVI), some applications may require keeping keep the VMM very light 

weight, and letting a trusted VM manage the display (including composition). In such a scenario, the 

main dashboard might be owned by the trusted VM, while ancillary displays would be managed by a 

different VM. 
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Exposing the Virtualization Capable Hardware 

The graphics virtualization infrastructure is exposed to system software by the Single Root I/O 

virtualization standard (SR-IOV), of the PCIe standard. The exposure is accomplished using a PCIe device 

Physical function that includes the SR-IOV Extended Capability structure, within the PCIe Extended 

Capabilities list. 

MMIO Space 

The MMIO register space allocates 8MB for graphics hardware, but currently only a subset of that 

allocation is used for MMIO. All GT, Media, and Display MMIO registers are allocated within the lower 

3MB of the MMIO range, so each VF needs a minimum of 4MB of MMIO space, after rounding up to the 

next power of two. To simplify design and validation, and provide additional MMIO space in the future, 

both VF and PF are allocated 8MB of MMIO register space each. 

From a global perspective, only the PF graphics driver needs to access most MMIO registers. From a 

security viewpoint, the VF driver and software stack are less trusted than PF, so VF does not have access 

to the full graphics device MMIO range. However, the VM controlling a VF needs to access a small subset 

of MMIO registers, such as those used to communicate with GuC, and create a VMM-independent PF to 

VF communication channel. The registers are replicated within the MMIO space of each VF, and only 

those registers can be accessed by the VM via the VF MMIO. 

Limiting VF access to hardware registers requires closing two access paths: direct CPU access and access 

via a graphics engine. This section covers restricting the CPU access path; the Privilege section covers 

restricting the graphics engines path. 

The figure below shows how the various stacks view the MMIO space. 
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MMIO Access in Virtualized Mode 

As with the PF, VF hardware allocates the MMIO register space and the Global GTT in the same PCI BAR 

(GTTMMADR), which is 16MB per VF. 

Global Address space and Graphics Aperture 

The graphics hardware currently supports graphics aperture, and global graphics address space, up to 

4GB. When SRIOV is enabled, the global address space is 4GB and is shared among all Functions. System 

software running in a VM submits commands and data required for a workload through the graphics 

aperture. When the VMM assigns a VF to a VM, the VMM exposes the VF's graphics aperture range (VF 

GMADR) and GGTT range (VF GTTMMADR), so the VF graphics driver can access and manage the global 

address space assigned to it by the Host KMD: 

• The Host graphics driver (PF KMD) manages the allocation of global address pages to Physical 

and Virtual Functions 

• A field in the Global GTT contains the number of the Function to which that page has been 

assigned, and that page may only be accessed by that VF, or the PF 

• The Guest graphics driver (VF KMD) can modify the address mapping (Global->GPA) for global 

address pages that have already been assigned to that VF by the Host KMD (Function field 

matches the VF) 

• Graphics aperture accesses require two translations - using the VF-GGTT to translate from 

Graphics address to GPA, then using the VF's BDF to translate from GPA to HPA. 

• When the Host accesses a global page via the PF, VTd translation will be based on the Function 

Number stored in the GGTT entry. 

A Guest Kernel Mode Driver can update GGTT Entries only for pages that have been assigned to that 

Guest, as determined by the Function Number field in the GGTT Entry. If the Function Number in the 

entry matches the Function Number of the VF assigned to the Guest, then the access is allowed, 

otherwise it is not. The exact behavior for matching and non-matching function numbers is described 

below. 

VF GTTMMADR Accesses 

Read w/Matching VF 

Read 

w/Mismatch VF Write with Matching VF 

Write 

w/Mismatch VF 

Returns all fields except Function 

Number[7:2], which is returned as 0 

Returns all 0's Updates all fields except Function 

Number[7:2] and Valid[0] 

No Updates 

VF Aperture Operations 

Graphics hardware supports the ability to determine the BDF used for aperture accesses, which may 

happen simultaneously (as shown in the following figure). The BDF to be associated with an aperture 

access is based on the per-VF BAR range. 
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VT-d Translation of Aperture Accesses 

VM Workload Scheduling 

Allow PFs to submit workloads: for example, to do compositing or other operations that require using 

data from different VMs. The figure below shows the basic conceptual model for workload submission. 
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Workload Submission 

Memory-based doorbell queues are the primary mechanism for scheduling workloads on the graphics 

hardware. The PF KMD assigns some doorbells to each VM for requesting execution. Within a VM, the 

graphics driver allocates available doorbells to the entities that submit work. For example, the PF KMD 

may have 256 doorbells available and assign 32 to a VM, then the VM graphics driver may keep 16 

doorbells for itself and grants 16 for direct submission by Ring3 (UMD) applications. 

The graphics KMD and GuC have a shared data structure that stores workload-related characteristics 

(ContextID, PASID, Doorbell#, LRCA location, etc). The table for each workload queue also adds the VF 

number. When a doorbell ring results in a workload submittal, the GuC also submits a VF number from 

the queue table into the execlist port. The supplied VF number is added to the context attribute and 

relayed to GTI. In virtualized mode, GTI performs a nested translation: the first-level translation is based 

on PASID (advanced mode) or PPGTT (legacy mode); the second level translation is a standard VT-d 

translation based on the BDF, where "F" comes from the VF number. 

VF Workload Execution in an Engine 

Gang-scheduling all engines would be inefficient, so GuC supports the ability to schedule a workload 

from any VF to any engine. Hence each engine can be executing context on behalf of different VFs. Each 

engine delivers the PASID, the directory pointer for first-level translation, and BDF with VF for second-

level translation. On a context switch, TLBs are flushed to avoid cross-domain access from stale TLBs. 

Managing Privilege Levels 

The hardware enforces privilege separation between Ring3 (UMD) and Ring0 (KMD) commands as 

follows: 

• Only KMD is allowed to issue certain commands that are considered privileged. 

• Only KMD commands are allowed to update the majority of graphics registers that are 

considered privileged. 

• UMD-issued commands are allowed to access and update a small set of registers that are 

considered non-privileged. 

This section describes how virtualization handles privileged commands and registers. 

In general, KMD may create privileged command buffers and UMD creates non-privileged command 

buffers. From a hardware perspective, command buffers using the Global GTT are at a higher privilege 

level, while command buffers using Per Process GTT are non-privileged. 

The MI_BATCH_BUFFER command contains an Address Space Indicator field that can determine whether 

the batch buffer uses the GGTT space or uses the PP GTT space. When a batch buffer command executes 

another batch buffer, the address space of the "child batch buffer" is determined by combining the 

Address Space Indicator fields of the parent batch buffer and child batch buffer. The privilege of a 

chained or second-level batch buffer is either equal to, or lower than, the privilege of the parent (e.g. a 

child cannot be GGTT if the parent is PP GTT). 

The following table shows how privileged commands are handled in both virtualized and non-virtualized 

scenarios. In the non-virtualized case, a privileged command or access to GGTT in a non-privileged buffer 
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results in a no-op or modification to PPGTT access. In the virtualized scenario, the KMD in the VM can 

insert commands that use the VF GGTT, so commands that use GGTT can go through, with the restriction 

that they use the VF's GGTT. 

Privileged Commands in Virtualized and Non-Virtualized Scenarios 

Category Command 

Behavior in 

Non-privileged 

BB 

Behavior in VF with 

 privileged BB/Ring Buffer 

GTT Update MI_UPDATE_GTT No-op Allow only for PF 

Display MI_DISPLAY_FLIP No-op Allow only for PF 

 
MI_LOAD_SCAN_LINES_INCL/EXCL Non-privileged 

instruction, 

Allowed 

Allow only for PF 

 
MI_WAIT_FOR_EVENT Non-privileged 

instruction, 

Allowed 

Allow only for PF 

Register Update MI_LOAD_REGISTER_IMM No-op if target is 

a Privileged 

register 

Continue UMD static whitelist and VF 

KMD programmed whitelist. (Even though 

OACONTROL (0x2B00) register is part of 

the UMD static whitelist, this register is 

privileged and only allowed by PF KMD 

and will not be accessible by VF KMD or 

UMD.) 

VF KMD can access some registers using 

an extended programmable whitelist 

infrastructure. 

Allow accesses within engine MMIO (e.g. 

RenderCS can write to allowed registers 

within the render engine). 

Allow register accesses to GAM/GAMT to 

enable context save/restore 

 
MI_LOAD_REGISTER_REG No-op if target is 

a Privileged 

register 

 
MI_LOAD_REGISTER_MEM No-op if GGTT is 

used or the 

target is a 

Privileged 

register 

Memory write MI_STORE_DATA_INDEX No-op PF allowed to access Global or Per-

Process Hardware Status Page. 

VF allowed only to access Per-Process 

Hardware Status Page. 

 
MI_STORE_REGISTER_MEM No-op if GGTT is 

used 

Allow - target memory is always within VF 

 
MI_STORE_DATA_IMM No-op if GGTT is 

used 

Allow to VF GGTT or PPGTT 
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Category Command 

Behavior in 

Non-privileged 

BB 

Behavior in VF with 

 privileged BB/Ring Buffer 

 
MI_RS_STORE_DATA_IMM No-op if GGTT is 

used 

Allow to VF GGTT or PPGTT 

Sync MI_SEMAPHOR_MBOX, MI_SEMPHORE_ 

SIGNAL,/ WAIT 

No-op if GGTT is 

used 

Not privileged. Semaphore address may 

be in GGTT or PP GTT 

 
PIPE_CONTROL Send Flush 

down. 

 Post Sync is No-

op if GGTT or 

use store data 

idx. Post sync LRI 

to privileged 

register is 

discarded. 

Allow - notify enable INT goes to GuC. 

Post sync op for register write is subjected 

to check (like MI_LOAD_REGISTER_IMM) 

PF allowed to access Global or Per-

Process Hardware Status Page for "Post-

Sync Operation" with "Store Data Index". 

VF allowed only to access Per-Process 

Hardware Status Page when "Post-Sync 

Operation" is with "Store Data Index". 

 
MI_CLFLUSH Allow Allow 

 
MI_FLUSH_DW No-op if GGTT or 

use Store data 

idx is enabled 

Allow to VF GGTT or PPGTT 

PF allowed to access Global or Per-

Process Hardware Status Page for "Post-

Sync Operation" with "Store Data Index". 

VF allowed only to access Per-Process 

Hardware Status Page when "Post-Sync 

Operation" is with "Store Data Index". 

 
MI_ARB_CHECK Allow Allow 

 
MI_ARB_ON_OFF No-op Disallow - privileged 

 
MI_ATOMIC No-op if GGTT Allow - VF GGTT or PP GTT 

Commands MI_BATCH_BUFFER_START Priv < = Parent 

Privilege 

Allow - not privileged 

 
MI_CONDITIONAL_BATCH_BUFFER_END No-op if GGTT Allow - not privileged 

 
MI_USER_INTERRUPT Allow Allow - GuC gets interrupt and notifies VF 

 
MI_NOOP Allow Allow 

 
MI_COPY_MEM_MEM No-op if src or 

dest addr is 

Allow 
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Category Command 

Behavior in 

Non-privileged 

BB 

Behavior in VF with 

 privileged BB/Ring Buffer 

GGTT 

 
CRYPTO_INLINE_STATUS_READ No-op if GGTT Allow - status can be within VF GGTT or 

PPGTT 

Performance MI_REPORT_PERF_COUNT No-op if GGTT No-op if GGTT and access are from VF. 

VF are only allowed with PPGTT memory 

type. 

GGTT access are only allowed from PF ring 

buffer or PF privilged batch buffer. 

Legacy MI_SET_CONTEXT No-op Allow within VF ring buffer, but not in 

non-privileged BB 

GHWSP Access - 

(Global Hadware 

Status page- 

setup through 

HWS_PGA 

MMIO register) 

Updates to Context Status Buffer on a context 

switch 

-N.A- 
Context Swtich Status update will only 

happen on a PF context switch. 

Context Switch status updates will not 

happen on a VF context switch. 

 Interrupt status dword write to Hardware 

Status Page on an interrupt when enabled 

through HWSTAM (Hardwre status mask 

register). 

-N.A- SW must not unmask HWSTAM for any 

interrupts in virtualized mode of 

operation. 

 Index writes in to GHWSP through 

MI_STORE_DATA_INDEX, PIPE_CONTROL and 

MI_FLUHS_DW 

No-op if GGTT 
No-op if access from VF. 

PF allowed to access. 

Access to device registers is by either of two methods: directly from the host CPU, or from a graphics 

engine using an MI_LOAD_REGISTER_* command. As described for the MMIO Space, the Host path 

allows VF software limited access to only a subset of device registers. This section describes details for 

limiting register access through an engine. 

The hardware treats most registers as privileged. Functionally, UMD must be able to access certain 

registers, so a whitelist infrastructure provides limited register access, as described below: 

• Specific registers in each engine are marked as non-privileged. Hardware allows non-privileged 

command buffers to complete accesses to these registers. 

• However, such a hardwired whitelist is restrictive, and can be problematic if access to additional 

registers becomes necessary. So each engine provides a programmable means of converting 

twelve additional registers from privileged to non-privileged - KMD is expected to do the 

programming. The converted registers are saved and restored as part of power context, not 

process context. 
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In a virtualized environment, an engine is allowed four levels of register accesses as follows: 

• UMDs for both PF and VF can access the standard UMD whitelist. 

• A non-display VF KMD needs access to a larger set of registers than the UMD whitelist, but not 

the entire register range. Additional infrastructure to allow the extended register accesses is 

described later in this document. 

• A display VF KMD can access the same registers as a non-display VF KMD, in addition to registers 

associated with the Display Engine (e.g., to schedule flips via LRI). 

• PF KMD can access any register. 

The programmable whitelist registers are modified by adding a single bit in each register, to specify 

whether the non-privileging action is targeted for UMD or KMD access. The added bit allows a trusted 

agent to set up some of the twelve programmable registers to allow VF KMD access to specific registers. 

The PF driver or GuC is responsible for setting up the programmable register list. 

 

Register Access from Engines 
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Interrupt Interface 

Hardware exposes interrupts to the Host as shown in the figure below. 

 

Pre-graphics Virtualization Scenario for Interrupt Delivery 

Each VF's address space replicates the virtualization interrupt infrastructure. This replication keeps 

hardware and interrupt delivery routing simple, trading cost for simplicity. The following figure shows the 

infrastructure replicated in each VF's domain. 
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Interrupt Infrastructure per Virtual Function 

Display hardware propagates display events only to PF. GuC can virtualize some display events to a VF if 

desired. 

 

Display <=> Guc Interrupt Messages 

Resets 

Hardware supports the following reset variations: 

• Conventional Reset 

• Function Level Reset targeting a PF 

• Function Level Reset targeting a VF 

• Clearing the VF Enable bit with the SR-IOV Control register 

• Engine-specific Reset 

Conventional Reset (Bus Reset) 

A conventional reset returns all functions (including PFs and VFs) to their original power-on state, and 

clears VF Enable in the PF - so VFs do not exist after a conventional reset. 

FLR Targeting a PF 

A Functional Level Reset (FLR) targeting a PF resets the PF to the PCIe Specification. The PF FLR resets the 

SR-IOV Extended Capability, including VF Enable, so VFs do not exist after this type of reset. For a single-
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function integrated device (not counting VFs), PF FLR is almost the same as Conventional Reset, except 

that "Sticky" bits in Cfg space are preserved. 

FLR Targeting a VF 

The SR-IOV requires that all VFs support FLR. A VF FLR must clear the VF's internal state, but FLR does 

not affect the VF's existence in PCI Configuration Space or PCI Bus address space. The VF FLR does not 

affect the VF's BARn values or VF MSE in the PF's SR-IOV Extended Capability. Also, a VF FLR does not 

affect other VFs. 

VMMs can use FLR to reset a VF before assigning that VF to a new VM. For this use of VF FLR, hardware 

functions normally without a reset, so the reset just clears leftover states from the previous VM. 

Initiating a VF FLR triggers the following events: 

• The MMIO space BARs retain their contents. 

• Host invocation of VF FLR generates an interrupt to GuC. 

• GuC interrupts the PF KMD to indicate that a VF is going through FLR sequence. The VF number 

is passed in the interrupt data register. 

• PF KMD deactivates all doorbells associated with the VF FLR, by clearing the "cookie" value in 

DW0 of each affected doorbell address. Clearing the cookie value causes the doorbell controller 

to clear the doorbell's Valid bit, which software cannot directly clear. 

o Note: GuC may be able to disable the doorbell by clearing the cookie value in memory, if 

future driver architecture allows GuC firmware (instead of KMD) to allocate the doorbells. 

This software detail is addressed in the SAS. 

• GuC discards all unscheduled workloads associated with the VF FLR. 

• GuC pre-empts any workloads associated with the VF FLR that are currently running on engines. 

Note that software may choose use Engine-specific reset to terminate the workload (must not 

affect any workloads running on behalf of a different VF). 

• Each CS running a context associated with the VF undergoing FLR initiates a TLB Invalidate that 

clears the PPGTT TLB associated with the CS engine. 

o Note: an engine-specific reset would clear out the GAM resources for that Engine, 

including TLB. 

o Clearing the PPGTT TLB for the CS engine does not affect second-level (VTd) intermediate 

walker caches. 

• The VMM invalidates second-level TLB caches, if necessary. 

• GuC discards any pending semaphores associated with VF workloads. 

• GuC clears the VF interrupt interface: VF primary control, VF Interrupt additional info, and the VF 

GuC interrupt port. 

• GuC interrupts PF KMD to indicate that cleanup is complete. 

• Gunit resets VF-dedicated MMIO registers. 
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The above VF FLR handling occurs when hardware and GuC firmware are functioning properly. To catch 

possible errors, use PF KMD to monitor GuC firmware at regular intervals. If GuC does not respond in a 

timely manner, initiate an all-engine reset including reset of the GuC hardware, or use PF KMD to trigger 

a conventional reset (bus reset) of the entire device. When using PF to trigger a conventional reset, PF 

KMD must be able to notify the VMM, since the VMM must re-enable and rebuild the Virtual Functions. 

Clearing SR-IOV VF Enable 

When a VF Enable is cleared after being set, all of the VFs associated with PF cease to exist and must no 

longer issue PCIe transactions or respond to Configuration Space or Memory Space accesses. VFs must 

not retain any state (including sticky bits) after VF Enable has been cleared. These conditions are ensured 

by the following actions: 

• VF Enable (Gunit) must qualify all configuration and memory accesses targeting VFs. 

• Clearing VF Enable triggers an interrupt from Gunit to GuC. 

• GuC firmware clears the internal state for all VFs, using the same flow described earlier for FLR 

targeting a VF. GuC firmware must follow the VF FLR flow for all previously enabled VFs. 

Engine-Specific Reset 

The PF KMD or GuC can reset specific hardware engines (e.g. RCS, BCS, VCS) when an engine is not 

responding. VF KMD is not allowed to directly reset any engine, since that engine may be executing work 

on behalf of a different VM. Instead, VF KMD interrupts GuC using the existing Host->GuC interrupt 

mechanism. GuC makes sure an engine is reset only if that engine is running on behalf of the 

interrupting VM/VF, and not running for any others. 

Stolen Memory Management 

Virtualization does not change stolen memory allocation. The BIOS allocates stolen memory and updates 

the BDSM and BGSM registers accordingly. The existence of stolen memory is exposed only to the PF 

driver. 

Stolen memory segments are managed as follows: 

GSM 

• Global GTT is located in the stolen memory. 

• Each VF can update its section of the GTT through the VF GTTADDR range. 

DSM 

• Only the PF driver can access DSM memory. 

• VF must not map its Global GTT entries to DSM physical address. 
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Local Memory Virtualization 

The GPU Device can be associated with a dedicated memory resource that is not shared with other 

system devices and not managed directly by the Operating System or Hypervisor / Virtual Machine 

Manager (VMM). Such a resource is referred to as "Local Memory". The most straightforward way to 

provide Local Memory is to directly attach dedicated memory, such as DDR, GDDR, or HBM, to the GPU 

device. But it is also possible to create a pool of Local Memory by carving out of stealing it from the 

normal System Memory pool (i.e., system DRAM). 

Local Memory allocation is managed by the Device Driver instead of the OS or VMM. In a non-virtualized 

environment, the driver can differentiate Local vs System memory allocations using a bit in the 1st-level 

page tables (PPGTT or GGTT) and that is all that is required. Simple device virtualization using Direct 

Device Assignment or Pass-Thru models use the same mechanism, since the entire Local Memory is 

owned by the device and that device is attached to only one Guest VM. 

However, with more complicated virtualization environments such as Single Root I/O Virtualization 

(SRIOV), the pool of Local Memory must be allocated among all Guests using the device, while 

preserving isolation requirements between the Guests. Specifically, a given Guest VM must be able to 

access Local Memory that was explicitly allocated to that Guest, but not be able to access any Local 

Memory that was allocated to a different Guest VM, nor to the Host/Hypervisor. 

Since Local Memory is dedicated to the device, the Hypervisor does not manage this allocation. The GPU 

Driver and supporting HW must provide the mechanisms to provide and enforce the allocation of Local 

Memory. 

Local Memory Translation Table 

In order to flexibly allocate a limited amount of memory that is local to the GPU device, and isolate that 

allocation from other Virtual Machines, a new 2nd-Level "Local Memory Translation Table" (LMTT) is 

implemented in GT HW and SW. This table is used for Local Memory in place of the VTd 2nd-level table 

used with memory managed by system software (OS and VMM). 

The key characteristics of the Local Memory Translation Tables (LMTT) are: 

• The LMTT tables are managed by the Host KMD, in coordination with the VMM or Host OS 

• A separate LMTT structure is allocated for each Guest VM or Assignable Interface that receives 

Local Memory resources 

• The parameter Local Memory Guest Address Width (LMGAW) defines the number of address bits 

available for Guest view of Local Memory 

• The parameter Local Memory Host Address Width (LMHAW) defines the number of address bits 

available for the final Host view of Local Memory  

o In the initial implementation, LMGAW and LMHAW are expected to be equal, so any Guest 

can access all of Local Memory, but this is not required architecturally. 

• LMTT is a multi-level structure, residing entirely in Local Memory 
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• The top level is a Directory, with an entry for each Guest VM/VF  

o For SRIOV, the Directory Entries are indexed by the Function Number (63 VF + 1 PF = 64 

Entries) 

o Each LMTT Directory Entry contains:  

▪ Location of the next-level LMTT structure for the specified VM, in physical Local 

Memory, in multiples of 64KB (LMHAW-16 bits) 

▪ Valid bit 

o With future SIOV support, Directory Entries are indexed by the PASID (20-bit PASID = 1M 

Entries), and must be naturally aligned. 

o LMTT Directory must be aligned on a 64KB boundary in Local Memory 

o The location of the LMTT Directory is stored in two MMIO registers accessible only by the 

Host KMD: one in Gunit, and one in GT (GAM) 

• LMTT Leaf level translates a 2MB page of Local Memory in Guest address space to physical Local 

Memory  

o Each LMTT Entry is 32-bits wide and contains  

▪ Final translation of 2MB page from Guest Local Memory into the final Host Local 

Memory Page (address bits LMHAW-1:21). 

▪ Valid bit 

LMTT Attributes 

LMGAW LMHAW 

Directory 

Entry Size 

Directory 

Size 

L2 Entry 

Size 

L2 

Size 

Leaf Entry 

Size 

Leaf Table 

Size 

37 bits 

(128GB) 

37 bits 

(128GB) 

32 bits 
64 Entries 

256 Bytes 

N/A N/A 32 bits 
64k Entries 

256KB 

When a Guest VM is created, the VMM will virtualize an LMEM_BAR for the Guest to configure. This is 

referred to as LMEM_BAR(g) to differentiate from the "real" physical LMEM_BAR associated with the 

device (LMEM_BAR(h)). The Guest OS will assign a GPA to the LMEM_BAR(g) as it would any other PCI 

MMIO resource. 

When a Command Streamer loads a new context, the VF# is extracted from the Context Descriptor and 

passed to the GAM, which tracks this information separately for each Engine. 

When GAM HW receives a request from an "Engine" (e.g., Render or VDBox) it performs 1st-level 

translation using the appropriate PPGTT. Each PPGTT Entry includes a new "LMEM" bit that indicates 

whether the page is allocated in Local Memory, or System Memory. If the page resides in Local Memory, 

then LMTT is used for 2nd level translation, otherwise the standard VTd tables are used via Host-based 

IOMMU (there is no IOMMU functionality within the discrete GPU device). 

TLBs in GAM work essentially the same as today, except that the TLB tag data must include the new 

LMEM information from the page table entry. There are no changes required to TLB invalidations - 
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appropriate entries are automatically invalidated whenever a new context starts (whether part of a new 

VM or not), and same SW controls (KMD and GuC FW) can also be used to force invalidations when 

necessary. 

The following figure illustrates the structure and function of the LMTT: 

Two-Level LMTT Structure 

 

Multi-Level LMTT Structure 

Global Memory Space 

Global Address space, and the associated Global GTT, are shared for all Global allocations for all Guest 

VMs or AIs, as is already defined for SRIOV in monolithic (non-G-die) configurations with UMA memory. 

In the current SRIOV definition, the Global GTT is managed by the Host KMD, which determines which 

global address can be accessed by which Guests. The Global GTT Entry includes the Function Number of 

the guest (or Host) to which that global page has been allocated. The Host KMD allocates the GGTT 

entries for each Virtual Function. A Guest Kernel Mode Driver is allowed to directly update GGTT Entries 

that have already been allocated to that Guest VM/VF. A VM will be allowed to access the GGTT range 

(GSM) within the GTTMMADR BAR of the VF to which it has been mapped. A read or write to a specific 

GGTT Entry within a VF GSM range results in Gunit HW reading that entry and ensuring the Function 

Number field within the Entry matches the VF# of the access. If it does, the access is allowed to proceed, 

else it is blocked (writes dropped, reads return all zeros). 

The diagram below illustrates the flow for access from IA Guest or Host driver to the GGTT in GSM range. 
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When GAM receives a request from a global agent, such as GuC or OA, or from an Engine that is 

operating on behalf of the Host, that targets Global Memory, GAM will use the Function Number from 

the GGTT for 2nd-level translation, instead of the Host's Function Number of 0. This allows the Host to 

share global space with all Guests. 

With Type 2 Local Memory, we build on the above mechanism, and add another bit ("LMEM" bit 1) to the 

GGTT Entry to distinguish Global addresses that are allocated in Local Memory vs those in regular system 

memory. If the Global Address is in Local Memory (Local = 1), then 2nd-level translation is performed 

using the LMTT, as described above. If the Global Address is not Local (LMEM = 0), then the address is a 

GPA and is further translated through VTd 2nd-level tables using via the Host IOMMU - there is no need 

for IOMMU within the ATS device. 

Note: The astute reader may wonder why a new bit is required to distinguish Local vs System Memory? 

Why can't HW just compare the physical address in the GGTT Entry against the PF LMEM_BAR, similar to 

PPGTT handling? That wouldn't work because the GGTT Entry may contain either a GPA pointing to DDR, 

or an HPA pointing to Local Memory, and nothing prevents the DDR GPA from overlapping the 

LMEM_BAR range. 

Because the global address space is shared by all contexts and all Guest VMs, and is limited to 4GB total, 

the GGTT page size granularity remains 4KB. When allocating global surfaces larger than 4KB, the Host 

KMD should attempt to choose contiguous 4KB pages up to at least 64KB, which is the minimum page 

size for which HBM accesses are optimized. 

The updated GGTT Entry format: 
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The following diagram illustrates the key structures and flows described above: 

 

IA CPU Accesses to Local Memory 

With SRIOV and Local Memory, the VF GMADR BARs are replaced by VF LMEM_BARs. The VMM 

virtualizes these VF BARs for each Guest VM. When a VM accesses its virtualized LMEM_BAR(G), the IA 

EPT for that VM will translate the request to the VF LMEM_BAR to which the VM has been assigned. The 

address of this request is in HPA space but does not yet map to the physical Local Memory, which 

resides at the PF LMEM_BAR range. So SGunit HW must also use the LMTT to translate from the Guest 

view of HBM to the actual location. The index into the LMTT_Directory structure is the VF# that contains 

the VF LMEM_BAR that was targeted by the access. The location of the LMTT_Directory structure is stored 

in a PF MMIO register (not accessible by a Guest VM). 

The PF GMADR BAR is similarly replaced with a PF LMEM_BAR, which provides direct access to Local 

Memory. No LMTT translation is required for Host/PF access to Local Memory. SGunit HW simply strips 

off the LMEM_BAR base address to generate the final offset into Local Memory. HW does however need 

to protect certain non-IA accessible ranges such as WOPCM, DPM, and the GGTT (GGTT is only accessible 

to host via GSM range of GTTMMADR). 



 

    

20   Doc Ref # IHD-OS-ACM-Vol 13-3.23 

The following diagram illustrates the for SRIOV IA accesses to Local Memory: 

 

The following Diagram shows how the various SRIOV BARs fit into HPA Space, using default BAR sizes 

(LMEM_BARs are configurable): 
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MMIO 

This is the MMIO chapter for System Interfaces Volume. 

Force Wake and Steering Table   

MMIO Range 

Start 

MMIO Range 

End 

# 

Bytes 

Wake 

Target 

Replicated 

/ 

 Multicast ? 

Replication Group 

Type 

Inst. 

Count Steering 

00000000 00000AFF 2816      

00000B00 00000BFF 256 AON Yes SQIDI 8 subsliceid[0..7] 

00000C00 00000DFF 512 AON No - 1 - 

00000E00 00000FFF 512 AON No - 1 - 

00001000 00001FFF 4096 AON Yes SQIDI 8 subsliceid[0..7] 

00002000 000026FF 1792 RENDER* No - 1 - 

00002700 000027FF 256 GT No - 1 - 

00002800 00002AFF 768 GT No - 1 - 

00002B00 00002FFF 1280 GT No - 1 - 

00003000 00003FFF 4096 GT No - 1 - 

00004000 000041FF 512 GT Yes MSLICE 4 sliceid[0..3] 

00004200 000043FF 512 GT Yes MSLICE 4 sliceid[0..3] 

00004400 000048FF 1280 GT Yes MSLICE 4 sliceid[0..3] 

00004900 00004AFF 512 GT Yes MSLICE 4 sliceid[0..3] 

00004B00 00004FFF 1280      

00005000 000050FF 256 AON No - 1 - 

00005100 000051FF 256 AON No - 1 - 

00005200 000052FF 256 RENDER Yes GSLICE 8 sliceid[0..7] 

00005300 000053FF 256 RENDER* No - 1 - 

00005400 000054FF 256 RENDER Yes GSLICE 8 sliceid[0..7] 

00005500 00005FFF 2816 RENDER Yes GSLICE 8 sliceid[0..7] 

00006000 00006FFF 4096 RENDER Yes GSLICE 8 sliceid[0..7] 

00007000 00007FFF 4096 RENDER Yes GSLICE 8 sliceid[0..7] 

00008000 000080FF 256 GT No - 1 - 

00008100 0000813F 64 GT No - 1 - 

00008140 0000814F 16 RENDER Yes GSLICE 8 sliceid[0..7] 

00008150 0000815F 16 RENDER Yes DSS 32 sliceid[0..7], 

subsliceid[0..3] 

00008160 0000817F 32      

00008180 000081FF 128 AON No - 1 - 

00008200 000082FF 256 GT No - 1 - 

00008300 000084FF 512 RENDER* No - 1 - 

00008500 000085FF 256 GT No - 1 - 

00008600 000086FF 256 GT No - 1 - 
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MMIO Range 

Start 

MMIO Range 

End 

# 

Bytes 

Wake 

Target 

Replicated 

/ 

 Multicast ? 

Replication Group 

Type 

Inst. 

Count Steering 

00008700 000087FF 256 GT Yes SQIDI 8 subsliceid[0..7] 

00008800 0000883F 64      

00008840 000089FF 448      

00008A00 00008BFF 512      

00008C00 00008C7F 128      

00008C80 00008CFF 128 GT Yes L3BANK 32 sliceid[0..3], 

subsliceid[0..7] 

00008D00 00008D7F 128 RENDER Yes DSS 32 sliceid[0..7], 

subsliceid[0..3] 

00008D80 00008DFF 128 RENDER Yes DSS 32 sliceid[0..7], 

subsliceid[0..3] 

00008E00 00008FFF 512      

00009000 000093FF 1024 GT No - 1 - 

00009400 0000947F 128 GT No - 1 - 

00009480 000094CF 80      

000094D0 0000951F 80 RENDER Yes GSLICE 8 sliceid[0..7] 

00009520 0000955F 64 RENDER Yes DSS 32 sliceid[0..7], 

subsliceid[0..3] 

00009560 000095FF 160 AON No - 1 - 

00009600 0000967F 128      

00009680 000096FF 128 RENDER Yes DSS 32 sliceid[0..7], 

subsliceid[0..3] 

00009700 000097FF 256      

00009800 00009FFF 2048 GT No - 1 - 

0000A000 0000AFFF 4096 GT No - 1 - 

0000B000 0000B0FF 256 GT Yes LNCF 8 sliceid[0..3], 

subsliceid[0..1] 

0000B100 0000B3FF 768 GT Yes L3BANK 32 sliceid[0..3], 

subsliceid[0..7] 

0000B400 0000B4FF 256 GT No - 1 - 

0000B500 0000BFFF 2816      

0000C000 0000C7FF 2048 GT No - 1 - 

0000C800 0000CFFF 2048 GT Yes MSLICE 4 sliceid[0..3] 

0000D000 0000D3FF 1024 AON No - 1 - 

0000D400 0000D7FF 1024 AON No - 1 - 

0000D800 0000D87F 128 
RENDER 

Yes 
GSLICE 

8 
sliceid[0..7] 

0000D880 0000D8FF 128 GT Yes LNCF 8 sliceid[0..3], 

subsliceid[0..1] 

0000D900 0000DBFF 768 GT No - 1 - 

0000DC00 0000DCFF 256 RENDER Yes GSLICE 8 sliceid[0..7] 
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MMIO Range 

Start 

MMIO Range 

End 

# 

Bytes 

Wake 

Target 

Replicated 

/ 

 Multicast ? 

Replication Group 

Type 

Inst. 

Count Steering 

0000DD00 0000DDFF 256 GT Yes MSLICE 4 sliceid[0..3] 

0000DE00 0000DE7F 128      

0000DE80 0000DEFF 128 RENDER Yes DSS 32 sliceid[0..7], 

subsliceid[0..3] 

0000DF00 0000DFFF 256 RENDER Yes DSS 32 sliceid[0..7], 

subsliceid[0..3] 

0000E000 0000E0FF 256      

0000E100 0000E1FF 256 RENDER Yes DSS 32 sliceid[0..7], 

subsliceid[0..3] 

0000E200 0000E3FF 512 RENDER Yes DSS 32 sliceid[0..7], 

subsliceid[0..3] 

0000E400 0000E7FF 1024 RENDER Yes DSS 32 sliceid[0..7], 

subsliceid[0..3] 

0000E800 0000E8FF 256 RENDER Yes DSS 32 sliceid[0..7], 

subsliceid[0..3] 

0000E900 0000E9FF 256 GT Yes MSLICE 4 sliceid[0..3] 

0000EA00 0000EFFF 1536      

0000F000 0000F0FF 256 GT Yes MSLICE 4 sliceid[0..3] 

0000F100 0000FFFF 3840 GT Yes MSLICE 4 sliceid[0..3] 

00010000 00011FFF 8192      

00012000 000127FF 2048 AON No - 1 - 

00012800 00012FFF 2048      

00013000 000131FF 512 VD0 No - 1 - 

00013200 000133FF 512 VD2 No - 1 - 

00013400 00013FFF 3072      

00014000 000141FF 512 VD0 No - 1 - 

00014200 000143FF 512 VD2 No - 1 - 

00014400 000145FF 512 VD4 No - 1 - 

00014600 000147FF 512 VD6 No - 1 - 

00014800 00014FFF 2048 RENDER* No - 1 - 

00015000 000153FF 1024 GT No - 1 - 

00015400 000157FF 1024 GT No - 1 - 

00015800 00015BFF 1024 GT No - 1 - 

00015C00 00015FFF 1024 GT No - 1 - 

00016000 00016DFF 3584      

00016E00 00016FFF 512 RENDER* No - 1 - 

00017000 00017FFF 4096 RENDER Yes GSLICE 8 sliceid[0..7] 

00018000 00019FFF 8192 RENDER* No - 1 - 

0001A000 0001BFFF 8192 RENDER* No - 1 - 

0001C000 0001DFFF 8192 RENDER* No - 1 - 
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MMIO Range 

Start 

MMIO Range 

End 

# 

Bytes 

Wake 

Target 

Replicated 

/ 

 Multicast ? 

Replication Group 

Type 

Inst. 

Count Steering 

0001E000 0001FFFF 8192 RENDER* No - 1 - 

00020000 00020FFF 4096 VD0 No - 1 - 

00021000 00021FFF 4096      

00022000 00022FFF 4096 GT No - 1 - 

00023000 00023FFF 4096 GT No - 1 - 

00024000 0002407F 128 AON No - 1 - 

00024080 0002417F 256      

00024180 000241FF 128 GT No - 1 - 

00024200 000249FF 2048      

00024A00 00024A7F 128 RENDER Yes DSS 32 sliceid[0..7], 

subsliceid[0..3] 

00024A80 000251FF 1920      

00025200 0002527F 128 GT No - 1 - 

00025280 000252FF 128 GT No - 1 - 

00025300 000255FF 768      

00025600 0002567F 128      

00025680 000256FF 128      

00025700 000259FF 768      

00025A00 00025A7F 128      

00025A80 00025AFF 128      

00026000 00027FFF 8192 RENDER* No - 1 - 

00028000 0002FFFF 32768      

00030000 0003FFFF 65536 GT No - 1 - 

        

        

        

001C0000 001C07FF 2048 VD0 No - 1 - 

001C0800 001C0FFF 2048 VD0 No - 1 - 

001C1000 001C1FFF 4096 VD0 No - 1 - 

001C2000 001C27FF 2048 VD0 No - 1 - 

001C2800 001C2AFF 768 VD0 No - 1 - 

001C2B00 001C2BFF 256 VD0 No - 1 - 

001C2C00 001C2CFF 256      

001C2D00 001C2DFF 256 VD0 No - 1 - 

001C2E00 001C3DFF 4096 VD0 No - 1 - 

001C3E00 001C3EFF 256      

001C3F00 001C3FFF 256 VD0 No - 1 - 

001C4000 001C47FF 2048 VD1 No - 1 - 

001C4800 001C4FFF 2048 VD1 No - 1 - 
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MMIO Range 

Start 

MMIO Range 

End 

# 

Bytes 

Wake 

Target 

Replicated 

/ 

 Multicast ? 

Replication Group 

Type 

Inst. 

Count Steering 

001C5000 001C5FFF 4096 VD1 No - 1 - 

001C6000 001C67FF 2048 VD1 No - 1 - 

001C6800 001C6AFF 768 VD1 No - 1 - 

001C6B00 001C6BFF 256 VD1 No - 1 - 

001C6C00 001C6CFF 256      

001C6D00 001C6DFF 256 VD1 No - 1 - 

001C6E00 001C7EFF 4352      

001C7F00 001C7FFF 256      

001C8000 001C9FFF 8192 VE0 No - 1 - 

001CA000 001CA0FF 256 VE0 No - 1 - 

001CA100 001CBEFF 7680      

001CBF00 001CBFFF 256      

001CC000 001CCFFF 4096 VD0 No - 1 - 

001CD000 001CDFFF 4096 VD2 No - 1 - 

001CE000 001CEFFF 4096 VD4 No - 1 - 

001CF000 001CFFFF 4096 VD6 No - 1 - 

001D0000 001D07FF 2048 VD2 No - 1 - 

001D0800 001D0FFF 2048 VD2 No - 1 - 

001D1000 001D1FFF 4096 VD2 No - 1 - 

001D2000 001D27FF 2048 VD2 No - 1 - 

001D2800 001D2AFF 768 VD2 No - 1 - 

001D2B00 001D2BFF 256 VD2 No - 1 - 

001D2C00 001D2CFF 256      

001D2D00 001D2DFF 256 VD2 No - 1 - 

001D2E00 001D3DFF 4096      

001D3E00 001D3EFF 256      

001D3F00 001D3FFF 256 VD2 No - 1 - 

001D4000 001D47FF 2048 VD3 No - 1 - 

001D4800 001D4FFF 2048 VD3 No - 1 - 

001D5000 001D5FFF 4096 VD3 No - 1 - 

001D6800 001D6AFF 768 VD3 No - 1 - 

001D6B00 001D6BFF 256 VD3 No - 1 - 

001D6C00 001D6CFF 256      

001D6D00 001D6DFF 256 VD3 No - 1 - 

001D6E00 001D7EFF 4352      

001D7F00 001D7FFF 256      

001D8000 001D9FFF 8192 VE1 No - 1 - 

001DA000 001DA0FF 256 VE1 No - 1 - 
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MMIO Range 

Start 

MMIO Range 

End 

# 

Bytes 

Wake 

Target 

Replicated 

/ 

 Multicast ? 

Replication Group 

Type 

Inst. 

Count Steering 

001DA100 001DBEFF 7680      

001DBF00 001DBFFF 256      

001DC000 001DFFFF 16384      

001E0000 001E07FF 2048 VD4 No - 1 - 

001E0800 001E0FFF 2048 VD4 No - 1 - 

001E1000 001E1FFF 4096 VD4 No - 1 - 

001E2800 001E2AFF 768 VD4 No - 1 - 

001E2B00 001E2BFF 256 VD4 No - 1 - 

001E2C00 001E2CFF 256      

001E2D00 001E2DFF 256 VD4 No - 1 - 

001E2E00 001E3EFF 4352      

001E3F00 001E3FFF 256 VD4 No - 1 - 

001E4000 001E47FF 2048 VD5 No - 1 - 

001E4800 001E4FFF 2048 VD5 No - 1 - 

001E5000 001E5FFF 4096 VD5 No - 1 - 

001E6800 001E6AFF 768 VD5 No - 1 - 

001E6B00 001E6BFF 256 VD5 No - 1 - 

001E6C00 001E6CFF 256      

001E6D00 001E6DFF 256 VD5 No - 1 - 

001E6E00 001E7EFF 4352      

001E7F00 001E7FFF 256      

001E8000 001E9FFF 8192 VE2 No - 1 - 

001EA000 001EA0FF 256 VE2 No - 1 - 

001EA100 001EBEFF 7680      

001EBF00 001EBFFF 256      

001EC000 001EFFFF 16384      

001F0000 001F07FF 2048 VD6 No - 1 - 

001F0800 001F0FFF 2048 VD6 No - 1 - 

001F1000 001F1FFF 4096 VD6 No - 1 - 

001F2000 001F27FF 2048 VD6 No - 1 - 

001F2800 001F2AFF 768 VD6 No - 1 - 

001F2B00 001F2BFF 256 VD6 No - 1 - 

001F2C00 001F2CFF 256      

001F2D00 001F2DFF 256 VD6 No - 1 - 

001F2E00 001F3EFF 4352      

001F3F00 001F3FFF 256 VD6 No - 1 - 

001F4000 001F47FF 2048 VD7 No - 1 - 

001F4800 001F4FFF 2048 VD7 No - 1 - 
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MMIO Range 

Start 

MMIO Range 

End 

# 

Bytes 

Wake 

Target 

Replicated 

/ 

 Multicast ? 

Replication Group 

Type 

Inst. 

Count Steering 

001F5000 001F5FFF 4096 VD7 No - 1 - 

001F6800 001F6AFF 768 VD7 No - 1 - 

001F6B00 001F6BFF 256 VD7 No - 1 - 

001F6C00 001F6CFF 256      

001F6D00 001F6DFF 256 VD7 No - 1 - 

001F6E00 001F7EFF 4352      

001F7F00 001F7FFF 256      

001F8000 001F9FFF 8192 VE3 No - 1 - 

001FA000 001FA0FF 256 VE3 No - 1 - 

001FA100 001FBEFF 7680      

001FBF00 001FBFFF 256      

001FC000 001FFFFF 16384      

00200000 0023FFFF 262144      

Render*- physically located in GTI but logically managed as if part of render for forcewake/shadowing by 

MGSR (host SW should use Render wake before access) 

• The Steering Control Registers reside at the following locations:  

o MGSR access point (access initiated by agent outside of GT): 

# Steering Reg 

Addr 

Description 

1 0xFD0 Access steering towards MCFG endpoints only. 

2 0xFD4 Access steering towards SF endpoints only, HW (ITP, DFX, Pcode/CSE 

FW accesses) 

3 0xFD8 Access steering towards SF endpoints only, IA 

4 0xFE0 
Access steering towards GAM (GAMCTRL, GAMREQSTRM, GAMCMDI, 

GAMWKRS, and GAMXB). 

5 0xFDC Access steering towards all other endpoints 

▪ Note: 0xFD4 and 0xFD8 steering registers are provided to allow concurrent steering access 

from driver and any other agent. 

▪ GuC access point: 

# Steering Reg 

Addr 

Description 

1 0xC060 Access steering towards all GT endpoints 
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• CS access point: 

# Steering Reg 

Addr 

Description 

1 0x20CC Access steering towards all GT endpoints 

• Note: All Steering Control Registers contain the following fields: 

Field Description 

multicast 1: Access will be multicast to all replicated endpoints: 

• *WRITE* op cycles go to all endpoint instances; sliceid[]/subsliceid[] fields 

ignored. 

• *READ* op cycles go to all endpoint instances, and responses are 

returned from all instances; The MsgCh selects single instance’s 

response as the final read return, based on sliceid[]/subsliceid[] 

fields. 

0: Access will be steered using sliceid[] and subsliceid[] fields below: 

• Both *WRITE* and *READ* cycles go to a single instance of an endpoint, 

based on sliceid[]/subsliceid[] steering. 

Default: 1 

Note:  The multicast field has no impact for a non-replicated target. 

sliceid[] Default: 0 

subsliceid[] Default: 0 

• The following Replication Group Types exist for multicast MMIO endpoints: 

• Note: GT is organized into “quadrants”; where each quadrant contains (8DSS w/128EUs, + 2 

geometry slices) + 1 Mslice + 8 L3$ banks. Thus, the 0th quadrant contains DSS7:0, Gslice1:0, 

MSlice0, and L3Banks 7:0. The 3rd quadrant contains DSS 31:24, Gslice 7:6; MSlice 3; L3 

Banks31:24.    For the discussion below, we will use the following “helper” values:  

o combined_dss_enable = dss_g_enable | dss_c_enable  => bit field indicating DSS that are 

“enabled” for either geometry or compute or both 

o quadrant_dss_enabled[n] = (   (  (combined_dss_enable » 8*n) && 0xFF   ) != 0 )  where n 

is quadrant index in range of 0..3 
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Replication 

Group Type 

Description / Notes 

SQIDI • 8 instances of each endpoint  

o subsliceid: 0..7 to access instances 0..7 in Alchemist-512 

o subsliceid: 2..5 to access instances 2..5 in Alchemist-256 (instances 

0, 1, 6, 7 are terminated by the MsgCh) 

o subsliceid: 2,3 to access instances 2,3 in Alchemist-128 (instances 

0, 1, 4-7 are terminated by the MsgCh) 

GSLICE • 8 instances of endpoint  

o sliceid: 0..7 to access SLICE instances 0..7 

• MsgCh terminated when all 4 fuse_dss_g_enable and fuse_dss_c_enables 

are ‘0’ for that instance 

DSS • 4 instances per GSLICE  

o sliceid: 0..7 to access each GSLICE 0..7 

o subsliceid: 0..3 to access each DSS 0..3 per GSLICE 

• MsgCh terminated when fuse_dss_g_enable and fuse_dss_c_enables is ‘0’ 

for that instance 

L3BANK • Access to the nth L3Bank  maps onto a  5 bit l3BankIndex which is split 

into between the steering register fields as follows: l3BankIndex[4:2]=> 

sliceid[2:0]; l3BankIndex [1:0]=> subsliceid[1:0].  

 bit 3 of sliceid and bit 2 of subsliceid in steering register is unused in this 

mapping.  

   

• Termination:  All 8 L3 banks in a quadrant are disabled/terminated ONLY 

if BOTH meml3 for that quadrant is disabled AND all DSS are disabled on 

that quadrant.  

   

MSLICE • Steering: sliceid (0..3) 

• Termination: An MSLICE is disabled/terminated ONLY if BOTH meml3 for 

that quadrant is disabled AND all DSS are disabled on that quadrant. 

GAM* note:  There is one "primary" GAM, and software must set the steering 

back to that primary GAM before reading any GAM register:  Primary GAM 

instance is 0 unless otherwise noted. 

Primary GAM instance is 1 
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LNCF • Steering: sliceid (0,1) to access 2 LNCFs individually in MSLICE0;  

       sliceid (2,3) to access 2 LNCFs individually in MSLICE1; 

       sliceid (4,5) to access 2 LNCFs individually in MSLICE2; 

       sliceid (6,7) to access 2 LNCFs individually in MSLICE3; 

• Termination: An LNCF is disabled/terminated ONLY if BOTH meml3 for 

that quadrant is disabled AND all DSS are disabled on that quadrant. 

• Fuse reflections (how to tell when an endpoint is disabled): 

Fuse Register reflection 

fuse_dss_c_enable[31:0] 0x9144[31:0] 

fuse_dss_g_enable[31:0] 0x913C[31:0] 

fuse_meml3_en[3:0] 0x9118[3:0] 

Note:  MsgCh termination also occurs when the domains are powered down. (i.e., not necessarily 

because the domain is disabled/fused off.)  If reading/writing the registers is needed, then force-

wake of the domain is required. Force-wake is not required for shadow register accesses coming 

through MGSR. 

• The following table captures the force-wake and corresponding acknowledgment register 

locations for the various domains: 

Domain 

Driver 

 ForceWake 

 Req 

Driver 

 ForceWake 

 Ack 

GuC 

 ForceWake 

 Req 

GuC 

 ForceWake 

 Status Comment 

AON NA NA NA NA Registers sit outside of the C6 boundary. 

No ForceWake required. 

GT 0xA188 0x00130044 NA NA 
 

Render 0xA278 0x0D84 0xA27C 0xA2A0[1] 
 

VDBOX0 0xA540 0x0D50 0xA274[0] 0xA2A0[0] 
 

VDBOX1 0xA544 0x0D54 0xA274[1] 0xA2A0[0] 
 

VDBOX2 0xA548 0x0D58 0xA274[2] 0xA2A0[2] 
 

VDBOX3 0xA54C 0x0D5C 0xA274[3] 0xA2A0[2] 
As available in the product 

VDBOX4 0xA550 0x0D60 0xA274[4] 0xA2A0[3] 
As available in the product 

VDBOX5 0xA554 0x0D64 0xA274[5] 0xA2A0[3] 
As available in the product 
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Domain 

Driver 

 ForceWake 

 Req 

Driver 

 ForceWake 

 Ack 

GuC 

 ForceWake 

 Req 

GuC 

 ForceWake 

 Status Comment 

VDBOX6 0xA558 0x0D68 0xA274[6] 0xA2A0[4] 
As available in the product 

VDBOX7 0xA55C 0x0D6C 0xA274[7] 0xA2A0[4] 
As available in the product 

VEBOX0 0xA560 0x0D70 0xA274[8] 0xA2A0[0] 
As available in the product 

VEBOX1 0xA564 0x0D74 0xA274[9] 0xA2A0[2] 
As available in the product 

VEBOX2 0xA568 0x0D78 0xA274[10] 0xA2A0[3] 
As available in the product 

VEBOX3 0xA56C 0x0D7C 0xA274[11] 0xA2A0[4] 
As available in the product 

• Miscellaneous Notes: 

o The MsgCh network has termination points, where cycles to endpoints that are disabled (fused- 

off, powered off, etc…) are gracefully completed. The termination node on the network will sink P 

cycles, and return dummy completions for NP cycles, on behalf of the disabled endpoints. 

o Access requirements to registers that are part of GTMMADDR but not listed in the GT MMIO map 

table is defined elsewhere. This descriptions in this document only cover GT range (GT MMIO map 

xls.) 

Multicast Steering and Die Recovery  

Some units in GT are replicated multiple times in the design, each with their own register storage local to 

that instance.  

• In some cases, each replica/instance gets its own MMIO address range of offsets – for example, 

the multiple CCS command streamers, multiple VDBox/VEBox instances. For those, direct register 

access targets the only instance of that registers. The programming model described on this page 

is moot for those cases where each register has unique address. 

• In other cases, the multiple instances of the unit use the same MMIO address on message 

channel. For these cases, the message channel provides additional capabilities to address the 

instances for read/write operations in either multicast (targeting all instances) or unicast modes 

(target specific instance) via a set of “steering registers” which can be configured to direct the 

access as desired.    The steering registers have 3 fields:  Multicast/Unicast, Sliceid, Subsliceid.  

o Multicast write access - write goes to all instances; sliceid/subsliceid fields are ignored 

o Multicast read access – read goes to all instances and all instances generate read 

response; message channel selects single instance’s response as the final read return 

(based on the steering register slice/subslice fields) 

o Unicast write access – write goes to only the instance specified in the steering register 

o Unicast read access – read goes to only the instance specified in the steering register 
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o In some replicated units, all of the replicated instances always “enabled” from a message 

channel perspective (never fused off/separately power gated) and thus all instances are 

always accessible if the containing power well is on (e.g., if GT is out of RC6) 

o In some replicated units, there are die recovery/fuse down modes where some instances 

are fused off/disabled. For the latter, GT also contains MMIO registers which allow SW to 

detect which instances are fused as enabled/disabled (generally 1-hot). When this fuse 

down case applies, message channel is aware of the fusing and provides automatic 

termination of cycles toward disabled instances (writes get dropped with dummy NP 

completion if NP write; reads get dummy completion with 0 read return value from that 

instance). The fuse mirror register provides a mechanism for SW to know which instances 

are valid and to program the steering register toward enabled instances when needed – 

see comments below. 

General rules: 

• Some of these replicated registers are control registers which are generally expected to be all 

programmed with the same value – for these, writes should generally be multicast and reads can 

target any enabled instance (since all instances should contain the same value from prior 

multicast write).  

• Some replicated registers are status registers and are expected to have different values as part of 

normal usage (for example, INSTDONE registers related to Sampler, Slice common; TDL thread 

status, etc.). For these typical usage model would be to either iterate over all enabled instances or 

select specific single instance to target. 

• If an instance is disabled (access terminated on message channel via the fuse info above or if 

containing power well is power gated), reads from that instance will return 0s and writes are 

silently dropped. Since the default for the steering registers is multicast read with 

sliceid=subsliceid=0, the default hardware behavior is to return data from instance that 

corresponds with sliceid/subsliceid = 0.  If that instance is disabled, message channel will return a 

dummy response (0). In order to get correct/valid value the steering registers must be used to 

access a valid instance.  

o Note that a common usage model is for SW/FW to initializing specific bits in control 

register by reading the current/default value, then modifying the value in memory 

(set/clear few bits), and then write the result back. 

o For these cases, SW must ensure that it uses the steering registers to steer to an enabled 

instance when performing the initial read. 

• When performing engine and power context save restore, GT hardware is aware of the fuses and 

internally targets reads for context save toward the first enabled instance. 

• In cases where steering registers are being programmed, caution must be exercised to ensure 

that there is no race condition/concurrent access between two different initiators using a given 

steering register. SW must protect against concurrent access by multiple threads to any given 

steering register. System level flows must also guard against concurrent access by Firmware 

(CSC/FSP FW, Punit pCode) and driver tools to any given steering register.  
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o Multicast is the hardware default. If an agent sets a steering register to unicast mode, they 

should generally set it back to multicast after completion. 

o In some projects there are separate steering registers listed are intended to allow for 

some degree of concurrency between different usages targeting different destinations in 

GT by replication group.  

▪ MGSR uses the MMIO offset requested in the inbound cycle to select which 

steering register to use for routing. 

▪ MGSR uses SAI policy registers to identify sources as “IA” (low privilege cfg_src on 

message channel) vs “HW” (high privilege – includes trusted firmware such as 

CSC/FSP, Pcode)  

▪ See project specific documentation for the list of steering registers and their 

intended use. 

SW Virtualization Reserved MMIO range 

The MMIO address range from 0x178000 thru 0x178FFF is reserved for communication between a VMM 

and the GPU Driver executing on a Virtual Machine. 

HW does not actually implement anything within this range. Instead, in a SW Virtualized environment, if 

a VM driver issues a read to this MMIO address range, the VMM will trap that access, and provide 

whatever data it wishes to pass to the VM driver. In a non-SW-Virtualizated environment (including an 

SR-IOV Virtualized environment), reads will return zeros, like any other unimplemented MMIO address. 

Writes to this range are always ignored. 

It is important that no "real" HW MMIO register be defined within this range, as it would be inaccessible 

in a SW-virtualized environment. 

Register Address Maps 

Graphics Register Address Map 

This chapter provides address maps of the graphics controllers I/O and memory-mapped registers. 

Individual register bit field descriptions are provided in the following chapters. PCI configuration address 

maps and register bit descriptions are provided in the following chapter. 

VGA and Extended VGA Register Map  

For I/O locations, the value in the address column represents the register I/O address. For memory 

mapped locations, this address is an offset from the base address programmed in the MMADR register. 
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VGA and Extended VGA I/O and Memory Register Map 

Address Register Name (Read) Register Name (Write) 

2D Registers 

3B0h-

3B3h 

Reserved Reserved 

3B4h VGA CRTC Index (CRX) (monochrome) VGA CRTC Index (CRX) (monochrome) 

3B5h VGA CRTC Data (monochrome) VGA CRTC Data (monochrome) 

3B6h-

3B9h 

Reserved Reserved 

3Bah VGA Status Register (ST01) VGA Feature Control Register (FCR) 

3BBh-

3BFh 

Reserved Reserved 

3C0h VGA Attribute Controller Index (ARX) VGA Attribute Controller Index (ARX)/ 

 VGA Attribute Controller Data (alternating writes select ARX or 

write ARxx Data) 

3C1h VGA Attribute Controller Data 

 (read ARxx data) 

Reserved 

3C2h VGA Feature Read Register (ST00) VGA Miscellaneous Output Register (MSR) 

3C3h Reserved Reserved 

3C4h VGA Sequencer Index (SRX) VGA Sequencer Index (SRX) 

3C5h VGA Sequencer Data (SRxx) VGA Sequencer Data (SRxx) 

3C6h VGA Color Palette Mask (DACMASK) VGA Color Palette Mask (DACMASK) 

3C7h VGA Color Palette State (DACSTATE) VGA Color Palette Read Mode Index (DACRX) 

3C8h VGA Color Palette Write Mode Index 

(DACWX) 

VGA Color Palette Write Mode Index (DACWX) 

3C9h VGA Color Palette Data (DACDATA) VGA Color Palette Data (DACDATA) 

3CAh VGA Feature Control Register (FCR) Reserved 

3CBh Reserved Reserved 

3CCh VGA Miscellaneous Output Register 

(MSR) 

Reserved 

3CDh Reserved Reserved 

3CEh VGA Graphics Controller Index (GRX) VGA Graphics Controller Index (GRX) 

3CFh VGA Graphics Controller Data (GRxx) VGA Graphics Controller Data (GRxx) 

3D0h-

3D1h 

Reserved Reserved 

2D Registers 

3D4h VGA CRTC Index (CRX) VGA CRTC Index (CRX) 

3D5h VGA CRTC Data (CRxx) VGA CRTC Data (CRxx) 

System Configuration Registers 
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Address Register Name (Read) Register Name (Write) 

3D6h GFX/2D Configurations Extensions 

Index (XRX) 

GFX/2D Configurations Extensions Index (XRX) 

3D7h GFX/2D Configurations Extensions 

Data (XRxx) 

GFX/2D Configurations Extensions Data (XRxx) 

2D Registers 

3D8h-

3D9h 

Reserved Reserved 

3DAh VGA Status Register (ST01) VGA Feature Control Register (FCR) 

3DBh-

3DFh 

Reserved Reserved 

Indirect VGA and Extended VGA Register Indices 

The registers listed in this section are indirectly accessed by programming an index value into the 

appropriate SRX, GRX, ARX, or CRX register. The index and data register address locations are listed in 

the previous section. Additional details concerning the indirect access mechanism are provided in the 

VGA and Extended VGA Register Description Chapter (see SRxx, GRxx, ARxx or CRxx sections). 

2D Sequence Registers (3C4h / 3C5h) 

Index Sym Description 

00h SR00 Sequencer Reset 

01h SR01 Clocking Mode 

02h SR02 Plane / Map Mask 

03h SR03 Character Font 

04h SR04 Memory Mode 

07h SR07 Horizontal Character Counter Reset 

2D Graphics Controller Registers (3CEh / 3CFh) 

Index Sym Register Name 

00h GR00 Set / Reset 

01h GR01 Enable Set / Reset 

02h GR02 Color Compare 

03h GR03 Data Rotate 

04h GR04 Read Plane Select 

05h GR05 Graphics Mode 

06h GR06 Miscellaneous 

07h GR07 Color Don't Care 

08h GR08 Bit Mask 

10h GR10 Address Mapping 
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Index Sym Register Name 

11h GR11 Page Selector 

18h GR18 Software Flags 

2D Attribute Controller Registers (3C0h / 3C1h) 

Index Sym Register Name 

00h AR00 Palette Register 0 

01h AR01 Palette Register 1 

02h AR02 Palette Register 2 

03h AR03 Palette Register 3 

04h AR04 Palette Register 4 

05h AR05 Palette Register 5 

06h AR06 Palette Register 6 

07h AR07 Palette Register 7 

08h AR08 Palette Register 8 

09h AR09 Palette Register 9 

0Ah AR0A Palette Register A 

0Bh AR0B Palette Register B 

0Ch AR0C Palette Register C 

0Dh AR0D Palette Register D 

0Eh AR0E Palette Register E 

0Fh AR0F Palette Register F 

10h AR10 Mode Control 

11h AR11 Overscan Color 

12h AR12 Memory Plane Enable 

13h AR13 Horizontal Pixel Panning 

14h AR14 Color Select 

2D CRT Controller Registers (3B4h / 3D4h / 3B5h / 3D5h) 

Index Sym Register Name 

00h CR00 Horizontal Total 

01h CR01 Horizontal Display Enable End 

02h CR02 Horizontal Blanking Start 

03h CR03 Horizontal Blanking End 

04h CR04 Horizontal Sync Start 

05h CR05 Horizontal Sync End 

06h CR06 Vertical Total 

07h CR07 Overflow 
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Index Sym Register Name 

08h CR08 Preset Row Scan 

09h CR09 Maximum Scan Line 

0Ah CR0A Text Cursor Start 

0Bh CR0B Text Cursor End 

0Ch CR0C Start Address High 

0Dh CR0D Start Address Low 

0Eh CR0E Text Cursor Location High 

0Fh CR0F Text Cursor Location Low 

10h CR10 Vertical Sync Start 

11h CR11 Vertical Sync End 

12h CR12 Vertical Display Enable End 

13h CR13 Offset 

14h CR14 Underline Location 

15h CR15 Vertical Blanking Start 

16h CR16 Vertical Blanking End 

17h CR17 CRT Mode 

18h CR18 Line Compare 

22h CR22 Memory Read Latch Data 

GUC  

GuC Introduction  

GuC is an embedded micro-controller in the graphics sub-system that is designed to perform graphics 

workload scheduling on the various graphics parallel engines. In this scheduling model, host software 

submits work through one of the 256 graphics doorbells and this invokes the micro-kernel running on 

the GuC core to perform the scheduling operation on the appropriate graphics engine. 

Scheduling operations include determining which workload to run next, submitting a workload to a 

command streamer, pre-empting existing workloads running on an engine, monitoring progress and 

notifying host SW when work is done. To perform these actions, the GuC requires access to a wide range 

of assets within the graphics subsystem. The GuC has access to the entire graphics device MMIO register 

space to allow it to schedule work on any graphics engine. 

The code that runs on the GuC is provided by the graphics driver (KMD) during the boot-up and graphics 

initialization phase. Code provided by the driver is copied from graphics memory and authenticated 

before execution. 

From a functional perspective, the GuC sub-system has the following blocks: 

• A Shim block that provides an interface between the micro-controller and rest of the graphics 

assets. 



 

    

38   Doc Ref # IHD-OS-ACM-Vol 13-3.23 

• An interrupt block that aggregates all the notifications coming from various graphics engines and 

communicates them to the GuC micro-controller for action. The interrupt block supports 

(programmable) prioritized delivery of events. 

• A DMA engine to allow efficient copy of large blocks of data between memory and internal SRAM. 

During GuC initialization phase, this DMA engine is available to the host SW to load the GuC 

micro-kernel. Once the micro-kernel is successfully loaded into GuC, the access to the DMA engine 

is restricted to the code running on the GuC. 

• It also has additional infrastructure to receive notification that are required for scheduling 

(semaphores from engines, page faults/faults-cleared from Memory interface, etc) 

• A GuC power management unit that determines when all the GuC components are idle and 

supports the power management protocol with the Power Management unit. 

Once code is loaded successfully, the primary method of communication with GuC is through the 

workload doorbells and a GuC/host interrupt mechanism. GuC automatically saves and restores its code 

image across RC6 power states, so no host intervention is required during these power transitions. 

Terminology  

Description Software Use Must Be Implemented As 

Read/Write, R/W This bit can be read or written.  

Reserved Do not assume a value for these bits. 

Writes have no effect. 

Writes are ignored. Reads return zero. 

Reserved: must 

be zero, MBZ 

Software must always write a zero to 

these bits. This allows new features to 

be added using these bits that will be 

disabled when using old software and 

as the default case. 

Writes are ignored. Reads return zero. Maybe be 

connected as Read/Write in future projects. 

Reserved: PBC, 

software must 

preserve contents 

Software must write the original value 

back to this bit. This allows new 

features to be added using these bits. 

Read only or test mode Read/Write. 

Read Only This bit is read only. The read value is 

determined by hardware. Writes to 

this bit have no effect. 

According to each specific bit. The bit value is 

determined by hardware and not affected by register 

writes to the actual bit. 

Read/Clear, 

Read/Write Clear 

This bit can be read. Writes to it with a 

one cause the bit to clear. 

Hardware events cause the bit to be set and the bit is 

cleared on a write operation where the corresponding 

bit has a one for a value. 

Double Buffered 
Write when desired. Read gives the 

unbuffered value (written value) 

unless specified otherwise. Written 

values will update to take effect after 

a certain point. 

Some have a specific arming 

sequence where a write to another 

register is required before the update 

Two stages of registers used. First stage is written into 

and used for readback (unless specified otherwise). First 

stage value is transferred into second stage at the 

update point. Second stage value is used to control 

hardware. Arm/disarm flag for specific arming 

sequences. 
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Description Software Use Must Be Implemented As 

can take place. This is used to ensure 

atomic updates of several registers. 

Arming Doorbells 

As indicated in the Workload submission section, doorbell rings signal request for work to be submitted 

to hardware. 

Doorbells need to be configured (armed) before they can be rung. Following sections describe the 

sequence. 

DoorbellStructures 

Doorbell structures for reporting have been separated into three logical blocks in the hardware. First 

stage is where doorbell address is stored along with Valid bit. Once Valid is set (written by KMD/GuC), 

doorbell block will start monitoring and store the cookie value (DW[0] of the doorbell line). 

Once a doorbell is triggered corresponding Status bit is set. Eventually status is propagated to interrupt 

status bit, meanwhile multiple triggers on doorbell will be collapsed within the status bits. 

A read from interrupt status stage to doorbell status stage moves the bits to interrupt status register and 

clears the doorbell status register. 

 

All stages are exposed via MMIO: 

Doorbell Address. Read/Write support for the driver, but thru GuC/Shim (no direct updates). 

Valid. Read/Write support however there are restrictions which hardware needs to ensure: 
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• 0=>1 transition only from GuC via message channel (not allowed for any other message channel 

client and memory reads of related doorbell does not change the doorbell value from 0=>1. 

• 1=>0 transition is only from memory read that doorbell block does when it needs to acquire the 

doorbell cookie. 

Hardware has to guarantee proper clients make the transitions. 

Doorbell Status. Read Only (updates are HW managed). 

Doorbell Interrupt Status. Read/Write - it is set by hardware and cleared by driver/GuC. 

Arming MMIO Based Doorbells  

In terms of functionality, MMIO Doorbells are no different from Memory based Doorbell (i.e., Both are 

used to submit work to the GuC/Hardware). Main differences are in terms of DB arming/Ring protocol. 

Main motivation for moving to MMIO based Doorbell to not rely on SNOOP/Cache protocol which is not 

possible for DGPU connected via standard PCIe protocol. 

Instead of Memory, 4 MB of MMIO space/region is used for mapping Doorbell. This range will be 

available starting offset 0x400000h from base of MMIO BAR. Each 4k page of MMIO will be represent as 

a single DB. Per MMIO BAR, Maximum of 1024 DB allocation possible. 

Note: 

• For SRIOV 63, we have MMIO BAR per VF.. With each VF BAR has 4 MB range for DB. so per VF 

Maximum DB allocated is still 1024 but total DB allocated across all VF/PF = 1024 * 64 = 64k DB. 

Even though we have 1024 DB allocation, but arming supported for only 256 physical DB. This is done via 

new 256 DB registers located in SGUNIT(3F_F000h to 3F_F7F8h). Picture below show relationship 

between 1024 MMIO DB page and 256 Physical DB. 

Allocating DB 

Steps to allocate DB. 

1. On Acquire doorbell, KMD select a "free/available" Doorbell Page (Page#) from the 4MB DB 

space allocated in MMIO BAR. 

2. Depending on need of KMD will map that MMIO page in User Mode Process space for 

application or Ring3 UMD module. OR KMD keep MMIO page mapped in Ring0 space only. 

Note: if all DB are allocated and new request came for allocation than KMD will fail that request for 

simplification. Below is diagram for Allocating DB page. 

Arming DB 

Steps to ARM DB. 

[1] Once DB page was allocated by KMD via above step (DB page Allocation) 
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[2] KMD calculate 'offset' from MMIO_BAR BASE (DB page# * 4KB/PAGE_SIZE) 

[3] KMD program that 'offset' into "DoorbellTriggerAddressGPA" of 

UK_GEN11_KM_CONTEXT_DESCRIPTOR  

Note: DoorbellTriggerAddressGPA will hold MMIO_OFFSET. So its not GPA but kept same to support 

backward compatibility of passing GPA in case of Memory based DB. 

[4] KMD does similar H2G protocol to request GuC for arm specific physical DB with 

UK_GEN11_KM_CONTEXT_DESCRIPTOR 

[5] GuC FW validate/compare KMD selected physical DB ID for a given VF (i.e., VF is allowed to arm that 

Physical DB or not). 

Note: Needed only for Virtualization based on provision scheme by PF KMD. 

[6] GuC FW programs Physical DB register with the VF# (derived from H2G VF#) + MMIO 

Offset(DoorbellTriggerAddressGPA) + VALID bit. 

GuC Shim (GUCSHIM) Register Functions  

The GuC Shim provides the interface between GuC and the rest of GT. It is comprised of the various 

status registers that communicate the current state of the GuC, the infrastructure to setup the address 

space for GuC operation and interface with message channel. 

The following table provides a view of the GuC address space 

Address Top 

Address 

Bottom Space Description 

0xFFFF_FFFF 0xFF80_0000 Graphics 

MMIO 

8 MB off the top of the 4GB space 

0xFF80_FFFF WOPCM_TOP DRAM - 

Graphics 

Memory 

Section should be decoded as: 

Upper bound: 4GB - 8MB(Gfx mmio) 

Lower bound:544KB Lower bound accounts for 32KB + 512KB 

WOPCM_TOP-

1 

0x0008_8000 DRAM - 

WOPCM 

Write Only Protected Content Memory (WO-PCM)  

This allows for code to straddle SRAM and memory (as described 

later) 

WOPCM_TOP = GUC_WOPCM_SIZE 

0x0008_7FFF 0x0000_8000 SRAM space 512 KB SRAM 

 This gets loaded with the GuC micro-kernel. The GuC may also 

use portion of the SRAM for its data, stack, and other required 

components. 

0x0000_7FFF 0x0000_0000 Boot ROM 32 KB of BootROM for 

 Initialization and authentication code that the GuC first jumps to 

is located here. 
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When using the GuC DMA engine to load the HuC uKernel, the status can be obtained by reading: 

• GuC's BOOT_HASH_CHK register (0xc010 bit 8) to see if a HuC uKernel loading had been 

attempted, and 

• HuC's HUC_STATUS2 register (0xd3b0 bit 7) to check whether or not the HuC uKernel was 

successfully loaded. 

GUCSHIM Registers 

Register 

GUC_STATUS - Global MicroController Status 

JMP_DEST - Jump Location 

MIA_FORCE_FENCE - Minute IA Force Fence 

MIA_INV_TLB - Minute IA Force TLB Invalidate 

SOFT_SCRATCH - Soft Scratch 

UOS_RSA_SCRATCH - RSA for uOS/Soft Scratch 

Guc DMA (GUCDMA)  

The DMA engine allows the MinuteIA core to move data back and forth efficiently from the various 

memory segments listed below. Note that the DMA engine supports more than current required usage 

models. Memory segments supported: 

• Global GTT mapped memory 

• Per Process GTT mapped memory 

• WOPCM 

• SRAM 

The MinIA is a 32 bit engine so it cannot generate an address greater than 4 GB. Thus, any data that the 

MinIA core has to access must be located <4 GB in the graphics address space. The graphics address 

generated by the MinIA core goes through the regular graphics page table walk to derive the physical 

address that can be above 4 GB. 

The DMA engine supports the full 48 bit addressing so it can be used by the MinIA core to get to the 

address regions above 4 GB. The MinIA core programs this DMA engine through registers that are 

mapped into the Gfx MMIO. 

The DMA Registers  

GUCDMA uses two 64-bit registers (4 DWord registers) to indicate the 48-bit Source and Destination 

addresses along with fetch type indication etc. Bit 1 of the DMA Control Register (described later) pins 

DMA Address Register 0 to Source addressing or Destination, and vice versa for DMA Address Register 1. 

By default, DMA Address Register 0 is assigned to Source addressing and DMA Address Register 1 to 

Destination addressing. 
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Register 

DMA_ADDR_0_LOW - DMA Address Register 0 Low 

DMA_ADDR_0_HIGH - DMA Address Register 0 High 

DMA_ADDR_1_LOW - DMA Address Register 1 Low 

DMA_ADDR_1_HIGH - DMA Address Register 1 High 

DMA_COPY_SIZE - DMA Copy Size 

DMA_CFG - DMA Configuration 

DMA_CTRL - DMA Control 

 

Programming Note 

Context: The DMA Registers 

Notes: 

• The DMA engine can be deactivated by setting the Disable-GuC fuse. If this fuse is set, the DMA engine is 

rendered inoperable, so it cannot be used to load a GuC uOS or move any data. On a product that intends to 

use GuC, this fuse shall be zero. 

• The lower 6 bits of addressing of both Source and Destination addresses must be same. There is no provision 

for barrel rotation across byte locations, during a DMA Transfer. 

• The following restrictions shall be followed for placement of uOS and uApps: 

• uOS and uApps are always located on a 64-byte aligned address. 

• uApps are not automatically loaded into SRAM by HW. uKernel must explicitly copy a uApp into SRAM from 

WOPCM when using it. 

• Once the ukernel and the uApps have been loaded successfully into the WOPCM area, the HW shall not 

allow DMA operation to overwrite them. 

• Before programming the DMA engine to access memory in the Per Process GTT address space, GuC SW 

must setup the PPGTT by programming registers: These registers are located in the GUC_PM unit (offsets: 

0xC3B8 - 0xC3F0): 

• CTXT_INFO 

• PDP0, PDP1, PDP2, PDP3 

• PPGTT_ENABLE 

• The GuC DMA engine also provides support for loading the micro-kernel. To load a third party ukernel, the 

third party GuC ukernel must be loaded first. An authenticated GuC ukernel can then be invoked to load a 

ukernel. ( If a third party ukernel is loaded first, there is no way to clear the ME_DATA registers - thus locking 

out the ability to load a third party GuC ). 

• GuC DMA HW checks for the following illegal cases and rejects the DMA invocation (DMA will not happen): 

Illegal Case 

GuC WOPCM Base & GuC WOPCM Size is not programmed (for copy to/from WOPCM) 0xC050 and 0xC340 

DMA copy into GuC WOPCM that does not fit into the GuC WOPCM 

DMA copy into SRAM that falls off the SRAM edge (except for uKernel copy) 

DMA size is set to 0 
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GuC Interrupt (GUCINT) Register Functions  

This section discusses the register functions for GuC Interrupt. Registers in this section are: 

Functionality 

Interrupt Pin Assignment Registers 

Doorbell Group Registers 

Engine Interrupt Registers 

GuC Timer Registers 

GuC DMA Interrupt Registers 

GuC Host Registers 

Interrupt Overview  

Core inside the GUC supports up to 32 interrupts in total which consists of SW Generated Interrupts, 

Internal Timers, and External Interrupts. External Interrupts to the core are line-based interrupts. Core 

supports up to five levels of interrupt priority and each interrupt can be assigned an interrupt priority 

level. Interrupt table below shows the distribution of interrupt allocation and the assigned interrupt 

priority level, this allocation is static and hardwired into the hardware logic during processor build time. 

Interrupt Table and Priority Assignments By Row 

Interrupt Bit Core External Interrupt Pin Interrupt Type Quantity Priority Level 

0 NA SW Interrupt-0 1 L1 

1 NA SW Interrupt-1 1 L1 

2 NA 
Timer0 

(Generated Internal to Core) 

1 L1 

3 NA 
Profiling Interrupt 

(Generated Internal to Core) 

1 L1 

4..16 0..12 
External Interrupts 

(Input Pins to Core) 

13 L1 

17..21 13..17 
External Interrupts 

(Input Pins to Core) 

5 L2 

22..26 18..22 
External Interrupts 

(Input Pins to Core) 

5 L3 

27..29 23..25 
External Interrupts 

3 L4 
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Interrupt Bit Core External Interrupt Pin Interrupt Type Quantity Priority Level 

(Input Pins to Core) 

30..31 26..27 
External Interrupts 

(Input Pins to Core) 

2 L5 

Core coming out of reset will not be in a state to handle interrupts until it gets initialized to appropriate 

state. Firmware will explicitly set "Core Interrupt Ready" bit in register when the core is ready to accept 

interrupts until then GUC will withhold generating any interrupts to the core and keep accumulating the 

interrupts. GUC will fire all the pending interrupts to the core once the "Core Interrupt Ready" is asserted. 

Interrupt agents to the GUC generate different interrupts based on their associated functionality. Since 

there are limited number of interrupt pins available on the core interface, the number of interrupts 

supported across the interrupt agents are logically grouped inside the GUC called Interrupt Groups 0..16 

and represented as 17 external interrupts to the core. GUCINT provides "Interrupt Pin Assignment 0..4" 

registers to map each of these interrupt to any given "External Interrupt" pin on the core interface, this 

gives flexibility for the SW to move around a given interrupt on the "External Interrupt" interface of the 

core to get the desired priority level. Table below shows the 17 interrupt groups and their assigned 

index. "Interrupt Pin Assignment" registers have a field for each of the interrupt group against which SW 

must program the "External Interrupt" pin value to get the desired interrupt priority for a given interrupt. 

Mapping of more than one interrupt to the same "External Interrupt" pin will result in logical "OR" of the 

corresponding interrupts connected to the "External Interrupt" pin. Default programing in the "Interrupt 

Pin Assignment 0..4" is set to "1F" disabling any interrupt generation on the external interrupt pins of the 

core. 

[Register] Interrupt Pin Assignment 0 

[Register] Interrupt Pin Assignment 1 

[Register] Interrupt Pin Assignment 2 

[Register] Interrupt Pin Assignment 3 

[Register] Interrupt Pin Assignment 4 
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Interrupt Groups and Index Assignment 

Interrupt Group Interrupt Group Details 

0 Door Bell Group1 

1 Door Bell Group2 

2 Door Bell Group3 

3 Door Bell Group4 

4 Door Bell Group5 

5 Door Bell Group6 

6 Door Bell Group7 

7 Door Bell Group8 

8 Semaphores 

9 Display 

10 Engine DW0 

11 Engine DW1 

12 DMA,Timer, InterGuC Messaging, Guc FLR Request, GuC PM FLush Request, Miscellaneous Int  

13 Host Interrupt (PF) 

14 Host Interrupt VF 1..31 

15 Host Interrupt VF 32..63 

16 IOMMU 

Doorbell Group Registers  

There is a Doorbell Control Register in GUCint, which has a single doorbell_rung bit for each one of the 

eight Doorbell Registers located in GTI (1900 - 191C). GTI sets this GuC Register bit when the 

corresponding Doorbell register GTI houses, has that GTI register value going from all 0s to having any 

one bit set (any one of the 32 doorbells in that doorbell group gets rung). 

GTI could set multiple first_doorbell_rung bits in a single message to the GuC based Doorbell Control 

Register (corresponding to several doorbells rung in different doorbell group registers in GTI). Once a 

doorbell_rung bit is set for a group in the Doorbell Control Register, it is not updated until GUCINT reads 

the corresponding GTI doorbell register, at which time the corresponding rung_bit is reset. 

The doorbell control register also holds 1 bit (send to Mini-Core) that routes interrupts to host or Mini-

Core. By default, interrupts are sent to host. This bit must be set by software (running on Mini-Core or 

host) to route interrupts to Mini-Core. 

GUC_DB_ISR_7 - GuC Doorbell Group 7 Interrupt Status 

GUC_DB_ISR_6 - GuC Doorbell Group 6 Interrupt Status 

GUC_DB_ISR_5 - GuC Doorbell Group 5 Interrupt Status 

GUC_DB_ISR_4 - GuC Doorbell Group 4 Interrupt Status 

GUC_DB_ISR_3 - GuC Doorbell Group 3 Interrupt Status 

../../../../Content/BXmlSnippets/Register_GuCDoorbellGroup4InterruptStatus_All_Unspecified.html
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GUC_DB_ISR_2 - GuC Doorbell Group 2 Interrupt Status 

GUC_DB_ISR_1 - GuC Doorbell Group 1 Interrupt Status 

GUC_DB_ISR_0 - GuC Doorbell Group 0 Interrupt Status 

DOORBELL_CTRL - Doorbell Control 

Engine Interrupt Registers  

GUC gets Engine Event interrupts from various engines (Render, Copy, Compute, Video Decode, Video 

Enhancement.). 

GUCINT also gets Engine Event interrupts from OA. 

The engines support a variety of interrupts that may not be interesting to GuC from a scheduling point of 

view. GUCINT provides an infrastructure to redirect engine interrupts to the host driver without invoking 

the Mini-Core firmware. This infrastructure allows software to specify on a per engine and per interrupt 

granularity the interrupts that must be delivered to Mini-Core or simply forwarded to the host (bypassing 

the MiniCore). 

Command Streamer Status Information  

During execution, the Command Streamer Status is sent to the GuC. 

Programming Note 

Context: Context Status Buffer Initialization 

GuC CSB FIFO’s are implemented on device reset domain, it’s possible following GFX Reset (All engines and GuC are 

reset) there are unprocessed entries present in the engine CSB FIFO’s. GuC FW as part of the GuC initialization flow 

must ensure the engine CSB FIFOs are drained and empty before scheduling contexts to the engines. 

CSB Read Port 

The following RO registers are for use by GuC FW or host. SW must read twice to obtain a single CSB 

entry: the first read returns bits[31:0]; the second read returns [63:32]. 

CS CSB 

BCS CSB 

VCS CSB 

VECS CSB 

CSB FIFO Status Registers 

The following RO registers hold the status of each Command Streamer's CSB FIFO: 

CS CSB Fifo Status Register 

BCS CSB Fifo Status Register 

VCS CSB Fifo Status Register 

../../../../Content/BXmlSnippets/Register_GuCDoorbellGroup0InterruptStatus_All_Unspecified.html
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VECS CSB Fifo Status Register 

Guc DMA Interrupt Registers  

GUC_DMA_IIR - GuC DMA Interrupt Input 

The DMA generates this message interrupt at the completion of a programmed DMA transfer. 

Guc Host Registers  

GuC and Host(IA) communicate with each other through interrupts. 

• A Host-to-GUC interrupt is generated by Host SW writing to 0xC4C8. The written data will get 

stored in 0xC590 and an interrupt will be generated to GuC. 

• A GUC-to-Host interrupt is generated by GuC FW writing to 0xC4B8 - this generates a 16bit vector 

to the host (this 16b vector is shared by GuC HW and GuC FW. FW write can only set FW owned 

bits) 

GUC_HOST_INTR_IIR - GuC Host Interrupt Input 

Observability 

Observability Overview 

As GFX-enabled systems and usage models have grown in complexity over time, a number of hardware 

features have been added to provide more insight into hardware behavior while running a commercially 

available operating system. This chapter documents these features with pointers to relevant sections in 

other chapters. Supported observability features include: 

Feature 

Performance counters 

Internal node tracing 

Note: This chapter describes the registers and instructions used to monitor GPU performance. Please 

review other volumes in this specification to understand the terms, functionality, and details for specific 

Intel graphics devices. 

DFD Configuration Restore  

Since DFD logic does not usually add value to end user usage models and its configuration space is large 

(which would add latency to power management restore flows), it is typically not enabled during normal 

operation for optimal power & performance. Hence, additional steps are required when DFD 

functionality is needed in combination with system configurations where GT logic loses power/is reset. 

The basic strategy per scenario is detailed below. 
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GT Power-up/RC6 Exit 

Strategy 

Replicate failure without power management 

Configure the DFD restore feature 

Render Engine Power-up 

Configure the RCS RC6 W/A batch buffer to restore render engine DFD configuration ONLY. 

Media Engine Power-up 

Configure the applicable media command stream W/A batch buffer to restore media engine DFD 

configuration ONLY. 

Resume From Partial GT Power Down 

For cases where SW is aware of power well state, re-apply DFD configuration. 

For cases where SW is not aware of power well state, configure the per-context W/A batch buffer to 

apply the DFD configuration on every context load. 

Trace 

This section contains the following contents: 

Feature 

• Performance Visibility 

Performance Visibility 

Motivation For Hardware-Assisted Performance Visibility 

As the focus on GFX performance and programmability has increased over time, the need for hardware 

(HW) support to rapidly identify bottlenecks in HW and efficiently tune the work sent to same has 

become correspondingly important. This describes the HW support for Performance Visibility. 

Performance Event Counting 

An earlier generation introduced dedicated GFX performance counters to address key issues associated 

with existing chipset CHAPs counters (lack of synchronization with GFX rendering work and low sampling 

frequency achievable when sampling via CPU MMIO read). Furthermore, reliance on SoC assets created a 

cross-IP dependency that was difficult to manage well. Hence, the approach since that earlier generation 

has been to use dedicated counters managed by the graphics device driver for graphics performance 
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measurement. The dedicated counter values are written to memory whenever an 

MI_REPORT_PERF_COUNT command is placed in the ring buffer. 

While this approach eliminated much of the error associated with the previous approaches, it is still 

limited to sampling the counters only at the boundaries between ring commands. This inherently limited 

the ability of performance analysis tools to drill down into a primitive, which can contain thousands of 

triangles and require several hundreds of milliseconds to render. It is further worth noting that precise 

sampling via MI_REPORT_PERF command requires flushing the GFX pipeline before and after the work of 

interest. The overhead of flushing the GFX pipeline can become large if the work of interest is small, 

hence reducing the accuracy of the performance counter measurement. In such situations, the flush can 

be removed, or internally triggered reporting can be used with some resulting loss of precision in which 

draws/dispatches are being profiled. 

Additionally, Intel design and architecture teams found that the existing silicon-based performance 

analysis tools provided only a general idea of where a problem may exist but were not able to pinpoint a 

problem. This was generally because the counter values are integrated across a very large time period, 

washing out the dynamic behavior of the workload. 

All OA config registers are tied to GT global reset and hence are not affected by per-engine resets (e.g. 

render only reset). 

OA Programming Guidelines  

SW utilizing OA HW is expected to monitor the overflow/lost report status for the OABUFFER and 

respond as appropriate for the active usage model. 

In order for OA counters to increment the 'Counter Stop-Resume Mechanism' bit of the 

OACTXCONTROL register must be set. This requires a RCS context with this bit set be loaded, and either 

RCS force wake be enabled or the RCS context be left active for the duration of the window this counter 

is needed for. 

In general, OA is effectively unable to count between the power context save that happens prior to GFX 

entering RC6 and the power context restore that occurs on the next RC6 exit. This limitation results from 

the fact that the counters themselves are power context save/restored and hence the counts that (may) 

have accumulated in this time window are overwritten by the saved values that are read back from the 

power context save area. An example of the kind of information that can be missed is the GTI traffic 

resulting from the power context save of OA itself. The size of this performance counting blind spot is 

microarchitecturally minimized as much as reasonably possible but still varies from device to device. 

Legacy OACS functionality is now logically split into two functions called OAG (OA Global) and OAR (OA 

Render). Summary of the blocks is as follows: 

OAG: 

• Handles OA buffer and timer/internally triggered sampling. 

• Is unaffected by engine reset / power well status. 

• Is inaccessible by non-privileged batch buffers but accessible by all command streamers / GuC / 

CPU. 

• Implements free-running utilization counters. 
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• Is GT power context save/restored. 

• Is only allowed to access global GTT memory. 

OAR: 

• Is expected to behave as a part of the render engine from a clocking/power well/reset perspective. 

• Implements MI_REPORT_PERF command. 

• Is render context save/restored, making all values reported by MI_REPORT_PERF per-context. 

• Must be initialized to power-on default values as part of RCS golden context creation (please refer 

to RCS section describing golden context creation for full details) or implementation-specific 

undesirable behavior may occur. 

• Doesn't support timer/internally triggered sampling. 

• Can be enabled/disabled independent from OAG. 

• Is only intended to be accessed by RCS, access from other command streamers / CPU may have 

implementation-specific negative side-effects. 

OA Virtualization 

Memory Address Space Considerations: 

• Customer feedback has identified global (context insensitive) performance sampling as needed for 

load-balancing by a VMM/node manager. Given this request and the consideration that true 

system-level visibility is technically not allowed from a VM's perspective, global GTT OA requests 

shall be treated as coming from VF0. Global GTT accesses from OA that are "out of bounds" for 

VF0 shall be dropped in an implementation specific non-fatal way 

• Current MDAPI driver support is critically dependent on the ability to issue performance counter 

queries from application / UMD code and return the performance counter data read into a user 

space memory location. 

• The configuration of inputs to the B/C counter event blocks is global such that all VMs must derive 

B/C counter events from the same set of inputs. However, the Boolean equations configured in B-

counter controls are per-VM. 

• A-counter configuration (e.g. flex EU event configuration) is per context and hence specific to a 

VM. 

Programming Note 

Context: PPGTT Handling 

OAG is expected to be used by host OS SW to perform global load-balancing / GFX utilization monitoring. OAR is 

part of render context and hence will be accessible / functional from the perspective of MDAPI driver running 

within a VM. Since the counts on B/C counters are context-save/restored, the activity on other VMs / contexts is no 

longer visible to any individual VM. 
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HW Support 

This section contains various reporting counters and registers for hardware support for Performance 

Visibility. 

Performance Counter Report Formats 

Counters layout for various values of select from the register:  

OAR Report Format (Counter Select = 0b101): 

A-Cntr 3 (low 

dword) 

A-Cntr 2 (low 

dword) 

A-Cntr 1 (low 

dword) 

A-Cntr 0 (low 

dword) 

GPU_TICKS CTX ID TIME_STAMP RPT_ID 

A-Cntr 11 

(low dword) 

A-Cntr 10 

(low dword) 

A-Cntr 9 (low 

dword) 

A-Cntr 8 (low 

dword) 

A-Cntr 7 (low 

dword) 

A-Cntr 6 (low 

dword) 

A-Cntr 5 (low 

dword) 

A-Cntr 4 (low 

dword) 

A-Cntr 19 

(low dword) 

A-Cntr 18 

(low dword) 

A-Cntr 17 

(low dword) 

A-Cntr 16 

(low dword) 

A-Cntr 15 (low 

dword) 

A-Cntr 14 

(low dword) 

A-Cntr 13 (low 

dword) 

A-Cntr 12 

(low dword) 

A-Cntr 27 

(low dword) 

A-Cntr 26 

(low dword) 

A-Cntr 25 

(low dword) 

A-Cntr 24 

(low dword) 

A-Cntr 23 (low 

dword) 

A-Cntr 22 

(low dword) 

A-Cntr 21 (low 

dword) 

A-Cntr 20 

(low dword) 

A-Cntr 35 

(low dword) 

A-Cntr 34 

(low dword) 

A-Cntr 33 

(low dword) 

A-Cntr 32 

(low dword) 

A-Cntr 31 (low 

dword) 

A-Cntr 30 

(low dword) 

A-Cntr 29 (low 

dword) 

A-Cntr 28 

(low dword) 

High bytes of 

A31-A28 

High bytes of 

A27-A24 

High bytes of 

A23-A20 

High bytes of 

A19-A16 

High bytes of 

A15-A12 

High bytes of 

A11-A8 

High bytes of 

A7-A4 

High bytes of 

A3-A0 

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0 

C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4 C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 

OAG Report Format (Counter Select = 0b101) 

A-Cntr 3 (low 

dword) 

A-Cntr 2 (low 

dword) 

A-Cntr 1 (low 

dword) 

A-Cntr 0 (low 

dword) 

GPU_TICKS CTX ID TIME_STAMP RPT_ID 

A-Cntr 11 

(low dword) 

A-Cntr 10 

(low dword) 

A-Cntr 9 (low 

dword) 

A-Cntr 8 (low 

dword) 

A-Cntr 7 (low 

dword) 

A-Cntr 6 (low 

dword) 

A-Cntr 5 (low 

dword) 

A-Cntr 4 (low 

dword) 

A-Cntr 19 

(low dword) 

A-Cntr 18 

(low dword) 

A-Cntr 17 

(low dword) 

A-Cntr 16 

(low dword) 

A-Cntr 15 (low 

dword) 

A-Cntr 14 

(low dword) 

A-Cntr 13 (low 

dword) 

A-Cntr 12 

(low dword) 

A-Cntr 27 

(low dword) 

A-Cntr 26 

(low dword) 

A-Cntr 25 

(low dword) 

A-Cntr 24 

(low dword) 

A-Cntr 23 (low 

dword) 

A-Cntr 22 

(low dword) 

A-Cntr 21 (low 

dword) 

A-Cntr 20 

(low dword) 

A-Cntr 35 

(low dword) 

A-Cntr 34 

(low dword) 

A-Cntr 33 

(low dword) 

A-Cntr 32 

(low dword) 

A-Cntr 31 (low 

dword) 

A-Cntr 30 

(low dword) 

A-Cntr 29 (low 

dword) 

A-Cntr 28 

(low dword) 

High bytes of 

A31-A28 

A-Cntr 

37 (low 

dword) 

High bytes of 

A23-A20 

High bytes of 

A19-A16 

High bytes of 

A15-A12 

High bytes of 

A11-A8 

High bytes of 

A7-A4 

A-Cntr 36 

(low dword) 

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0 

C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4 C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 
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OAM Report Format (Counter Select = 0b101): 

A-Cntr 37 A-Cntr 36 GPU_TICKS CTX ID TIME_STAMP RPT_ID 

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0 

C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4 C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 

OAR Report Format (Counter Select = 0b001): 

GPU_TICKS 

(high dword) 

GPU_TICKS 

(low dword) 

CTX ID (high 

dword) 

reserved 

CTX ID (low 

dword) 

TIME_STAMP 

(high dword) 

TIME_STAMP 

(low dword) 

RPT_ID 

(high 

dword) 

RPT_ID (low 

dword) 

A-Cntr 3 (high 

dword) 

A-Cntr 3 (low 

dword) 

A-Cntr 2 (high 

dword) 

A-Cntr 2 

(low dword) 

A-Cntr 1 (high 

dword) 

A-Cntr 1 (low 

dword) 

A-Cntr 0 

(high 

dword) 

A-Cntr 0 

(low dword) 

A-Cntr 7 (high 

dword) 

A-Cntr 7 (low 

dword) 

A-Cntr 6 (high 

dword) 

A-Cntr 6 

(low dword) 

A-Cntr 5 (high 

dword) 

A-Cntr 5 (low 

dword) 

A-Cntr 4 

(high 

dword) 

A-Cntr 4 

(low dword) 

A-Cntr 11 (high 

dword) 

A-Cntr 11 (low 

dword) 

A-Cntr 10 (high 

dword) 

A-Cntr 10 

(low dword) 

A-Cntr 9 (high 

dword) 

A-Cntr 9 (low 

dword) 

A-Cntr 8 

(high 

dword) 

A-Cntr 8 

(low dword) 

A-Cntr 15 (high 

dword) 

A-Cntr 15 (low 

dword) 

A-Cntr 14 (high 

dword) 

A-Cntr 14 

(low dword) 

A-Cntr 13 (high 

dword) 

A-Cntr 13 (low 

dword) 

A-Cntr 12 

(high 

dword) 

A-Cntr 12 

(low dword) 

A-Cntr 19 (high 

dword) 

A-Cntr 19 (low 

dword) 

A-Cntr 18 (high 

dword) 

A-Cntr 18 

(low dword) 

A-Cntr 17 (high 

dword) 

A-Cntr 17 (low 

dword) 

A-Cntr 16 

(high 

dword) 

A-Cntr 16 

(low dword) 

A-Cntr 23 (high 

dword) 

A-Cntr 23 (low 

dword) 

A-Cntr 22 (high 

dword) 

A-Cntr 22 

(low dword) 

A-Cntr 21 (high 

dword) 

A-Cntr 21 (low 

dword) 

A-Cntr 20 

(high 

dword) 

A-Cntr 20 

(low dword) 

A-Cntr 27 (high 

dword) 

A-Cntr 27 (low 

dword) 

A-Cntr 26 (high 

dword) 

A-Cntr 26 

(low dword) 

A-Cntr 25 (high 

dword) 

A-Cntr 25 (low 

dword) 

A-Cntr 24 

(high 

dword) 

A-Cntr 24 

(low dword) 

A-Cntr 31 (high 

dword) 

A-Cntr 31 (low 

dword) 

A-Cntr 30 (high 

dword) 

A-Cntr 30 

(low dword) 

A-Cntr 29 (high 

dword) 

A-Cntr 29 (low 

dword) 

A-Cntr 28 

(high 

dword) 

A-Cntr 28 

(low dword) 

A-Cntr 35 (high 

dword) 

A-Cntr 35 (low 

dword) 

A-Cntr 34 (high 

dword) 

A-Cntr 34 

(low dword) 

A-Cntr 33 (high 

dword) 

A-Cntr 33 (low 

dword) 

A-Cntr 32 

(high 

dword) 

A-Cntr 32 

(low dword) 

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0 

C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4 C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 
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OAC Report Format (Counter Select = 0b001): 

GPU_TICKS 

(high dword) 

GPU_TICKS 

(low dword) 

CTX ID (high 

dword) 

reserved 

CTX ID (low 

dword) 

TIME_STAMP 

(high dword) 

TIME_STAMP 

(low dword) 

RPT_ID 

(high 

dword) 

RPT_ID (low 

dword) 

A-Cntr 8 (high 

dword) 

A-Cntr 8 (low 

dword) 

A-Cntr 7 (high 

dword) 

A-Cntr 7 

(low dword) 

A-Cntr 4 (high 

dword) 

A-Cntr 4 (low 

dword) 

A-Cntr 0 

(high 

dword) 

A-Cntr 0 

(low dword) 

A-Cntr 12 (high 

dword) 

A-Cntr 12 (low 

dword) 

A-Cntr 11 (high 

dword) 

A-Cntr 11 

(low dword) 

A-Cntr 10 (high 

dword) 

A-Cntr 10 (low 

dword) 

A-Cntr 9 

(high 

dword) 

A-Cntr 9 

(low dword) 

A-Cntr 16 (high 

dword) 

A-Cntr 16 (low 

dword) 

A-Cntr 15 (high 

dword) 

A-Cntr 15 

(low dword) 

A-Cntr 14 (high 

dword) 

A-Cntr 14 (low 

dword) 

A-Cntr 13 

(high 

dword) 

A-Cntr 13 

(low dword) 

A-Cntr 20 (high 

dword) 

A-Cntr 20 (low 

dword) 

A-Cntr 19 (high 

dword) 

A-Cntr 19 

(low dword) 

A-Cntr 18 (high 

dword) 

A-Cntr 18 (low 

dword) 

A-Cntr 17 

(high 

dword) 

A-Cntr 17 

(low dword) 

A-Cntr 31 (high 

dword) 

A-Cntr 31 (low 

dword) 

A-Cntr 30 (high 

dword) 

A-Cntr 30 

(low dword) 

A-Cntr 29 (high 

dword) 

A-Cntr 29 (low 

dword) 

A-Cntr 28 

(high 

dword) 

A-Cntr 28 

(low dword) 

A-Cntr 35 (high 

dword) 

A-Cntr 35 (low 

dword) 

A-Cntr 34 (high 

dword) 

A-Cntr 34 

(low dword) 

0 0 A-Cntr 32 

(high 

dword) 

A-Cntr 32 

(low dword) 

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0 

C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4 C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 

OAG Report Format (Counter Select = 0b001): 

GPU_TICKS 

(high dword) 

GPU_TICKS 

(low dword) 

CTX ID (high 

dword) 

reserved 

CTX ID (low 

dword) 

TIME_STAMP 

(high dword) 

TIME_STAMP 

(low dword) 

RPT_ID 

(high 

dword) 

RPT_ID (low 

dword) 

A-Cntr 3 (high 

dword) 

A-Cntr 3 (low 

dword) 

A-Cntr 2 (high 

dword) 

A-Cntr 2 

(low dword) 

A-Cntr 1 (high 

dword) 

A-Cntr 1 (low 

dword) 

A-Cntr 0 

(high 

dword) 

A-Cntr 0 

(low dword) 

A-Cntr 7 (high 

dword) 

A-Cntr 7 (low 

dword) 

A-Cntr 6 (high 

dword) 

A-Cntr 6 

(low dword) 

A-Cntr 5 (high 

dword) 

A-Cntr 5 (low 

dword) 

A-Cntr 4 

(high 

dword) 

A-Cntr 4 

(low dword) 

A-Cntr 11 (high 

dword) 

A-Cntr 11 (low 

dword) 

A-Cntr 10 (high 

dword) 

A-Cntr 10 

(low dword) 

A-Cntr 9 (high 

dword) 

A-Cntr 9 (low 

dword) 

A-Cntr 8 

(high 

dword) 

A-Cntr 8 

(low dword) 

A-Cntr 15 (high 

dword) 

A-Cntr 15 (low 

dword) 

A-Cntr 14 (high 

dword) 

A-Cntr 14 

(low dword) 

A-Cntr 13 (high 

dword) 

A-Cntr 13 (low 

dword) 

A-Cntr 12 

(high 

dword) 

A-Cntr 12 

(low dword) 

A-Cntr 19 (high 

dword) 

A-Cntr 19 (low 

dword) 

A-Cntr 18 (high 

dword) 

A-Cntr 18 

(low dword) 

A-Cntr 17 (high 

dword) 

A-Cntr 17 (low 

dword) 

A-Cntr 16 

(high 

dword) 

A-Cntr 16 

(low dword) 

A-Cntr 23 (high 

dword) 

A-Cntr 23 (low 

dword) 

A-Cntr 22 (high 

dword) 

A-Cntr 22 

(low dword) 

A-Cntr 21 (high 

dword) 

A-Cntr 21 (low 

dword) 

A-Cntr 20 

(high 

dword) 

A-Cntr 20 

(low dword) 
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A-Cntr 27 (high 

dword) 

A-Cntr 27 (low 

dword) 

A-Cntr 26 (high 

dword) 

A-Cntr 26 

(low dword) 

A-Cntr 25 (high 

dword) 

A-Cntr 25 (low 

dword) 

A-Cntr 24 

(high 

dword) 

A-Cntr 24 

(low dword) 

A-Cntr 31 (high 

dword) 

A-Cntr 31 (low 

dword) 

A-Cntr 30 (high 

dword) 

A-Cntr 30 

(low dword) 

A-Cntr 29 (high 

dword) 

A-Cntr 29 (low 

dword) 

A-Cntr 28 

(high 

dword) 

A-Cntr 28 

(low dword) 

A-Cntr 35 (high 

dword) 

A-Cntr 35 (low 

dword) 

A-Cntr 34 (high 

dword) 

A-Cntr 34 

(low dword) 

A-Cntr 33 (high 

dword) 

A-Cntr 33 (low 

dword) 

A-Cntr 32 

(high 

dword) 

A-Cntr 32 

(low dword) 

    A-Cntr 37 (high 

dword) 

A-Cntr 37 (low 

dword) 

A-Cntr 36 

(high 

dword) 

A-Cntr 36 

(low dword) 

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0 

C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4 C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 

OAM Report Format (Counter Select = 0b001): 

GPU_TICKS 

(high dword) 

GPU_TICKS 

(low dword) 

CTX ID (high 

dword) 

reserved 

CTX ID 

(low 

dword) 

TIME_STAMP 

(high dword) 

TIME_STAMP 

(low dword) 

RPT_ID 

(high 

dword) 

RPT_ID (low 

dword) 

    A-Cntr 37 (high 

dword) 

A-Cntr 37 (low 

dword) 

A-Cntr 36 

(high 

dword) 

A-Cntr 36 

(low dword) 

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0 

C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4 C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 

OAM Report Format (Counter Select = 0b001): 

GPU_TICKS 

(high dword) 

GPU_TICKS 

(low dword) 

CTX ID (high 

dword) 

reserved 

CTX ID 

(low 

dword) 

TIME_STAMP 

(high dword) 

TIME_STAMP 

(low dword) 

RPT_ID 

(high 

dword) 

RPT_ID (low 

dword) 

    A-Cntr 37 (high 

dword) 

A-Cntr 37 (low 

dword) 

A-Cntr 36 

(high 

dword) 

A-Cntr 36 

(low dword) 

B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0 

C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4 C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

OAC Report Format (Counter Select = 0b010): 

GPU_TICKS 

(high dword) 

GPU_TICKS 

(low dword) 

CTX ID (high 

dword) 

reserved 

CTX ID (low 

dword) 

TIME_STAMP 

(high dword) 

TIME_STAMP 

(low dword) 

RPT_ID 

(high 

dword) 

RPT_ID (low 

dword) 

A-Cntr 12 (low 

dword) 

A-Cntr 11 (low 

dword) 

A-Cntr 10 (low 

dword) 

A-Cntr 9 

(low dword) 

A-Cntr 8 (low 

dword) 

A-Cntr 7 (low 

dword) 

A-Cntr 4 

(low dword) 

A-Cntr 0 

(low dword) 

A-Cntr 20 (low 

dword) 

A-Cntr 19 (low 

dword) 

A-Cntr 18 (low 

dword) 

A-Cntr 17 

(low dword) 

A-Cntr 16 (low 

dword) 

A-Cntr 15 (low 

dword) 

A-Cntr 14 

(low dword) 

A-Cntr 13 

(low dword) 

reserved reserved A-Cntr 35 (low 

dword) 

A-Cntr 34 

(low dword) 

0 A-Cntr 32 (low 

dword) 

A-Cntr 31 

(low dword) 

A-Cntr 30 

(low dword) 
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B-Cntr 7 B-Cntr 6 B-Cntr 5 B-Cntr 4 B-Cntr 3 B-Cntr 2 B-Cntr 1 B-Cntr 0 

C-Cntr 7 C-Cntr 6 C-Cntr 5 C-Cntr 4 C-Cntr 3 C-Cntr 2 C-Cntr 1 C-Cntr 0 

Description of RPT_ID and other important fields of the layout: 

Field Description 

GPU TICKS[31:0] GPU_TICKS is simply a free-running count of render clocks elapsed used for normalizing other 

counters (e.g., EU active time), it is expected that the rate that this value advances will vary 

with frequency and freeze (but not lose its value) when all GT clocks are gated, GT is in RC6, 

and so on. 

Context ID[31:0] 
This field carries the Context ID of the active context in render engine. 

[31:0]: Context ID in Execlist mode of scheduling. 

TIME_STAMP[55:32] Upper bits 55:32 of TIME_STAMP. This field provides an elapsed real-time value that can be 

used as a timestamp for GPU events over short periods of time. 

TIME_STAMP[31:0] 
This field provides an elapsed real-time value that can be used as a timestamp for GPU events 

over short periods of time.  

RPT_ID[47] Status bit (once set) to indicate delayed report.  

RPT_ID[46:38] Reserved (for future use) 

RPT_ID[37:36] 
For OAC: CCS Selected ID for perf mon  

For all other OA units: Reserved 

RPT_ID[35:34] Reserved (for future Tile IDs) 

RPT_ID[33:32] Tile ID (Field applies to multi-tile configs only) 

RPT_ID[31:0] 
This field has several sub fields as defined below: 

31:26 SourceID[5:0] 

Encoded value to identify various sources like any CS or Shader unit from which the 

Report was requested. 

Programming note: 

25:19 Report Reason[6:0] 

Report_reason[0]: When set indicates current report is due to "Timer Triggered". 

Report_reason[1]: When set indicates current report is due to "Internal report trigger 

1". 

Report_reason[2]: When set indicates current report is due to "Internal report trigger 

2". 

Report_reason[3]: When set indicates current report is due to "Context switch". 

Report_reason[4]: When set indicates current report is due to "GO transition from '1' 

to '0' ". 

Report_reason[5]: When set indicates current report is due to a change in unslice/slice 
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Field Description 

ratio 

Report_reason[6]: When set indicates current report is due to a MMIO Trigger 

Programming note: 

18 Start Trigger Event: This bit is multiplexed from "Start Trigger Event-1" or "Start 

Trigger Event-2" based on the "Internal Report Trigger-1" or "Internal Report Trigger-

2" asserted in the Report Reason respectively. "Internal Report Trigger-1" is given 

priority over "Internal Report Trigger-2". By default Start Trigger Event-1 is outputted. 

17 Threshold Enable: This bit is multiplexed from "Report Trigger Threshold Enable-1" 

or "Report Trigger Threshold Enable-2" based on the "Internal Report Trigger-1" or 

"Internal Report Trigger-2" asserted in the Report Reason respectively. "Internal 

Report Trigger-1" is given priority over "Internal Report Trigger-2". By default "Report 

Trigger Threshold Enable-1" is outputted. 

16 Context Valid 

15:0 Reserved 
 

Encoding of SourceID field in RPT_ID is as follows: 

SourceID[5] 

Non-Media/ 

Media 

SourceID[4:3] SourceID[2:0] Description 

0 00 000 Sources other than CPU, all CS and all Shaders listed below 

0 00 001 CPU 

0 00 010 to 111 Reserved 

0 01 000 to 010 

(Reserved 011 

to 111) 

All CS excluding Media related CS namely 

RCS, CCS, BCS 

In case of CCS source : RPT_ID [46:36] to indicate CCS id in 

addition. 

0 10 000 to 110 

(Reserved 111) 

Shaders: VS, VSR, HS, TDS, GS, PS, TS 

0 11 000 to 111 Reserved 
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1 00/01/10/11 

(Media SliceN 

=0/1/2/3) 

000 to 010 

(Reserved 011 to 

111) 

VCS0/VCS1/VECS of Media SliceN 

Performance Counting Register Interface 

Global Registers 

OACTXID - Observation Architecture Control Context ID 

OA_IMR - OA Interrupt Mask Register 

OASTATUS - Observation Architecture Status Register 

OAHEADPTR - Observation Architecture Head Pointer 

OATAILPTR - Observation Architecture Tail Pointer 

OABUFFER - Observation Architecture Buffer 

OASTARTTRIG_COUNTER - Observation Architecture Start Trigger 

Counter 

OARPTTRIG_COUNTER - Observation Architecture Report Trigger 

Counter 

OAREPORTTRIG2 - Observation Architecture Report Trigger 2 

OAREPORTTRIG6 - Observation Architecture Report Trigger 6 

CEC0-0 - Customizable Event Creation 0-0 

CEC1-0 - Customizable Event Creation 1-0 

CEC1-1 - Customizable Event Creation 1-1 

CEC2-0 - Customizable Event Creation 2-0 

CEC2-1 - Customizable Event Creation 2-1 

CEC3-0 - Customizable Event Creation 3-0 

CEC3-1 - Customizable Event Creation 3-1 

CEC4-0 - Customizable Event Creation 4-0 

CEC5-0 - Customizable Event Creation 5-0 

CEC5-1 - Customizable Event Creation 5-1 

CEC6-0 - Customizable Event Creation 6-0 

CEC6-1 - Customizable Event Creation 6-1 

CEC7-0 - Customizable Event Creation 7-0 

CEC7-1 - Customizable Event Creation 7-1 

EU_PERF_CNT_CTL0 - Flexible EU Event Control 0 

EU_PERF_CNT_CTL1 - Flexible EU Event Control 1 

EU_PERF_CNT_CTL2 - Flexible EU Event Control 2 

EU_PERF_CNT_CTL3 - Flexible EU Event Control 3 

EU_PERF_CNT_CTL4 - Flexible EU Event Control 4 

EU_PERF_CNT_CTL5 - Flexible EU Event Control 5 

EU_PERF_CNT_CTL6 - Flexible EU Event Control 6 
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Symmetrical Registers 

OAPERF_A0 - Aggregate Perf Counter A0 

OAPERF_A0_UPPER - Aggregate Perf Counter A0 Upper DWord 

OAPERF_A1 - Aggregate Perf Counter A1 

OAPERF_A1_UPPER - Aggregate Perf Counter A1 Upper DWord 

OAPERF_A2 - Aggregate Perf Counter 2 

OAPERF_A2_UPPER - Aggregate Perf Counter A2 Upper DWord 

OAPERF_A3 - Aggregate Perf Counter A3 

OAPERF_A3_UPPER - Aggregate Perf Counter A3 Upper DWord 

OAPERF_A4 - Aggregate Perf Counter A4 

OAPERF_A4_UPPER - Aggregate Perf Counter A4 Upper DWord 

OAPERF_A4_LOWER_FREE - Aggregate Perf Counter A4 Lower DWord Free 

OAPERF_A4_UPPER_FREE - Aggregate Perf Counter A4 Upper DWord Free 

OAPERF_A5 - Aggregate Perf Counter A5 

OAPERF_A5_UPPER - Aggregate Perf Counter A5 Upper DWord 

OAPERF_A6 - Aggregate Perf Counter A6 

OAPERF_A6_UPPER - Aggregate Perf Counter A6 Upper DWord 

OAPERF_A6_LOWER_FREE - Aggregate Perf Counter A6 Lower DWord Free 

OAPERF_A6_UPPER_FREE - Aggregate Perf Counter A6 Upper DWord Free 

OAPERF_A7 - Aggregate Perf Counter A7 

OAPERF_A7_- Upper Aggregate Perf Counter A7 Upper DWord 

OAPERF_A8 - Aggregate Perf Counter A8 

OAPERF_A8_UPPER - Aggregate Perf Counter A8 Upper DWord 

OAPERF_A9 - Aggregate Perf Counter A9 

OAPERF_A9_UPPER - Aggregate Perf Counter A9 Upper DWord 

OAPERF_A10 - Aggregate Perf Counter A10 

OAPERF_A10_UPPER - Aggregate Perf Counter A10 Upper DWord 

OAPERF_A11 - Aggregate Perf Counter A11 

OAPERF_A11_UPPER - Aggregate Perf Counter A11 Upper DWord 

OAPERF_A12 - Aggregate Perf Counter A12 

OAPERF_A12_UPPER - Aggregate Perf Counter A12 Upper DWord 

OAPERF_A13 - Aggregate Perf Counter A13 

OAPERF_A13_UPPER - Aggregate Perf Counter A13 Upper DWord 

OAPERF_A14 - Aggregate Perf Counter A14 

OAPERF_A14_UPPER - Aggregate Perf Counter A14 Upper DWord 

OAPERF_A15 - Aggregate Perf Counter A15 

OAPERF_A15_UPPER - Aggregate Perf Counter A15 Upper DWord 

OAPERF_A16 - Aggregate Perf Counter A16 
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Symmetrical Registers 

OAPERF_A16_UPPER - Aggregate Perf Counter A16 Upper DWord 

OAPERF_A17 - Aggregate Perf Counter A17 

OAPERF_A17_UPPER - Aggregate Perf Counter A17 Upper DWord 

OAPERF_A18 - Aggregate Perf Counter A18 

OAPERF_A18_UPPER - Aggregate Perf Counter A18 Upper DWord 

OAPERF_A19 - Aggregate Perf Counter A19 

OAPERF_A19_UPPER - Aggregate Perf Counter A19 Upper DWord 

OAPERF_A19_LOWER_FREE - Aggregate Perf Counter A19 Lower DWord Free 

OAPERF_A19_UPPER_FREE - Aggregate Perf Counter A19 Upper DWord Free 

OAPERF_A20 - Aggregate Perf Counter A20 

OAPERF_A20_UPPER - Aggregate Perf Counter A20 Upper DWord 

OAPERF_A20_UPPER_FREE - Aggregate Perf Counter A20 Upper DWord Free 

OAPERF_A20_LOWER_FREE - Aggregate Perf Counter A20 Lower DWord Free 

OAPERF_A21 - Aggregate Perf Counter A21 

OAPERF_A21_UPPER - Aggregate Perf Counter A21 Upper DWord 

OAPERF_A22 - Aggregate Perf Counter A22 

OAPERF_A22_UPPER - Aggregate Perf Counter A22 Upper DWord 

OAPERF_A23 - Aggregate Perf Counter A23 

OAPERF_A23_UPPER - Aggregate Perf Counter A23 Upper DWord 

OAPERF_A24 - Aggregate Perf Counter A24 

OAPERF_A24_UPPER - Aggregate Perf Counter A24 Upper DWord 

OAPERF_A25 - Aggregate Perf Counter A25 

OAPERF_A25_UPPER - Aggregate Perf Counter A25 Upper DWord 

OAPERF_A26 - Aggregate Perf Counter A26 

OAPERF_A26_UPPER - Aggregate Perf Counter A26 Upper DWord 

OAPERF_A27 - Aggregate Perf Counter A27 

OAPERF_A27_UPPER - Aggregate Perf Counter A27 Upper DWord 

OAPERF_A28 - Aggregate Perf Counter A28 

OAPERF_A28_UPPER - Aggregate Perf Counter A28 Upper DWord 

OAPERF_A29 - Aggregate Perf Counter A29 

OAPERF_A29_UPPER - Aggregate Perf Counter A29 Upper DWord 

OAPERF_A30 - Aggregate Perf Counter A30 

OAPERF_A30_UPPER - Aggregate Perf Counter A30 Upper DWord 

OAPERF_A31 - Aggregate_Perf_Counter_A31 

OAPERF_A31_UPPER - Aggregate Perf Counter A31 Upper DWord 

OAPERF_A32 - Aggregate_Perf_Counter_A32 

OAPERF_A32 _UPPER- Aggregate_Perf_Counter_A32 Upper DWord 
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Symmetrical Registers 

OAPERF_A33 - Aggregate_Perf_Counter_A33 

OAPERF_A33_UPPER - Aggregate_Perf_Counter_A33 Upper DWord 

OAPERF_A34 - Aggregate_Perf_Counter_A34 

OAPERF_A34_UPPER - Aggregate_Perf_Counter_A34 Upper DWord 

OAPERF_A35 - Aggregate_Perf_Counter_A35 

OAPERF_A35_UPPER - Aggregate_Perf_Counter_A35 Upper DWord 

OAPERF_A36 - Aggregate_Perf_Counter_A36 

OAPERF_A36_UPPER - Aggregate_Perf_Counter_A36 Upper DWord 

OAPERF_A37 - Aggregate_Perf_Counter_A37 

OAPERF_A37_UPPER - Aggregate_Perf_Counter_A37 Upper DWord 

GPU_TICKS - GPU_Ticks_Counter 

OA Interrupt Control Registers 

The Interrupt Control Registers listed below all share the same bit definition. The bit definition is as 

follows: 

Bit Description 

31:29 Reserved. MBZ: These bits may be assigned to interrupts on future products/steppings. 

28 Performance Monitoring Buffer Half-Full Interrupt: For internal trigger (timer based) reporting, if the 

report buffer crosses the half full limit, this interrupt is generated.  

27:0 Reserved: MBZ (These bits must be never set by OA, these bit could be allocated to some other unit) 

• WDBoxOAInterrupt Vector 

• IMR 

• Bit Definition for Interrupt Control Registers 

Performance Counter Reporting 

When either the MI_REPORT_PERF_COUNT command is received or the internal report trigger logic fires, 

a snapshot of the performance counter values is written to memory. The format used by HW for such 

reports is selected using the Counter Select field within the register. The organization and number of 

report formats vary per project and are detailed in Performance Counter Report Formats. 

Details of Start Trigger Behavior 

• All counters not explicitly defined as free running will advance after the start trigger conditions are 

met. 

• Counting will continue after the start trigger has fired until OA is disabled, or device is reset. 

• Multiple start triggering blocks (where implemented) are OR'd together in order to allow 

specification of multiple trigger conditions. 

• Bit 18 in the report format reflects whether the start trigger has fired or not. 
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Configuration of Trigger Logic 

OA contains logic to control when performance counter values are reported to memory. This 

functionality is controlled using the OA report trigger and OA start trigger registers. More detailed 

register descriptions are included in the Hardware Programming interface. The block diagram below 

illustrates the logic these registers control. 

 

Context Switch Triggered Reports 

A context load/switch on RCS will cause a performance counter snapshot to be written to memory at the 

next location in the OA circular report buffer using the perf counter format selected in OAGCONTROL. This 

functionality can be leveraged when preemption is enabled to re-construct the contribution of a specific 

context to a performance counter delta, requires SW to consider both the delta reported by 

MI_REPORT_PERF and the reports that may have been issued to OABUFFER by intervening contexts. 

Frequency Change Triggered Reports 

A GFX frequency change will cause a performance counter snapshot to be written to memory at the next 

location in the OA circular report buffer using the perf counter format selected in OAGCONTROL. Please 

note that a change back to the same frequency can occur and that such changes will still cause a 

performance counter report to occur. 

Aggregating Counters 

The table below described the desired high-level functionality from each of the aggregating counters. 

Note that there is no counter of 2x2s sent to pixel shader, this is based on the assumption that the pixel 

shader invocation pipeline statistics counter increments for partially lit 2x2s as well and hence does not 

require a duplicate performance counter. 
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Please also note that some of the information provided by A-counters is useful for GFX/system load-

balancing and is hence made available via free-running counters which do not require initial setup and 

count irrespective of OA enable/disable or freeze. 

 

Counter 

# Event Description 

A0 GPU Busy 
GPU is not idle (includes all GPU engines). 

Link to detailed register definition: 

Dual Context Considerations 

Please note that the value of GPU Busy count reported to OABUFFER includes 

activities from all contexts. 

A1 # of Vertex 

Shader Threads 

Dispatched 

Count of VS fused threads dispatched to EUs  

Link to detailed register definition: 

A2 # of Hull Shader 

Threads 

Dispatched 

Count of HS fused threads dispatched to EUs  

Link to detailed register definition: 

A3 # of Domain 

Shader Threads 

Dispatched 

Count of DS fused threads dispatched to EUs  

Link to detailed register definition: 

A4 
# of GPGPU 

Threads 

Dispatched 

Count of GPGPU fused threads dispatched to EUs. Available on both qualified and 

free-running counters. 

Link to detailed register definition: 

Dual Context Considerations 

Please note that the value of this event sampled by an MI_REPORT_PERF command 

reflects only the count associated with the context issuing the MI_REPORT_PERF 

command whereas the value of this event reported to OABUFFER includes activity 

from all contexts. 

A5 # of Geometry 

Shader Threads 

Dispatched 

Count of GS fused threads dispatched to EUs  

Link to detailed register definition: 

A6 # of Pixel Shader 

Threads 

Dispatched 

Count of PS fused threads dispatched to EUs. Available on both qualified and free-

running counters. 

Link to detailed register definition: 

A7 Aggregating EU 

counter 0 

User-defined (details in Flexible EU Event Counters section)  

Link to detailed register definition: 
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Counter 

# Event Description 

A8 Aggregating EU 

counter 1 

User-defined (details in Flexible EU Event Counters section)  

Link to detailed register definition: 

A9 Aggregating EU 

counter 2 

User-defined (details in Flexible EU Event Counters section)  

Link to detailed register definition: 

A10 Aggregating EU 

counter 3 

User-defined (details in Flexible EU Event Counters section)  

Link to detailed register definition: 

A11 Aggregating EU 

counter 4 

User-defined (details in Flexible EU Event Counters section)  

Link to detailed register definition: 

A12 Aggregating EU 

counter 5 

User-defined (details in Flexible EU Event Counters section)  

Link to detailed register definition: 

A13 Aggregating EU 

counter 6 

User-defined (details in Flexible EU Event Counters section)  

Link to detailed register definition: 

A14 Aggregating EU 

counter 7 

User-defined (details in Flexible EU Event Counters section)  

Link to detailed register definition: 

A15 Aggregating EU 

counter 8 

User-defined (details in Flexible EU Event Counters section)  

Link to detailed register definition: 

A16 Aggregating EU 

counter 9 

User-defined (details in Flexible EU Event Counters section)  

Link to detailed register definition: 

A17 Aggregating EU 

counter 10 

User-defined (details in Flexible EU Event Counters section)  

Link to detailed register definition: 

A18 Aggregating EU 

counter 11 

User-defined (details in Flexible EU Event Counters section)  

Link to detailed register definition: 

A19 Aggregating EU 

counter 12 
Available on both qualified and free-running counters 

User-defined (details in Flexible EU Event Counters section) 

Link to detailed register definition: 

A20 Aggregating EU 

counter 13 
Available on both qualified and free-running counters  

User-defined (details in Flexible EU Event Counters section) 

Link to detailed register definition: 
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Counter 

# Event Description 

A21 2x2s Rasterized Count of the number of samples of 2x2 pixel blocks generated from the input 

geometry before any pixel-level tests have been applied. (Please note that 2x2s may 

be in terms of pixels or in terms of samples depending on project but are consistent 

between A21-A27.)  

Link to detailed register definition: 

A22 2x2s Failing Fast 

pre-PS Tests 

Count of the number of samples failing fast "early" (i.e., before pixel shader 

execution) tests (counted at 2x2 granularity). (Please note that 2x2s may be in terms 

of pixels or in terms of samples depending on project but are consistent between 

A21-A27.)  

Link to detailed register definition: 

A23 2x2s Failing Slow 

pre-PS Tests 

Count of the number of samples of failing slow "early" (i.e. before pixel shader 

execution) tests (counted at 2x2 granularity). (Please note that 2x2s may be in terms 

of pixels or in terms of samples depending on project but are consistent between 

A21-A27.)  

Link to detailed register definition: 

A26 2x2s Written To 

Render Target 
Number of samples that are written to render target.(counted at 2x2 granularity). 

MRT case will report multiple writes per 2x2 processed by the pixel shader. (Please 

note that 2x2s may be in terms of pixels or in terms of samples depending on project 

but are consistent between A21-A27.) 

Please note that this counter will not advance if a render target update does not 

occur and that pixel masking operations performed by the fixed function HW or 

shader may not be reflected in counters A22-A25 which only track their specific 

defined operations. This can lead to an apparent discrepancy between A21 vs. A22-

A25 vs. A26/A27. 

Link to detailed register definition: 

A27 Blended 2x2s 

Written to Render 

Target 

Number of samples of blendable that are written to render target.(counted at 2x2 

granularity). MRT case will report multiple writes per 2x2 processed by the pixel 

shader. (Please note that 2x2s may be in terms of pixels or in terms of samples 

depending on project but are consistent between A21-A27.) 

Please note that this counter will not advance if a render target update does not 

occur and that pixel masking operations performed by the fixed function HW or 

shader may not be reflected in counters A22-A25 which only track their specific 

defined operations. This can lead to an apparent discrepancy between A21 vs. A22-

A25 vs. A26/A27. 

Link to detailed register definition: 

A28 2x2s Requested 

from Sampler 

Aggregated total 2x2 texel blocks requested from all EUs to all instances of sampler 

logic.  
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Counter 

# Event Description 

Link to detailed register definition: 

Dual Context Considerations 

Please note that the value of this event sampled by an MI_REPORT_PERF command 

reflects only the count associated with the context issuing the MI_REPORT_PERF 

command whereas the value of this event reported to OABUFFER includes activity 

from all contexts. 

A29 Sampler L1 Misses Aggregated misses from all sampler L1 caches. Please note that the number of L1 

accesses varies with requested filtering mode and in other implementation specific 

ways. Hence it is not possible in general to draw a direct relationship between A28 

and A29. However, a high number of sampler L1 misses relative to texel 2x2s 

requested frequently degrades sampler performance.  

Link to detailed register definition: 

Dual Context Considerations 

Please note that the value of this event sampled by an MI_REPORT_PERF command 

reflects only the count associated with the context issuing the MI_REPORT_PERF 

command whereas the value of this event reported to OABUFFER includes activity 

from all contexts. 

A30 SLM Reads Total read requests from an EU to SLM (including reads generated by atomic 

operations).  

Link to detailed register definition: 

Dual Context Considerations 

Please note that the value of this event sampled by an MI_REPORT_PERF command 

and reported to OABUFFER includes activity from all contexts. 

A31 SLM Writes Total write requests from an EU to SLM (including writes generated by atomic 

operations).  

Link to detailed register definition: 

Dual Context Considerations 

Please note that the value of this event sampled by an MI_REPORT_PERF command 

and reported to OABUFFER includes activity from all contexts. 

A34 Atomic Accesses Aggregated total atomic accesses from all EUs. This counter increments on atomic 

accesses to both SLM and URB.  

Link to detailed register definition: 

Dual Context Considerations 

Please note that the value of this event sampled by an MI_REPORT_PERF command 
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Counter 

# Event Description 

reflects only the count associated with the context issuing the MI_REPORT_PERF 

command whereas the value of this event reported to OABUFFER includes activity 

from all contexts. 

Workaround 

SLM atomics are not included in prior releases by this OA event (only global memory 

atomics are counted), a workaround using B/C counters is possible. 

A35 
Barrier Messages 

Aggregated total kernel barrier messages from all Eus (one per thread in barrier). 

Link to detailed register definition: 

Dual Context Considerations 

Please note that the value of this event sampled by an MI_REPORT_PERF command 

reflects only the count associated with the context issuing the MI_REPORT_PERF 

command whereas the value of this event reported to OABUFFER includes activity 

from all contexts. 

A36 GT Read Requests 
For integrated GPU - Counts the number of memory read requests GT makes toward 

the SoC memory hierarchy. For discrete GPU this counter reflects only Device 

memory read requests. 

Note: It counts either the number of read transactions/4  or data transferred (in 128B 

units) depending on the programming of the field 

"OA byte per clock reporting vs commands per clock reporting" 

in the Register"Super Queue Internal Cnt Register I" 

A37 GT Write Requests 
For integrated GPU - Counts the number of memory write requests GT makes toward 

the SoC memory hierarchy. For discrete GPU this counter reflects only Device 

memory write requests. 

Note: It counts either the number of write transactions/4  or data transferred (in 128B 

units) depending on the programming of the field 

"OA byte per clock reporting vs commands per clock reporting" 

in the Register"Super Queue Internal Cnt Register I" 

SPM Counters 

Counter 

# Event Description 

SPM0 EU Stall 
Event reflects the condition where an EU is not idle but also not processing an ISA 

instruction. Each increment of the event reflects (2x (number of EUs per subslice)) clocks 

where this condition is met. 
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Counter 

# Event Description 

SPM1 EU IPC 
Event counts the number of execution slots among all compute pipes (e.g., FPU/EM etc.) 

that GT processes. It comprehends cases where multiple instructions are processed in a 

single clock. Each increment of the event reflects (2x (number of EUs per subslice)) clocks 

where this condition is met. 

SPM2 Threads 

loaded 
Event counts the total number of threads that have been fully loaded onto an EU in a 

given clock. This event DOES NOT include the time where the thread header is being sent 

to the EU. Each increment of the event reflects (4x (number of EUs per subslice)) clocks 

where this condition is met. 

SPM3 EU Not Idle 
Event reflects the condition where an EU is not idle. Each increment of the event reflects 

(2x (number of EUs per subslice)) clocks where this condition is met. 

SPM4 Sampler Not 

Idle 
Event counts sampler activity. 

SPM5 EU Stalled & 

Sampler Not 

Idle 

Event reflects the condition where the EU has sent a request(s) to sampler and all threads 

on the EU are stalled. Please note that the EU could be stalled for reasons other than 

sampler as well. Each increment of the event reflects (4x (number of EUs per subslice)) 

clocks where this condition is met. 

External Events  

External Architectural Event List for Performance Tuning 

Architecture Event Name Event Definition 

SAMPLER_MEMORY_LATENCY_STALL Number of cycles Sampler stalled due to 

latency hiding structure full 

SAMPLER_2X2_READ Number of 2x2 texel block requested from 

Sampler 

SAMPLER_INPUT_AVAILABLE Number of cycles when Sampler input is 

available 

SAMPLER_OUTPUT_READY Number of cycles when Sampler output is 

ready 

SAMPLER_TEXTURE_CACHE_MISS Number of Sampler L1 misses 

SAMPLER_TEXTURE_CACHE_ACCESS Number of Sampler L1 requests 

SAMPLER_BUSY_CYCLES Number of cycles Sampler pipeline active 

AMFS_4X4_SHADING_REQUEST Number of Shading Request (evaluate) 

messages processed by AMFS 

AMFS_CACHE_HIT Number of hits in the AMFS cache 

AMFS_CACHE_MISS Number of cache misses in AMFS 
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Architecture Event Name Event Definition 

AMFS_STALL_ANY_INPUT Number of cycles AMFS stalls at any of the 

color pipe inputs 

AMFS_STALL_ALL_INPUT Number of cycles AMFS stalls at both of the 

color pipe inputs 

AMFS_L3_ACCESS Number of AMFS accesses to L3 

AMFS_L3_WRITE Number of AMFS writes to L3 

AMFS_L3_ATOMIC Number of AMFS atomics to L3 

PIXEL_WRITE Number of 2x2 pixels written to all render 

targets 

PIXEL_BLEND Number of blended 2x2 pixels written to all 

render targets 

COLOR_PIPE_CACHE_LATENCY2_STALL Number of cycles Color Pipeline stalled due 

to Render Cache latency hiding structure full 

RENDER_CACHE_ALLOC Number of Render Cache allocations 

RENDER_CACHE_HIT Number of Render Cache hits 

RENDER_CACHE_READ Number of Render Cache reads 

RENDER_CACHE_WRITE Number of Render Cache writes 

RENDER_CACHE_INPUT_AVAILABLE Number of cycles Render Cache input 

available 

RENDER_CACHE_OUTPUT_READY Number of cycles Render Cache output ready 

PIXEL_POST_PROCESS_OUTPUT_READY Number of cycles Color Pipeline pixel output 

ready 

COLOR_PIPE_CACHE_LATENCY1_STALL Number of cycles Color Pipeline stalled due 

to MultiSampling Cache latency hiding 

structure full 

PIXEL_POST_PROCESS_INPUT_AVAILABLE Number of cycles Color Pipeline input ready 

PS_OUTPUT_AVAILABLE Number of cycles Pixel Shader data is 

available 

EU_SHARED_FUNCTION_ACCESS_HOLD Number of cycles EU requests stalled by 

Shared Function units 

EU_INST_EXECUTED_SEND_ALL Number of instruction (GRF) dispatches 

executed on SEND Pipe 

EU_INST_EXECUTED_CONTROL_ALL Number of instructions executed on JEU Pipe 

EU_INST_EXECUTED_ALU1_ALL Number of execution slots taken by 

instructions executed on ALU1 pipe 

EU_THREADS_OCCUPANCY_ALL 
Number of thread slots occupied 

EU_ACTIVE_CYCLES Number of cycles at least one pipe is active in 

EU 
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Architecture Event Name Event Definition 

EU_STALL_CYCLES Number of cycles any thread loaded but not 

even a single pipe is active in EU 

EU_INST_ISSUED_ALL Number of instructions issued (decoded) to 

any pipe 

EU_INST_EXECUTED_INT16 Number of execution slots taken by INT16 

ALU instructions 

EU_INST_EXECUTED_INT32 Number of execution slots taken by INT32 

ALU instructions 

EU_INST_EXECUTED_MATH Number of execution slots taken by 

extended math instructions 

EU_INST_EXECUTED_ALU0_ALL Number of execution slots taken by 

instructions executed on ALU0 pipe 

EU_INST_EXECUTED_FP32 Number of execution slots taken by FP32 

ALU instructions 

EU_INST_EXECUTED_FP16 Number of execution slots taken by FP16 

ALU instructions 

EU_INST_EXECUTED_SYSTOLIC_ALL Number of execution slots taken by 

instructions executed in Systolic pipe 

EU_INST_EXECUTED_SYSTOLIC_FP16 Number of execution slots taken by FP16 

DPAS instructions 

EU_INST_EXECUTED_SYSTOLIC_BF16 Number of execution slots taken by BF16 

DPAS instructions 

EU_INST_EXECUTED_SYSTOLIC_INT8 Number of execution slots taken by INT8 

DPAS instructions 

EU_STALL_INSTFETCH_CYCLES Number of cycles EU stalled, with at least 

one thread waiting for Instruction Fetch 

EU_STALL_BARRIER_CYCLES Number of cycles EU stalled, with at least 

one thread waiting for Gateway to write 

Notify register 

EU_STALL_SBID_CYCLES Number of cycles EU stalled, with at least 

one thread waiting for Scoreboard token to 

be available 

EU_STALL_ALUWR_CYCLES Number of cycles EU stalled, with at least 

one thread waiting for ALU to write GRF/ACC 

register 

EU_STALL_SENDWR_CYCLES Number of cycles EU stalled, with at least 

one thread waiting for SEND to write GRF 

register 

EU_STALL_OTHER_CYCLES Number of cycles EU stalled, with at least 

one thread waiting on any other dependency 

(Flag/EoT etc) 

ICACHE_HIT Number of Instruction Cache Hits 
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Architecture Event Name Event Definition 

ICACHE_MISS Number of Instruction Cache Misses 

EU_MULTIPLE_PIPE_ACTIVE_CYCLES Number of cycles at least two pipes are 

actively executing a Gen ISA instruction 

among ALU0, ALU1 and SYSTOLIC pipes 

EU_PIPE_ALU0_AND_ALU1_ACTIVE_CYCLES Number of cycles ALU0 and ALU1 pipes are 

both actively executing a Gen ISA instruction 

EU_PIPE_ALU0_AND_SYSTOLIC_ACTIVE_CYCLES Number of cycles ALU0 and SYSTOLIC pipes 

are both actively executing a Gen ISA 

instruction 

STREAMOUT_PRIMITIVE_WRITE_COUNT Number of objects data written to memory, 

read from pipe 0 only 

STREAMOUT_PRIMITIVE_STORAGE_NEED Number of objects data that needed beyond 

the current allocated space, read from pipe 0 

only 

STREAMOUT_OUTPUT_VERTEX_COUNT Number of vertices written by SOL 

VS_OUTPUT_READY Number of cycles Vertex Shader output is 

ready 

IA_PRIMITIVE Number of primitives in a draw 

IA_VERTEX Number of vertices in a draw 

VERTEX_FETCH_OUTPUT_READY Number of cycles Vertex Fetch output is ready 

VERTEX_FETCH_INPUT_AVAILABLE Number of cycles Vertex Fetch input is 

available 

COMMAND_PARSER_COPY_ENGINE_BUSY Number of cycles there is a context loaded 

and active on the copy queue. 

COMMAND_PARSER_COMPUTE_ENGINE_DISPATCH_KERNEL_COUNT Number of compute walker commands 

parsed on the compute engine 

COMMAND_PARSER_COMPUTE_ENGINE_BUSY Number of cycles there is a context loaded 

and active on the compute queue 

COMMAND_PARSER_FLUSH_COUNT Number of Stalling flushes at the top of the 

pipe 

COMMAND_PARSER_RENDER_ENGINE_DRAW_COUNT Number of DRAW and MESH commands 

parsed on the 3D engine 

COMMAND_PARSER_RENDER_ENGINE_DISPATCH_KERNEL_COUNT Number of compute walker commands 

parsed on the 3D engine 

COMMAND_PARSER_RENDER_ENGINE_BUSY Number of cycles there is a context loaded 

and active on the 3D queue 

COMMAND_PARSER_VIDEO_ENGINE_BUSY Number of cycles there is a context loaded 

and active on the media queue 

COMMAND_PARSER_VIDEO_ENHANCEMENT_ENGINE_BUSY Number of cycles there is a context loaded 

and active on the video enhancement queue 
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Architecture Event Name Event Definition 

GPU_MEMORY_L3_READ Number of GTI memory reads from L3 caused 

by L3 Cache misses 

GPU_MEMORY_L3_WRITE Number of GTI memory writes from L3 

caused by L3 invalidations 

GPU_MEMORY_READ Number of GTI memory reads 

GPU_MEMORY_WRITE Number of GTI memory writes 

GPU_MEMORY_REQUEST_QUEUE_FULL Number of cycles when SQ is filled above a 

threshold (usually 48 entries) 

GPU_MEMORY_CYCLES_ACTIVE Number of cycles device local memory (HBM, 

GDDR, LPDDR, etc.) is active 

GPU_MEMORY_64B_TRANSACTION_READ Number of device local memory (HBM, 

GDDR, LPDDR, etc.) reads (64B) 

GPU_MEMORY_64B_TRANSACTION_WRITE Number of device local memory (HBM, 

GDDR, LPDDR, etc.) writes (64B) 

GPU_MEMORY_32B_TRANSACTION_READ Number of device local memory (HBM, 

GDDR, LPDDR, etc.) reads (32B) 

GPU_MEMORY_32B_TRANSACTION_WRITE Number of device local memory (HBM, 

GDDR, LPDDR, etc.) writes (32B) 

GPU_MEMORY_BYTE_READ Number of device local memory (HBM, 

GDDR, LPDDR, etc.) read bytes 

GPU_MEMORY_BYTE_WRITE Number of device local memory (HBM, 

GDDR, LPDDR, etc.) write bytes 

EU_DATAPORT_READ_MESSAGE_COUNT Number of read messages sent by EUs to the 

Dataport 

EU_DATAPORT_WRITE_MESSAGE_COUNT Number of write messages sent by EUs to 

the Dataport 

EU_DATAPORT_ATOMIC_MESSAGE_COUNT Number of atomic messages sent by EUs to 

the Dataport 

EU_DATAPORT_FENCE_MESSAGE_COUNT Number of fence messages sent by EUs to 

the Dataport 

DATAPORT_TEXTURE_CACHE_ACCESS Number of cacheline requests from the 

Dataport to the texture cache not including 

uncached accesses 

DATAPORT_TEXTURE_CACHE_HIT Number of cache requests from the Dataport 

to the texture cache that resulted in a cache 

hit 

EU_DATAPORT_REGISTER_REQUEST_COUNT Number of message payload transactions 

sent from EUs to the Dataport 

EU_DATAPORT_REGISTER_RESPONSE_COUNT Number of return message payload 

transactions sent from the Dataport to EUs 
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Architecture Event Name Event Definition 

DATAPORT_INPUT_AVAILABLE Number of cycles EUs have requests to the 

Dataport 

DATAPORT_OUTPUT_READY Number of cycles the Dataport has data to 

return to EUs 

DATAPORT_BYTE_READ Number of bytes read through the Dataport 

DATAPORT_BYTE_WRITE Number of bytes written through the 

Dataport 

L3_INPUT_AVAILABLE Number of cycles L3 bank has input requests 

L3_OUTPUT_READY Number of cycles L3 bank has output ready 

L3_ATOMIC_ACCESS Number of atomic accesses to L3 bank 

DATAPORT_L3_READ Number of L3 read requests coming from EU 

via Dataport 

DATAPORT_L3_WRITE Number of L3 write requests coming from EU 

via Dataport 

DATAPORT_L3_HIT Number of L3 hits for requests coming from 

the Dataport 

ICACHE_L3_READ Number of L3 read requests coming from EU 

Instruction Cache 

ICACHE_L3_HIT Number of EU instruction cache requests that 

hit the L3 

SAMPLER_L3_READ Number of L3 read requests resulting from 

sampler local cache miss 

SAMPLER_L3_HIT Number of L3 hit requests resulting from 

sampler local cache miss which hits in L3 

COLOR_L3_HIT Number of L3 read requests resulting from 

color local cache miss which hits in L3 

Z_L3_HIT Number of L3 read requests resulting from Z 

local cache miss which hits in L3 

L3_READ Number of L3 read requests 

L3_WRITE Number of L3 write requests 

L3_MISS Number of L3 accesses which miss in the L3 

cache 

L3_HIT Number of L3 accesses which hits in the L3 

cache 

L3_SUPERQ_FULL Number of cycles all slots in L3 request queue 

are waiting for data return / response 

L3_BUSY Number of cycles L3 request queue has one 

or more requests pending 

L3_STALL Number of cycles L3 bank stalled 
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Architecture Event Name Event Definition 

EU_LOAD_STORE_CACHE_READ_MESSAGE_COUNT Number of read messages sent by EUs to the 

Load Store Cache 

EU_LOAD_STORE_CACHE_WRITE_MESSAGE_COUNT Number of write messages sent by EUs to 

the Load Store Cache 

EU_LOAD_STORE_CACHE_ATOMIC_MESSAGE_COUNT Number of atomic operations sent by EUs to 

the Load Store Cache 

EU_LOAD_STORE_CACHE_FENCE_MESSAGE_COUNT Number of fence messages sent by EUs to 

the Load Store Cache 

EU_SLM_READ_MESSAGE_COUNT Number of SLM read messages sent by EUs 

EU_SLM_WRITE_MESSAGE_COUNT Number of SLM write messages sent by EUs 

EU_SLM_ATOMIC_MESSAGE_COUNT Number of SLM atomic operations sent by 

EUs 

EU_SLM_FENCE_MESSAGE_COUNT Number of SLM fence operations sent by 

EUs 

RT_LOAD_STORE_CACHE_READ_MESSAGE_COUNT Number of read messages sent from Ray 

Tracing unit to the Load Store Cache 

RT_LOAD_STORE_CACHE_WRITE_FROM_MESSAGE_COUNT Number of write messages sent from Ray 

Tracing unit to the Load Store Cache 

LOAD_STORE_CACHE_HIT Number of Load Store Cache hits. 

LOAD_STORE_CACHE_ACCESS Number of Load Store Cache accesses. 

LOAD_STORE_CACHE_NUMBER_OF_BANK_ACCESS_COUNT Number of Load Store Cache banks accessed 

in a clock. 

SLM_BANK_CONFLICT_COUNT Number of SLM accesses resulting in a bank 

conflict. 

LOAD_STORE_CACHE_L3_READ Number of cacheline read requests from the 

Load Store Cache to L3 

LOAD_STORE_CACHE_L3_WRITE Number of cacheline write requests from the 

Load Store Cache to L3 

LOAD_STORE_CACHE_PARTIAL_WRITE_COUNT Number of writes to the Load Store Cache 

that don't fill a subsector 

EU_LOAD_STORE_CACHE_REGISTER_REQUEST_COUNT Number of message payload transactions 

sent by EUs to the Load Store Cache 

EU_LOAD_STORE_CACHE_REGISTER_RESPONSE_COUNT Number of message payload transactions 

sent from the Load Store Cache back to EUs 

LOAD_STORE_CACHE_INPUT_AVAILABLE Number of cycles the Load Store Cache has 

input available 

LOAD_STORE_CACHE_OUTPUT_READY Number of cycles the Load Store Cache has 

output ready 

LOAD_STORE_CACHE_BYTE_READ Number of bytes read out of the Load Store 

Cache, excluding SLM accesses. 
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Architecture Event Name Event Definition 

LOAD_STORE_CACHE_BYTE_WRITE Number of bytes written to the Load Store 

Cache, excluding SLM accesses. 

SLM_BYTE_READ Number of bytes read from SLM 

SLM_BYTE_WRITE Number of bytes written to SLM 

SLM_ACCESS_COUNT Number of SLM accesses. 

HOST_TO_GPUMEM_TRANSACTION_READ Number of host reads to GPU local (HBM) 

memory (downstream) 

HOST_TO_GPUMEM_TRANSACTION_WRITE Number of host writes to GPU local (HBM) 

memory (downstream) 

SYSMEM_TRANSACTION_READ Number of system memory reads (upstream) 

SYSMEM_TRANSACTION_WRITE Number of system memory writes 

(upstream) 

CLIPPER_INPUT_AVAILABLE Number of cycles Clipper has input available 

(from Vertex Shader or SOL) 

CLIPPER_PRIMITIVE_CULL Number of Clipper early cull primitives 

CLIPPER_TRANSACTION_OUTPUT Number of elements pushed by Clipper into 

Stripsfan stage 

CLIPPER_INPUT_VERTEX Number of Clipper input vertices 

CLIPPER_OUTPUT_READY Number of cycles Clipper output ready 

CLIPPER_PRIMITIVE_OUTPUT Number of primitives going out of Clipper, 

must clip plus the trivial accept 

CLIPPER_PRIMITIVE_FAR_NEAR_CLIP Number of primitives clipped by Clipper due 

to near/far planes 

STRIPSFAN_OUTPUT_READY Number of cycles in which geometry 

pipeline output is ready 

STRIPSFAN_OBJECT_COUNT Number of objects exiting Stripsfan stage 

STRIPSFAN_OBJECTS_CULL Number of simple culled objects in Stripsfan 

stage 

RASTERIZER_INPUT_AVAILABLE Number of cycles Rasterizer input is available 

PIXEL_2x2_LIT_POST_RASTERIZER_EARLY_DEPTH Number of promoted 2x2 that are lit from 

Rasterizer 

PIXEL_2x2_LIT_POST_RASTERIZER_LATE_DEPTH Number of non-promoted 2x2 that are lit 

from Rasterizer 

RASTERIZER_OUTPUT_READY Number of cycles Rasterizer output is ready 

RASTERIZER_TRANSACTION_OUTPUT Number of transactions pushed from 

Rasterizer to the Z pipe 

RASTERIZER_SAMPLE_OUTPUT Number of lit samples emitted by Rasterizer 

RT_CLOSEST_HIT_THREAD_RAY_DISPATCH Number of closest hit threads dispatched for 

RayQuery only 
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Architecture Event Name Event Definition 

RT_MISS_THREAD_RAY_DISPATCH Number of miss threads dispatched for 

RayQuery only 

RT_INTERSECTION_THREAD_RAY_DISPATCH Number of intersection threads 

dispatched for RayQuery only 

RT_ANY_HIT_THREAD_RAY_DISPATCH Number of any hit threads dispatched for 

RayQuery only 

RT_CALLABLE_THREAD_RAY_DISPATCH Number of callable threads dispatched for 

RayQuery only 

RT_BVH_CACHE_MISS Number of BVH cache misses for RayQuery 

only 

RT_INPUT_MESSAGE_RAY_COUNT Number of valid SIMD lanes in the TraceRay 

message 

RT_INPUT_AVAILABLE_COUNT Number of cycles new message is accepted 

by Ray Tracing Frontend 

RT_MESSAGE_STALL_COUNT Number of cycles when Ray Tracing message 

input is stalled while accepting input 

RT_REQUEST_COLLISION Number of cycles when Ray Tracing Leaf has 

two Traversal inputs valid 

RT_TRAVERSAL_INPUT_RAY_COUNT Number of Ray Tracing Traversal input rays 

RT_TRAVERSAL_OUTPUT_RAY_COUNT Number of Ray Tracing Traversal output rays 

RT_TRAVERSAL_STEP_RAY_COUNT Number of BVH nodes processed 

RT_QUAD_TEST_RAY_COUNT Number of nodes processed that use ray-

quad intersection pipeline 

RT_TRANSFORM_RAY_COUNT Number of only HW transform accesses 

RT_INTERNAL_NODE_RAY_COUNT Number of internal BVH nodes processed by 

the traversal function 

RT_PROCEDURAL_NODE_RAY_COUNT Number of procedural BVH nodes processed 

by the traversal function 

RT_INSTANCE_NODE_RAY_COUNT Number of instance BVH nodes processed by 

the traversal function 

RT_QUAD_LEAF_RAY_COUNT Number of triangle BVH nodes processed by 

the traversal function 

THREAD_DISPATCH_QUEUE0_ACTIVE_CYCLES Number of cycles non-Pixel Shader threads 

are ready for dispatch in a particular subslice 

THREAD_DISPATCH_QUEUE1_ACTIVE_CYCLES Number of cycles Async GPGPU threads are 

ready for dispatch in a particular subslice 

THREAD_DISPATCH_PS_ACTIVE_CYCLES Number of cycles Pixel Shader threads are 

ready for dispatch in a particular subslice 

TASK_THREADGROUP_COUNT Number of Task Shader threadgroups 

dispatched 

GPGPU_THREADGROUP_COUNT Number of GPGPU threadgroups dispatched 
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Architecture Event Name Event Definition 

ASYNC_GPGPU_THREADGROUP_COUNT Number of Async GPGPU threadgroups 

dispatched 

TASK_THREAD_EXIT_COUNT Number of Task Shader EOT messages 

received 

ASYNC_GPGPU_THREAD_EXIT_COUNT Number of Async GPGPU EOT messages 

received 

THREADGROUP_DISPATCH_QUEUE0_INPUT_AVAILABLE Number of cycles Thread Spawner has input 

available on queue 0 

THREADGROUP_DISPATCH_QUEUE1_INPUT_AVAILABLE Number of cycles Thread Spawner has input 

available on queue 1 

THREADGROUP_DISPATCH_RESOURCE_STALL_CYCLES Number of cycles Thread Spawner is stalled 

waiting for resources to be available (SLM, 

Barrier, BTD stack) 

URB_READ Number of URB reads 

URB_WRITE Number of URB writes 

URB_CROSS_SLICE_READ Number of URB reads occurred from cross 

slices 

HIZ_SUBSPAN_LATENCY_FIFOFULL Number of cycles for which HiZ latency 

hiding structure full 

HIZ_DEPTH_TEST_PASS_P Number of promoted 2x2 passed by 

hierarchical depth test 

HIZ_DEPTH_TEST_AMBIG_P Number of promoted 2x2 that are 

ambiguous by hierarchical depth test 

HIZ_DEPTH_TEST_FAIL_P Number of promoted 2x2 that failed the 

hierarchical depth test 

HIZ_DEPTH_TEST_AMBIG_NP Number of non-promoted 2x2 that are 

ambiguous by hierarchical depth test 

HIZ_DEPTH_TEST_FAIL_NP Number of non-promoted 2x2 that failed the 

hierarchical depth test 

IZ_SUBSPAN_LATENCY_FIFOFULL Number of cycles for which IZ latency hiding 

structure full 

POSTPS_DEPTH_STENCIL_ALPHA_TEST_FAIL Number of 2x2 that were lit from Rasterizer 

but failed the depth stencil test or alpha test 

EARLY_DEPTH_STENCIL_TEST_FAIL_P Number of promoted 2x2 that failed Depth / 

Stencil that were previously ambiguous at HiZ 

EARLY_DEPTH_STENCIL_TEST_FAIL_NP Number of non-promoted 2x2 that failed 

Depth / Stencil before the Pixel Shader that 

were previously ambiguous at HiZ 

IZ_OUTPUT_READY Number of cycles IZ has requests to different 

clients 
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Note: Flex EU Coarse and Fine filters to apply as appropriately on base flex EU events on the external 

event list above. Please refer to Flex EU section for more info. 

Flexible EU Event Counters 

Since EU performance events are most interesting in many cases when aggregated across all EUs and 

many interesting EU performance events are limited to certain APIs (e.g., hull shader kernel stats only 

applicable when running a DX11+ workload), additional flexibility has been added to the aggregated 

counters coming from the EU array. 

The following block diagram shows the high-level flow that generates each flexible EU event. 

Note that no support is provided for differences between flexible EU event programming between EUs 

because the resulting output from each EU is eventually merged into a single OA counter anyway. 
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Supported Increment Events 

Increment Event Encoding Notes 

EU_INST_EXECUTED_ALU0_ALL 0b00000 Number of execution slots taken by instructions 

executed on ALU0 pipe 

EU_INST_EXECUTED_ALU1_ALL 0b00001 Number of execution slots taken by instructions 

executed on ALU1 pipe 

  Only fine event filters 0b0000, 0b0111, 0b1000, 0b1001, 

and 0b1010 are supported with this increment event. 

EU_INST_EXECUTED_SYSTOLIC_ALL 0b01001 Number of execution slots taken by instructions 

executed in Systolic pipe 

EU_INST_EXECUTED_SEND_ALL 0b00010 Number of instruction (GRF) dispatches executed on 

SEND Pipe. Only fine event filters 0b0000,0b0101, 

0b0111, 0b1000, 0b1001, and 0b1010 are supported 

with this increment event. 

EU_PIPE_ALU0_AND_ALU1_ACTIVE_CYCLES 0b00011 Number of occurrences of signal that is high on every 

EU clock where the EU ALU0 and ALU1 pipelines are 

both actively executing an ISA instruction. Only coarse 

event filters 0b0000, 0b0111, and 0b1000 are supported 

with this increment event. Only fine event filters 

0b0000, 0b0111, 0b1000, 0b1001, and 0b1010 are 

supported with this increment event. 

EU_PIPE_ALU0_AND_SYSTOLIC_ACTIVE_CYCLES 0b01010 Number of occurrences of signal that is high on every 

EU clock where the EU ALU0 and Systolic pipelines are 

both actively executing an ISA instruction. Only coarse 

event filters 0b0000, 0b0111, and 0b1000 are supported 

with this increment event. Only fine event filters 

0b0000, 0b0111, 0b1000, 0b1001, and 0b1010 are 

supported with this increment event. 

EU_ACTIVE_CYCLES 0b00100 Number of occurrences of signal that is high on every 

EU clock where at least one EU pipeline is actively 

executing an ISA instruction. All coarse event filters are 

supported. Only fine event filters 0b0000,0b0101, 

0b0111, 0b1000, 0b1001, and 0b1010 are supported 

with this increment event. 

EU_STALL_CYCLES 0b00101 Number of occurrences of signal that is high on every 

EU clock where at least one thread is loaded but no EU 

pipeline is actively executing an ISA instruction. All 

coarse event filters are supported. Only fine event filters 

0b0000, 0b0111, 0b1000, 0b1001, and 0b1010 are 

supported with this increment event. 
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EU_THREADS_OCCUPANCY_ALL 0b01000 
Number of Thread slots occupied. Accumulated every 

clock. Implies an accumulator which increases every EU 

clock by the number of loaded threads, signal pulses 

high for one clock when the accumulator exceeds a 

multiple of the number of thread slots (e.g. for a 8-

thread EU, signal pulses high every clock where the 

increment causes a 3-bit accumulator to overflow). Only 

coarse event filters 0b0000, 0b0111, and 0b1000 are 

supported with this increment event. Only fine event 

filters 0b0000, 0b0111, 0b1000, 0b1001, and 0b1010 are 

supported with this increment event. 

EU_INST_EXECUTED_FP16 0b00110 Number of execution slots taken by FP16 ALU 

instructions 

EU_INST_EXECUTED_FP32 0b00111 Number of execution slots taken by FP32 ALU 

instructions 

EU_INST_EXECUTED_INT16 0b01100 Number of execution slots taken by INT16 ALU 

instructions 

EU_INST_EXECUTED_INT32 0b01101 Number of execution slots taken by INT32 ALU 

instructions 

EU_INST_EXECUTED_SYSTOLIC_BF16 0b01110 Number of execution slots taken by BF16 DPAS 

instructions 

EU_INST_EXECUTED_SYSTOLIC_INT8 0b01111 Number of execution slots taken by INT8 DPAS 

instructions 

EU_INST_EXECUTED_MATH 0b10000 Number of execution slots taken by extended math 

instructions 

EU_INST_EXECUTED_CONTROL_ALL 0b10001 Number of instructions executed on JEU Pipe. Only 

coarse event filters 0b0000, 0b0111, and 0b1000 are 

supported with this increment event. 

EU_INST_EXECUTED_SYSTOLIC_FP16 0b10010 Number of execution slots taken by FP16 DPAS 

instructions 

 0b11111 Expected HW default, allows logic to be power-

optimized. 

Supported Coarse Event Filters 

Coarse Event Filter Encoding Notes 

No mask 0b0000 Never masks increment event. 

VS Thread Filter 0b0001 
For increment events 0b00000/0b00001/0b00010, masks increment events unless 

the FFID which dispatched the currently executing thread equals FFID of VS. 

  
For increment events 0b00100/0b00101, masks increment event unless at least one 

of the loaded threads was dispatched by VS. 
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Coarse Event Filter Encoding Notes 

HS Thread Filter 0b0010 
For increment events 0b00000/0b00001/0b00010, masks increment event unless 

the FFID which dispatched the currently executing thread equals FFID of HS. 

  
For increment events 0b00100/0b00101, masks increment event unless at least one 

of the loaded threads was dispatched by HS 

DS Thread Filter 0b0011 
For increment events 0b00000/0b00001/0b00010, masks increment event unless 

the FFID which dispatched the currently executing thread equals FFID of DS. 

  
For increment events 0b00100/0b00101, masks increment event unless at least one 

of the loaded threads was dispatched by DS. 

GS Thread Filter 0b0100 
For increment events 0b00000/0b00001/0b00010, masks increment event unless 

the FFID which dispatched the currently executing thread equals FFID of GS. 

  
For increment events 0b00100/0b00101, masks increment event unless at least one 

of the loaded threads was dispatched by GS. 

PS Thread Filter 0b0101 
For increment events 0b00000/0b00001/0b00010, masks increment event unless 

the FFID which dispatched the currently executing thread equals FFID of PS. 

  
For increment events 0b00100/0b00101, masks increment event unless at least one 

of the loaded threads was dispatched by PS. 

GPTS Thread Filter 0b0110 
For increment events 0b00000/0b00001/0b00010, masks increment event unless 

the FFID which dispatched the currently executing thread equals FFID of GPTS. 

  
For increment events 0b00100/0b00101, masks increment event unless at least one 

of the loaded threads was dispatched by GPTS. 

Row = 0 0b0111 Masks increment event unless the row ID for this EU is 0 (control register is in TDL 

so only have to check within quarter-slice). 

GP1 Thread Filter 0b1001 For increment events 0b00000/0b00001/0b00010, masks increment event unless 

the FFID which dispatched the currently executing thread equals FFID associated 

with GP1/Async Compute. For increment events 0b00100/0b00101, masks 

increment event unless at least one of the loaded threads was dispatched by 

GP1/Async Compute. 

TASK Thread Filter 0b1010 
For increment events 0b00000/0b00001/0b00010, masks increment event unless 

the FFID which dispatched the currently executing thread equals FFID of TASK. 

  
For increment events 0b00100/0b00101, masks increment event unless at least one 

of the loaded threads was dispatched by TASK. 
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Coarse Event Filter Encoding Notes 

MESH Thread Filter 0b1011 
For increment events 0b00000/0b00001/0b00010, masks increment event unless 

the FFID which dispatched the currently executing thread equals FFID of MESH. 

  
For increment events 0b00100/0b00101, masks increment event unless at least one 

of the loaded threads was dispatched by MESH. 

Ray Tracing Shader 

via RT mechanism: 

Any Hit Shader 

0b1100 
For increment events 0b00000/0b00001/0b00010, masks increment event unless 

the FFID which dispatched the currently executing thread equals FFID of RT or RT1 

and header has the matching encoding. 

For increment events 0b00100/0b00101, masks increment event unless at least one 

of the loaded threads was dispatched by RT. 

Ray Tracing Shader 

via RT mechanism: 

Closest Hit Shader 

0b1101 
For increment events 0b00000/0b00001/0b00010, masks increment event unless 

the FFID which dispatched the currently executing thread equals FFID of RT or RT1 

and header has the matching encoding. 

For increment events 0b00100/0b00101, masks increment event unless at least one 

of the loaded threads was dispatched by RT. 

Ray Tracing Shader 

via RT mechanism: 

Miss Shader 

0b1110 
For increment events 0b00000/0b00001/0b00010, masks increment event unless 

the FFID which dispatched the currently executing thread equals FFID of RT or RT1 

and header has the matching encoding. 

For increment events 0b00100/0b00101, masks increment event unless at least one 

of the loaded threads was dispatched by RT. 

Fine Event Filters 

Fine Event Filter Encoding Notes 

None 0b0000 Never mask increment event. 

Cycles where 

hybrid instructions 

are being executed 

0b0001 Masks increment event unless the instruction(s) being executed on the pipeline(s) 

selected by the increment event are hybrid instructions. 

Cycles where 

ternary instructions 

are being executed 

0b0010 Masks increment event unless the instruction(s) being executed on the pipeline(s) 

selected by the increment event are ternary instructions. 

Cycles where 

binary instructions 

are being executed 

0b0011 Masks increment event unless the instruction(s) being executed on the pipeline(s) 

selected by the increment event are binary instructions. 

Cycles where mov 

instructions are 

being executed 

0b0100 Masks increment event unless the instruction(s) being executed on the pipeline(s) 

selected by the increment event are mov instructions. 

Cycles where sends 

start being 

0b0101 Masks increment event unless the instruction(s) being executed on the pipeline(s) 

selected by the increment event are send start of dispatch. Note that if this fine 
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Fine Event Filter Encoding Notes 

executed event filter is used in combination with increment events not related to the EU send 

pipeline (e.g., FPU0 active), the associated flexible event counter will increment in 

an implementation-specific manner. 

EU# = 0b00 0b0111 Masks increment event unless the EU number for this EU is 0b00. 

EU# = 0b01 0b1000 Masks increment event unless the EU number for this EU is 0b01. 

EU# = 0b10 0b1001 Masks increment event unless the EU number for this EU is 0b10. 

EU# = 0b11 0b1010 Masks increment event unless the EU number for this EU is 0b11. 

Flexible EU Event Config Registers 

EU_PERF_CNT_CTL0 - Flexible EU Event Control 0 

EU_PERF_CNT_CTL1 - Flexible EU Event Control 1 

EU_PERF_CNT_CTL2 - Flexible EU Event Control 2 

EU_PERF_CNT_CTL3 - Flexible EU Event Control 3 

EU_PERF_CNT_CTL4 - Flexible EU Event Control 4 

EU_PERF_CNT_CTL5 - Flexible EU Event Control 5 

EU_PERF_CNT_CTL6 - Flexible EU Event Control 6 

Custom Event Counters 

Also known as B-counters, the events counted in these counters are defined from Boolean combinations 

of 

input signals using the custom event creation logic built into OA. 

The following diagram(s) illustrate(s) the structure used to create a custom event. Every B-counter has 

such a block. 
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MI_REPORT_PERF_COUNT 

MI_REPORT_PERF_COUNT 

Interrupts 

Introduction  

Overview: 

The Graphics device is comprised of a number of independent engines that can be invoked to execute 

workloads. Engines communicate status primarily through interrupts. The Graphics device supports two 

models of scheduling and handling of interrupts: 

• Host SW schedules and manages all interrupts 

• Scheduling and related interrupts are managed by hardware scheduler (MinIA micro-controller) 

and host SW manages interrupts not related to scheduling. 

The hardware can be configured to work in either of these models. HW scheduling is the preferred mode 

because it provides best utilization of resources. The figure below shows the high-level overview of the 

interrupt infrastructure. 
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The interrupt infrastructure is designed to support both of these models. Each engine is allocated a set of 

interrupt bits that it can set to report events (the number of bits allotted to each engine varies -- most 

engines are allocated 16bits, some engines which have more events are allocated 32bits). Interrupt 

messages sent by engines result in interrupt bits being recorded in MMIO registers and an interrupt 

being generated to the servicing agent (MinIA scheduler or Host SW). The interrupt handler determines 

the source of the interrupt (by reading registers) and then processes the interrupts. Processing interrupts 

involves reading the interrupt status register, performing the operations for handling the interrupt and 

indicating completion of handling by writing to registers (clear). 

When using the HW scheduler, the scheduling related interrupts are directed to the MinIA scheduler. 

GT Engine Interrupts: 

Within GT, engines are categorized into different engine classes and instances. An engine class is used to 

differentiate between engines that perform different functions (Copy, Render, VideoDecode, 
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VideoEncode, etc). A product may have a number of instances of a specific engine class e.g.: GT2 has 2 

instances of VD, GT3 has 4 instances of VD, etc. The following table lists various engine classes as well as 

instances within each class. 

Engine Class Engine Instance Name ClassID[2:0] InstanceID[5:0] 

Render RCS 0 0 

    

Video Decode VCS0-N 1 0-N 

    

Video Enhancement Engine VECS0-N/2 2 0-N/2 

    

Copy Engine BCS 3 0 

Other GuC 4 0 

 GTPM 4 1 

 WDOAPerf 4 2 

 SCTRG 4 3 

 KCR 4 4 

 Gunit 4 5 

 CSME 4 6 

    

Compute Engine CCS0-N 5 0-N 

    

    

Reserved  6-7  

Each engine reports up to 16 interrupts to interrupt handling logic. Source identification data is included 

in interrupt messages to interrupt aggregating logic, i.e. when reporting an interrupt to either host or 

graphics firmware, the generating engine must identify itself. 16 bits of identification is sent along with 

interrupt data, and comprises Engine Class ID, Instance ID and Virtual Function Number. Interrupt bit 

definition varies per engine class, these are listed in the Bspec in the Global/ section. 

Format of interrupt message: 

Bit Fied Purpose 

[31:30] Reserved 

[29:27] VF ID 

[26] Reserved 

[25:20] Instance ID 

[19] Reserved 

[18:16] Engine Class ID 

[15:0] Interrupt data 
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Hardware Scheduler/MinIA SW Interface 

Graphics interrupts to scheduling firmware are delivered as two unique vector values. Each vector 

accounts for 32 graphics engines. Firmware processes each of two groups of graphics engines 

independently. 

Service routines are independent for the two interrupt vectors presented to the MinIA firmware. 

The diagrams below assume SRIOV-8 implementation which does not include memory-based interrupt 

support. 

Host SW Interface 

 

Interrupts to Host are delivered via a Primary Interrupt Control Register. Graphics interrupts use 2 bits in 

the Primary Interrupt Control Register. In addition, interrupt events from Display are also represented in 

the Primary Interrupt Control Register. Multiple copies of Primary Interrupt Control Register exist, one for 

every virtual machine in the system. 
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Interrupt bits in the Primary Interrupt Control Register are Read-Only bits, and are level indications that a 

second level interrupt is present (As seen earlier, second level interrupts per client are OR-ed together. 

 When the second level IIR is cleared, the bit represented will be 0.). An interrupt is sent to driver 

whenever bits are set in the Primary Interrupt Control Register and the Enable bit is also set. 

As a result of this interrupt, SW first resets the Primary Control Enable bit. SW then reads the 

Primary Interrupt Control register into a local variable, and works off this local variable to service 

interrupts. Once all lower-level interrupts have been serviced, SW writes the Primary Interrupt Control 

register to set the Primary Control Enable bit. 

Interrupt Aggregating Logic 

A hierarchical interrupt status infrastructure is provided to efficiently determine the source of the 

interrupt. The first level of interrupts is generated by GT Engines. Interrupt handling logic accumulates 

these interrupts from the various engines, and organizes it as a single bit per engine in a second level. 32 

bits of second level interrupts are OR-ed together to generate a DW-level interrupt event for up to 32 

engines. Two such events are used to provide support for up to 64 GT engines. When communicating 

with the MinIA, these events are mapped to two unique interrupt vectors in the MinIA LAPIC. When 

communicating with host driver, these events form two bits of the Primary Interrupt Control Register as 

marked in the picture. 
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First Level Interrupt Bits: 

When an interrupt event comes into the interrupt handling logic, it is AND-ed with a per-Engine Enable 

register (IER). Only enabled events make forward progress. Disabled events are simply dropped by the 

interrupt handling logic. [Note that multiple instances of the same engine type (except those in the 

'Other' Engine Class) share the same Enable register.] 

Enabled interrupts are logged in a per-instance, non-SW readable Collapsing Register. These events are 

AND-ed with (the inverse of) a per-Instance Mask Register (IMR). Only unmasked events make forward 

progress. Masked events remain in the per-Instance Collapsing Register until they are unmasked. [Note 

that every instance (even of the same engine type) has its own Mask Register.] 

Unmasked events in the per-Instance Collapsing Register are OR-ed together to produce a single second 

level interrupt event. 

Second Level Interrupt Bits:  

Second level interrupt events are stored in a double buffered IIR structure. A snapshot of events is taken 

when SW reads the IIR. From the time of read to the time of SW completely clearing the second-level 
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IIR (to indicate end of service), all incoming interrupts are logged in a secondary storage structure. This 

guarantees that the record of interrupts SW is servicing will not change while under service. 

Bits in the second-level IIR are OR-ed together to generate a DW-level event. The IIR is cleared by writing 

1s. If events exist in the secondary storage at the time that the IIR is completely cleared, a second DW-

level event will be generated. 

Shared IIR, Selector:  

Shared IIR and Selector registers are used when SW is in the process of handling reported interrupts. As 

a result of a GT interrupt (DW-level interrupt), SW reads the second-level IIR register. The read provides 

an indication of engines needing service. SW must then service engines one at a time by writing a one-

hot selection into the Selector Register. 

When a selection is made by writing the Selector, interrupt handling logic presents all the unmasked 

interrupt bits (first level interrupt events) for the selected engine in the Shared IIR, and sets the Data-

Valid bit (MSB). SW can then read the Shared IIR and take action for the reported events. SW must clear 

the Shared IIR by writing 1 to the Data-Valid bit to indicate end of service for the selected engine. This 

clearing of the Shared IIR Data-Valid bit clears both the Shared IIR as well as the Selector. Note that the 

Selector data must be one-hot. Selector must not have a bit set that is not set in the second-level IIR at 

the time of SW read. 

SW then repeats the above steps for each bit set in the second-level IIR. Multiple rounds of Selector 

write-Shared IIR clear may be required to service a DW level interrupt a single time.  

Second-level IIR bits are cleared only after individual engines are serviced via the Selector write -Shared 

IIR clear routine. This clearing can be done after each iteration through the Selector write-Shared IIR clear 

routine (i.e. one second-level bit  cleared after each iteration), or all at once after all engines have been 

serviced. Second-level IIR bits must not be cleared without first servicing that engine's interrupts via the 

Selector and Shared IIR registers. 

Enable and Mask Registers:  

Interrupt aggregating logic includes Enable registers(IER) per Engine Class. Different instances of the 

same engine class use the same Enable register, except for engines in the 'Other' class. Each instance in 

the 'Other' class has its own Enable register. 

Interrupt aggregating logic also includes Mask registers (IMR). Each engine instance, even within the 

same Engine Class, has a unique Mask Register. 

Enables for Engine classes at the two software interfaces are typically complements of each other. 
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Memory Based Interrupt Status Reporting   

SRIOV add support for executing workloads from a large numbers of Virtual Machine or containers. 

Schedulable engines (engines with Command Streamers) need a mechanism to signal events to the Host 

SW through interrupts. MMIO register based interrupts infrastructure used for non-virtualized mode or 

SRIOV-8 (which supports 8 Virtual Functions) does not scale efficiently to allow delivering interrupts to a 

large number of Virtual machines or containers. Memory based interrupt status reporting provides an 

efficient and scalable infrastructure. 

Memory based interrupt infrastructure is used by all engines (CS-es and GuC) that need to communicate 

with a VF/container when running in SRIOV mode. The overall flow is shown in the figure below. 

 

For memory based interrupt status reporting hardware sequence is: 

• Engine writes the interrupt event to memory - pointer to memory location is provided by SW. This 

memory surface must be mapped to system memory and must be marked as un-cacheable (UC) 

on Graphics IP Caches. 

• Engine sends a request (message to G-unit) to trigger an interrupt to host 
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Interrupt Status Format 

MMIO register based interrupt status reporting uses 16 bits per engine where each bit represents an 

interrupt event. 

Memory based interrupt status uses a byte per interrupt event (byte granularity allows engines to update 

memory status using byte enables instead of requring a read-modify-write). 

The byte interrupts use the same ordering as bits in interrupt register (i.e Render CS event signalled by 

bit 0 is represented by byte 0). 

Following table summarizes the format for convenience. Please refer to the bitwise definition of the 

interrupt vectors for each engine for latest field definition. 

 

Byte # 

in 16B 

 Engine 

status 

RCS CCS VCS VECS BCS GuC 

15 Catastrophic 

Error 

Catastrophic 

Error 

Catastrophic 

Error 

Catastrophic 

Error 

Catastrophic 

Error 

GuC 

Interrupt to 

Host 

14 EU Restart EU Restart     

13 Context Stall Context Stall     

12 EU ECC      

11 Wait on 

Semaphore 

Wait on 

Semaphore 

Wait on 

Semaphore 

Wait on 

Semaphore 

Wait on 

Semaphore 

 

10 Reserved      

9 TR Invalid Tile 

Detected 

TR Invalid Tile 

Detected 

    

8 Context Switch Context Switch Context Switch Context Switch Context Switch  

7 Legacy Context 

Per Proc Page 

Fault 

Legacy Context 

Per Proc Page 

Fault 

Legacy Context 

Per Proc Page 

Fault 

Legacy Context 

Per Proc Page 

Fault 

Legacy Context 

Per Proc Page 

Fault 

 

6 Watchdog 

Expired 

Watchdog 

Expired 

Watchdog 

Expired 

Watchdog 

Expired 

Watchdog 

Expired 

 

5 L3 Parity Error      

4 Pipe Control 

Notify 

Pipe Control 

Notify 

MI Flush DW 

Notify 

MI Flush DW 

Notify 

MI Flush DW 

Notify 

 

3 Error Interrupt Error Interrupt Error Interrupt Error Interrupt Error Interrupt  

2       

1       

0 User Interrupt User Interrupt User Interrupt User Interrupt User Interrupt  
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Gdie Interrupt and Errors  

Interrupt and error handling will be supported via a common scale-able structure. 

 

For projects that support Advanced Error Reporting, reference the diagram below.  

Visible differences vs. prior integrated graphics products for interrupt : 

- Extra level of register hierarchy for interrupt processing 

o Addition of Tile interrupt register (in Primary Tile) 

- Software must RW1C top level registers 

o Tile interrupt register (in Root tile) 

o Per Tile Primary Interrupt register 

- Addition of SoC and Error bits in the Per Tile Primary Interrupt Register 

Message address offsets are used for hardware related communication. The Gfx driver does not use the 

message addresses. 

The Gfx driver (via the CPU) accesses addresses are used by the interrupt handler. 

Below is an error/interrupt hardware message table, along with the associated software visible offsets for 

reference. 
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Register Software Accessible Addresses 

GT Error Correctable 10_0160h (RW1C) 

GT Error Non-Fatal 10_0164h (RW1C) 

GT Error Fatal  10_0168h (RW1C) 

Reserved 10_016Ch 

  

  

Device Error Routing Ctrl 10_0170h (RW) 

  

Device Error Source (Fatal) 10_0174h (RW1C) 

Device Error Source (Non-Fatal) 10_0178h (RW1C) 

Device Error Source (Corr) 10_017Ch (RW1C) 

PCIe Err (Corr/NonFatal/Fatal) IOSF SB message  10_0174/8/Ch 

  

  

PCU Interrupt Register 444E0-EFh 

Device Tile Interrupt Register 19_0008h (RW1C) 

Primary Interrupt Register 19_0010h (Mostly RW1C .. Except bit 31) 

Display Interrupt Message 19_0010h 

CD (aka ANR) Interrupt Message 19_0010h 

  

  

VF Memory Based Interrupt Trigger  
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Interrupt Service Routine Pseudocode 

This interrupt service routine pseudocode: 

ISR routine 

{ 

KMD writes reg 190008h(TILE_INT_REG) to clear bit 31 (Primary INT on Tile_INT_REG) to disable further interrupts 

while processing ISR 

KMD reads Primary Interrupt MMIO reg 190008h = Save that in local variable specially Tile Only 

KMD writes MMIO 190008h to clear bits local variable (i.e. TILE_BITS) 

// Start per Tile INT service 

Per Tile(Loop based on local variable) 

KMD reads Per Tile 190010h 

KMD Writes the same data that is read in previous step to Clear the (Per Tile 190010h) 

KMD finds any of GT bits set DW0 or DW1 INT bits 

//Handle GT Engine INT (DW 0). .Example RCS has pipe_Control INT 

KMD reads MMIO Per Tile 190018h (GT INTR DW0) and finds bit 0 set (RCS bit). 

KMD writes MMIO Per Tile 190070h (GT INTR IIR DW0 Selector) with bit 0 set (to get RCS interrupts) 

KMD repeatedly reads Per Tile MMIO 190060h (GT INTR Identity Reg 0) until DataValid (bit 31) is set 

KMD stores bits 0:15 of value returned from reg Per Tile 190060h read to local variable holding RCS 

interrupts 

KMD writes Per Tile MMIO 190060h (GT INTR Identity Reg 0) with same bits set to clear those 

interrupts 

KMD writes with the same data that is read to per tile 190018h to clear DW0 interrupt bits 

//Handle GT Engine INT (DW 1).. Example VCS0 and VCS3 has STDW_INT 

KMD reads Per Tile MMIO 19001Ch (GT INTR DW1) and finds bits 0 and 3 set (VCS0 and VCS3) 

KMD writes Per Tile MMIO 190074h (GT INTR IIR DW1 Selector) with bit 0 set (to get VCS0 interrupts) 

KMD repeatedly read Per Tile MMIO 190064h (GT INTR Identity 1) until DataValid (bit 31) is set 

KMD stores bits 0:15 of value returned from Per Tile reg 190064h read to local variable holding VCS0 

interrupts 

KMD writes Per Tile MMIO 190064h (GT INTR Identity 1) with same bits set to clear those interrupts 

KMD writes Per Tile MMIO 190074h (GT INTR IIR Selector 1) with bit 3 set (to get VCS3 interrupts) 

KMD repeatedly Per Tile reads MMIO 190064h (GT INTR Identity 1) until DataValid (bit 31) is set 

KMD stores Per Tile bits 0:15 of value returned from reg 190064h read to local variable holding VCS3 

interrupts 

KMD writes MMIO 190064h (GT INTR Identity 1) with same bits set to clear those interrupts 
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KMD writes with the same data that is read to per tile 19001Ch to clear DW1 interrupt bits 

KMD finds Display Interrupt bit (via 19_0010h) read above 

1. Disable Display Interrupt Control (can be done here, or anywhere before step 5)  

• Clear bit 31 of DISPLAY_INT_CTL 

• This is required to prevent missing any interrupts occurring back to back or during the 

service routine 

2. Find the category of interrupt that is pending  

• Read DISPLAY_INT_CTL and record which interrupt pending category bits are set 

3. Find the source(s) of the interrupt and clear the Interrupt Identity bits (IIR)  

• Read the IIR associated with each pending interrupt category, record which bits are set, then 

write back 1s to clear the bits that are set. 

• There can be up to 2 interrupts recorded per source, requiring multiple writes to the IIR to 

fully clear. 

4. Process the interrupt(s) that had bits set in the IIRs 

5. Re-enable Display Interrupt Control  

• Set bit 31 of DISPLAY_INT_CTL 

• If interrupts were not fully cleared in step 3, then the display interrupt will re-assert and 

there will be a new display interrupt in GFX_MSTR_INTR 

// For any new interrupts set after the 190010h read, new interrupts are re-generated after setting 31 of 

190008h. 

End Per Tile LOOP 

KMD writes reg 190008h to Set bit 31 // Re-enable INT 

//Any pending INT from tile setting in Tile_INT_REG will re-trigger INT and re-Service request in KMD 

// Based on local variable (Tiles and engines).. Schedule DPC and call Actual Handler to *some useful work* 

// Example 

// Call KMD_PIPE_CONTROL_HANDLER (Tile_ID, Engine ID) {// Fence/Work processing for RCS on particular Tile/GT 

0..3} 

// Call KMD_STDW_HANDLER (Tile_ID, Engine ID) {//Fence/Work processing for VCS instance 0..8 on particular 

Tile/GT 0..3} 

} 

Error Service Routine Pseudocode 

Correctable and Non-fatal errors are expected to route as interrupts (and the Gfx driver would then 

service). Fatal errors are expected to route as PCIe Error messages. In today's platforms, these PCIe error 

messages result in the OS issuing a Gfx device FLR. 

However, if a error handler were to be written for PCIe messaged errors, below is a pseudo-code 

example. 
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Red denotes the SW(Error handler's) part. 

1) A fatal error is logged in the Error source register 

2) Hardware initiates a PCIe Fatal Error message which flows to the CPU. 

3) Error handler reads the Device tile error status register and determines which tile. 

a. For example, tile 0. 

4) Error handler writes 1 to clear the appropriate Device tile error status bit. 

a. Ie. the Tile 0 bit in this example. 

5) Error handler reads the Tile Fatal register and determines the error source. 

a. Ie. Tile 0 read determines SoC fatal error bit. 

6) Error handler does what it needs to do for SoC and writes 1 to clear the SoC bit. 


